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ABSTRACT

We propose an empirical performance evaluation of five different 2D object recognition techniques. For this purpose, two novel
recognition methods that we have developed with the aim to fulfill increasing industrial demands are compared to the normalized
cross correlation and the Hausdorff distance as two standard similarity measures in industrial applications, as well as to PatMaxR© —
an object recognition tool developed by Cognex. Additionally, a new method for refining the object’s pose based on a least-squares
adjustment is included in our analysis. After a description of the respective methods, several criteria that allow an objective evaluation
of object recognition approaches are introduced. Experiments on real images are used to apply the proposed criteria. The experimental
set-up used for the evaluation measurements is explained in detail. The results are illustrated and analyzed extensively.

1 INTRODUCTION

Object recognition is used in many computer vision applications.
It is particularly useful for industrial inspection tasks, where often
an image of an object must be aligned with a model of the object.
The transformation (pose) obtained by the object recognition pro-
cess can be used for various tasks, e.g., pick and place operations
or quality control. In most cases, the model of the object is gener-
ated from an image of the object. This 2D approach is taken be-
cause it usually is too costly or time consuming to create a more
complicated model, e.g., a 3D CAD model. Therefore, in indus-
trial inspection tasks one is usually interested in matching a 2D
model of an object to the image. The object may be transformed
by a certain class of transformations, e.g., rigid transformations,
similarity transformations, or general 2D affine transformations.
The latter are usually taken as an approximation to the true per-
spective transformations an object may undergo.

A large number of object recognition strategies exist. All ap-
proaches to object recognition examined in this paper — possi-
bly with the exception of PatMaxR© — use pixels as their geo-
metric features, i.e., not higher level features like lines or elliptic
arcs. Since PatMaxR© is a commercial software tool, a detailed
technical description is not available and therefore no statements
about the used features can be made within the scope of this pa-
per. Nevertheless, we included PatMaxR© in our evaluation be-
cause it is one of the most powerful commercial object recogni-
tion tools. Thus, we are able to rate the performance of our two
novel approaches not only by comparing them to standard recog-
nition techniques but also to a high-end software product.

Several methods have been proposed to recognize objects in im-
ages by matching 2D models to images. A survey of matching
approaches is given in (Brown, 1992). In most 2D matching ob-
ject recognition implementations the search is usually done in
a coarse-to-fine manner, e.g., by using image pyramids (Tani-
moto, 1981). The simplest class of object recognition methods is
based on the gray values of the model and image itself and uses
normalized cross correlation or the sum of squared or absolute
differences as a similarity measure (see (Brown, 1992) or (Lai

and Fang, 1999), for example). A more complex class of object
recognition methods does not use the gray values of the model
or object itself, but uses the object’s edges for matching. Two
example representatives of this class are the hierarchical cham-
fer matching (Borgefors, 1988) and the Hausdorff distance (see
(Rucklidge, 1997) or (Olson and Huttenlocher, 1997)). Finally,
another class of edge based object recognition algorithms is based
on the generalized Hough transform (GHT) (Ballard, 1981). Ap-
proaches of this kind have the advantage that they are robust to
occlusion as well as clutter. Unfortunately, the GHT in the con-
ventional form requires large amounts of memory and long com-
putation time to recognize the object.

In this paper our two new approaches are analyzed and their per-
formance is compared to that of PatMaxR©and two of the above
mentioned approaches. Additionally, our new method for refining
the object’s pose, i.e., improving the accuracy of the transforma-
tion parameters, based on a least-squares adjustment is included
in our evaluation. The analysis of the performance characteristics
of object recognition methods is an important issue. First, it helps
to identify breakdown points of the algorithm, i.e., areas where
the algorithm cannot be used because some of the assumptions it
makes are violated. Second, it makes an algorithm comparable to
other algorithms, thus helping users in selecting the appropriate
method for the task they have to solve. Therefore, in this paper an
attempt is made to characterize the performance of five different
object recognition approaches, which are briefly introduced in the
following section. A more detailed description of the approaches
can be found in the corresponding references or in (Ulrich and
Steger, 2001) and (Ulrich and Steger, 2002), where also the eval-
uation is described more extensively.

2 EVALUATED OBJECT RECOGNITION METHODS

First of all, we introduce some definitions that facilitate the com-
parison between the seven techniques. All recognition methods
have in common that they require some form of representation of
the object to be found, which will be calledmodelbelow. The



modelM is generated from an image of the object to be recog-
nized. A region of interest (ROI) R specifies the object’s location
in the image. The image part defined byR is calledreference im-
ageIr. The image, in which the object should be recognized, will
be referred to as thesearch imageIs. Almost all object recogni-
tion approaches can be split into two successive phases: theof-
fline phaseincluding the generation of the model and theonline
phase, in which the constructed model is used to find the object
in the search image.

The transformation classT , e.g., translations or euclidean, sim-
ilarity, affine, or arbitrary projective transformations, specifies
the degrees of freedom of the object, i.e., which transformations
the object may undergo in the search image. For all similarity
measures the object recognition step is performed by transform-
ing the model to a user-limited range of discrete transformations
Ti ∈ T within the transformation class. For each transformed
modelM t

i = TiM the similarity measure is calculated between
M t and the corresponding representation of the search image.
The representation can, for example, be described by the raw gray
values in both images (e.g., when using the normalized cross cor-
relation) or by the corresponding binarized edges (e.g., when us-
ing the Hausdorff distance). The maximum or minimum of the
match metric then indicates the pose of the recognized object.

The first method to be analyzed is theNormalized Cross Corre-
lation (Brown, 1992) because it is a rather widely spread method
in industry and therefore well known in the application area of
object recognition. TheHausdorff Distance(Rucklidge, 1997) is
the second candidate, which is also the core of many recognition
implementations, because of its higher robustness against occlu-
sions and clutter in contrast to the normalized cross correlation.
Additionally, PatMaxR© and two novel approaches, which are re-
ferred to asShape-Based Matching(Steger, 2001) andModified
Hough Transform(Ulrich, 2001, Ulrich et al., 2001a, Ulrich et
al., 2001b) below, are included in our analysis. The least-squares
adjustment of the object’s pose assumes approximate values for
the transformation parameters and therefore, is no self-contained
object recognition method. Thus, it can be used to improve the
accuracy of the returned parameters from any recognition tech-
nique that uses the edge position and edge orientation as features
by a subsequent execution of the least-squares adjustment. In
our current study we use the shape-based matching as basis for
the least-squares adjustment. The development of our new ap-
proaches was motivated by the increasing industrial demands like
real-time computation and high recognition accuracy. Therefore,
the study is mainly concerned with the robustness, the subpixel
accuracy, and the required computation time of the six candidate
algorithms under different external circumstances.

2.1 Normalized Cross Correlation

For the purpose of evaluating the performance of the normalized
cross correlation (see (Brown, 1992), for example) we use — as
one typical representative — the current implementation of the
Matrox Imaging Library(MIL), which is a software development
toolkit of Matrox Electronic Systems Ltd.(Matrox, 2001). In
this implementation image pyramids are used for speed up. The
quality of the match is returned by mapping the normalized cross
correlation to a score value between 0.0 and 1.0. Subpixel accu-
racy is obtained by a subsequent refinement of the position and
orientation parameters by interpolation.

2.2 Hausdorff Distance

The Hausdorff distance measures the extent to which each pixel
of the binarized reference image lies near some pixel of the bina-
rized search image and vice versa. We use the implementation of

(Rucklidge, 1997), which uses the symmetric partial undirected
Hausdorff distance to reduce the sensitivity to outliers applying a
forward and a reverse fraction of points that must fulfill a certain
distance criterion. Only translations of the object can be recog-
nized and no subpixel refinement is included. Although the pa-
rameter space is treated in a hierarchical way there is no use of
image pyramids, which makes the algorithm very slow.

2.3 PatMaxR©

As described in its documentation (Cognex, 2000) PatMaxR© uses
geometric information. The model representation, which can be
visualized by PatMaxR©, apparently consists of subpixel precise
edge points and respective edge directions. From this we can
conclude that PatMaxR© uses similar features as the shape-based
matching. To speed up the search, a coarse-to-fine approach is
implemented. To indicate the quality of the match, PatMaxR©

computes a score value between 0.0 and 1.0.

2.4 Shape-Based Matching

In this section the principle of our novel similarity measure is
briefly explained. A detailed description can be found in (Steger,
2001).

The model consists of a set of points and their corresponding di-
rection vectors. In the matching process, a transformed model
is compared to the image at a particular location by a similarity
measure. We suggest to sum the normalized dot product of the
direction vectors of the transformed model and the search image
over all points of the model to compute a matching score at a par-
ticular point of the image. The normalized similarity measure has
the property that it returns a number smaller than 1 as the score
of a potential match. A score of 1 indicates a perfect match be-
tween the model and the image. Furthermore, the score roughly
corresponds to the portion of the model that is visible in the im-
age. Once the object has been recognized on the lowest level of
the image pyramid, its position, rotation, and scale are extracted
to a resolution better than the discretization of the search space
by fitting a second order polynomial (in the four pose variables
horizontal translation, vertical translation, rotation, and scale) to
the similarity measure values in a 3× 3× 3× 3 neighborhood
around the maximum score.

2.5 Modified Hough Transform

One weakness of the Generalized Hough Transform (GHT) (Bal-
lard, 1981) algorithm is the — in general — huge parameter
space. This requires large amounts of memory to store the ac-
cumulator array as well as high computational costs in the online
phase caused by the initialization of the array, the incrementa-
tion, and the search for maxima after the incrementation step. In
(Ulrich, 2001), (Ulrich et al., 2001a), and (Ulrich et al., 2001b)
we introduce our novel approach that eliminates the major draw-
backs of the GHT using a hierarchical search strategy in combi-
nation with an effective limitation of the search space. The result-
ing pose parameters of position and orientation are refined using
the method describe in Section 2.4. To evaluate the quality of a
match, a score value is computed as the peak height in the accu-
mulator array divided by the number of model points.

2.6 Shape-Based Matching Using Least-Squares
Adjustment

To improve the accuracy of the transformation parameters, we
developed a method that minimizes the distance between tan-
gents of the model shape and potential edge pixels in the search



image using a least-squares adjustment (see also (Wallack and
Manocha, 1998)). Approximate transformation parameters are
assumed to be known, which can be obtained by any preceding
object recognition method that uses the edge position and orien-
tation as features, e.g., the shape-based matching or the modified
Hough transform. The minimization is realized using a single
step algorithm (Press et al., 1992). This approach is described
more extensively in (Ulrich and Steger, 2002). We implemented
the least-squares adjustment as an extension of the shape-based
matching, which returns the requested approximate values accu-
rately enough.

3 EVALUATION

3.1 Evaluation Criteria

We use three main criteria to evaluate the performance of the six
object recognition methods and to build a common basis that fa-
cilitates an objective comparison.

The first criterion to be considered is therobustnessof the ap-
proach. This includes the robustness against occlusions, which
often occur in industrial applications, e.g., caused by overlapping
objects on the assembly line or defects of the objects to be in-
spected. Non-linear as well as local illumination changes are also
crucial situations, which cannot be avoided in many applications
over the entire field of view. Therefore, the robustness against
arbitrary illumination changes is also examined. A multitude of
images were taken to simulate different overlapping and illumi-
nation situations (see Section 3.2). We measure the robustness
using the recognition rate, which is defined as the number of im-
ages in which the object was correctly recognized divided by the
total number of images.

The second criterion is theaccuracyof the methods. Most appli-
cations need the exact transformation parameters of the object as
input for further investigations like precise metric measurements.
In the area of quality control, in addition, the object in the search
image must be precisely aligned with the transformed reference
image to ensure a reliable recognition of defects or other varia-
tions that influence certain quality criteria, e.g., by subtracting the
gray values of both images. We determine the subpixel accuracy
by comparing the exact (known) position and orientation of the
object with returned parameters of the different candidates.

The computation timerepresents the third evaluation criterion.
Despite the increasing computation power of modern micropro-
cessors, efficient and fast algorithms are more important than
ever. This is particularly true in the field of object recognition,
where a multitude of applications enforce real time computation.
Indeed, it is very hard to compare different recognition methods
using this criterion because the computation time strongly de-
pends on the individual implementation of the recognition meth-
ods. Nevertheless, we tried to find parameter constellations (see
Section 3.2) for each of the investigated approaches that at least
allow a qualitative comparison.

Since the Hausdorff distance does not return the object position
in subpixel accuracy and in addition does not use image pyra-
mids resulting in unreasonably long recognition times, the cri-
teria of accuracy and computation time are only applied to the
five remaining candidates. The least-squares adjustment is im-
plemented as a subsequent refinement step in combination with
the shape-based matching. Therefore, only the accuracy and the
recognition time of the least-squares adjustment are analyzed,
since the robustness is not affected and hence is the same as the
robustness of the underlying recognition approach.

Figure 1: An IC is used as the object to be recognized.

3.2 Experimental Set-Up

In this section the experimental set-up for the evaluation is ex-
plained in detail. We chose an IC, which is shown in Figure 1,
as the object to be found in the subsequent experiments. Only
the part within the bounding box of the print on the IC formes
the ROI, from which the models of the different recognition ap-
proaches are created. For the recognition methods that segment
edges during model creation (Hausdorff distance, shape-based
matching, modified Hough transform, least-squares adjustment)
the threshold for the minimum edge amplitude in the reference
image was set to 30 during all our experiments. The images we
used for the evaluation are 8 bit gray scale of size 652× 494
pixels. For all recognition methods using image pyramids, four
pyramid levels were used to speed up the search, which we found
to be the optimum number for our specific object. When using
PatMaxR©, there is no parameter that allows to explicitly spec-
ify the number of image pyramids to use. Instead, the parameter
coarse grain limitcan be used to control the depth of the hier-
archical search, which has a similar meaning as, but can not be
equated with, the number of pyramid levels. Since this parame-
ter can be set automatically, we assumed the automatically deter-
mined value as the optimum one and did not use a manual setting.

3.2.1 Robustness To apply the first criterion of robustness and
determine the recognition rate two image sequences were taken,
one for testing the robustness against occlusions the other for test-
ing the sensibility to illumination changes. We defined the recog-
nition rate as the number of images, in which the object was rec-
ognized at the correct position divided by the total number of
images.

The first sequence contains 500 images of the IC, which was oc-
cluded to various degrees with various objects, so that in addition
to occlusion, clutter of various degrees was created in the im-
age. Figure 2 shows two of the 500 images that we used to test
the robustness against occlusion. For the approaches that seg-
ment edges in the search image (modified Hough transform and
Hausdorff distance) the minimum edge amplitude in the search
image was set to 30, i.e., to the same value as in the reference
image. The size of the bounding box is 180× 120 pixels at the
lowest pyramid level, i.e., at original image resolution, contain-
ing 2127 edge points extracted by the Sobel filter. In addition to
the recognition rate, the correlation between the actual occlusion
and the returned score values are examined, because the corre-
lation between the visibility of the object and the returned score
value is also an indicator for robustness. If, for example, only
half of the object is visible in the image then, intuitively, also the
score should be 50%, i.e., we expect a very high correlation in
the ideal case. For this purpose, an effort was made to keep the
IC in exactly the same position in the image in order to be able
to measure the degree of occlusion. Unfortunately, the IC moved
very slightly (by less than one pixel) during the acquisition of
the images. The true amount of occlusion was determined by ex-
tracting edges from the images and intersecting the edge region
with the edges within the ROI in the reference image. Since the



Figure 2: Two of the 500 images that were used to test the robust-
ness against occlusions.

Figure 3: Two of the 200 images that were used to test the robust-
ness against arbitrary illumination changes.

objects that occlude the IC generate clutter edges, this actually
underestimates the occlusion.

The transformation class was restricted to translations, to reduce
the time required to execute the experiment. However, the al-
lowable range of the translation parameters was not restricted,
i.e., the object is searched in the entire image. Different values
for the parameter of the minimum score were applied, which can
be chosen for all approaches. The minimum score specifies the
score a match must at least have to be interpreted as a found ob-
ject instance. The forward fraction of the Hausdorff distance was
interpreted as score value. Initial tests with the forward and re-
verse fractions set to 30% resulted in run times of more than three
hours per image. Therefore, the reverse fraction was set to 50%
and the forward fraction was successively increased from 50% to
90% using an increment of 10%. The parameter for the maxi-
mum forward and reverse distance were set to 1. For the other
three approaches the minimum score was varied from 10 to 90
percent.

To test the robustness against arbitrary illumination changes, a
second sequence of images of the IC was taken, which includes
various illumination situations. Two example images are dis-
played in Figure 3. Due to a smaller distance between the IC and
the camera, the ROI is now 255× 140 pixels containing 3381
model points on the lowest pyramid level. The parameter settings
for the six methods is equivalent to the settings for testing the
robustness against occlusions.

3.2.2 Accuracy In this section the experimental set-up that
we used to determine the accuracy of the algorithms, is explained.
This criterion is not applied to the Hausdorff distance, because
subpixel accuracy is not achieved by the used implementation.
Generally, it seems to be very difficult to compute a refinement of
the returned parameters directly based on the forward or reverse
fraction. Since PatMaxR© and the shape-based matching are the
only candidates that are able to recognize scaled objects, only
the position and orientation accuracy of the five approaches were
tested.

To test the accuracy, the IC was mounted onto a table that can be
shifted with an accuracy of 1µm and can be rotated with an accu-

racy of 0.7’ (0.011667◦). Three image sequences were acquired:
In the first sequence, the IC was shifted in 10µm increments
to the left in the horizontal direction, which resulted in shifts of
about 1/7 pixel in the image. A total of 40 shifts were performed,
while 10 images were taken for each position of the object. The
IC was not occluded in this experiment and the illumination was
not changed. In the second sequence, the IC was shifted in the
vertical direction with upward movement in the same way. How-
ever, a total of 50 shifts were performed. The intention of the
third sequence was to test the accuracy of the returned object ori-
entation. For this purpose, the IC was rotated 50 times for a total
of 5.83◦. Again, 10 images were taken in every orientation.

During all accuracy tests, euclidean motion was used as transfor-
mation class. The search angle for all approaches was restricted
to the range of [-30◦;+30◦], whereas the range of translation pa-
rameters again was not restricted. The increment of the quantized
orientation step was set to 1◦, which results in the models con-
taining 61 rotated instances of the template image at the lowest
pyramid level. Since no occlusions were present the threshold
for the minimum score could be uniformly set to 80% for all ap-
proaches.

3.2.3 Computational Time In order to apply the third crite-
rion, exactly the same configuration was employed as it was used
for the accuracy test described in Section 3.2.2. The computa-
tion time of the recognition processes was measured on a 400
MHz Pentium II for each image of the three sequences and for
each recognition method (excluding again the Hausdorff distance
for the reason mentioned above). In order to assess the corre-
lation between restriction of parameter space and computation
time, additionally, a second run was performed without restrict-
ing the angle interval.

In this context it should be noted that the modified Hough trans-
form is the only candidate that is able to recognize the object,
even if it partially lies outside the search image. The translation
range of the other approaches is restricted automatically to the
positions at which the object lies completely in the search image.
Particularly in the case of large objects this results in an unfair
comparison between the Hough transform and the other candi-
dates when computation time is considered.

3.3 Results

In this section we present the results of the experiments described
in Section 3.2. Several plots illustrate the performance of the
examined recognition methods. The description and the analysis
of the plots are structured as in the previous section, i.e., first
the results of the robustness, then the accuracy, and finally the
computation time are presented.

3.3.1 Robustness

Occlusion. First, the sequence of the occluded IC was tested.
A complete comparison of all approaches concerning the robust-
ness against occlusion is shown in Figure 4. In the left plot the
recognition rate, which is an indicator for the robustness, is plot-
ted depending on the minimum score (see Section 3.2.1). Here,
the superiority of our two novel approaches to the standard ap-
proaches becomes clear. Note that the robustness of the modi-
fied Hough transform hardly differs from the robustness achieved
by the shape-based matching. Looking at the other approaches,
only PatMaxR© reaches a comparable result, which is, however,
slightly inferior in all cases. Furthermore, when using a restricted
parameter space, which is limited to only translations as described
in Section 3.2, the recognition rate of PatMaxR© was up to 14%
lower as when using a narrow angle tolerance interval of [-5◦;+5◦].
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Figure 4: The recognition rate of different approaches indicates
the robustness against occlusions. The left figure shows the
recognition rate of the five candidates depending on the minimum
score. In the right figure the receiver operating characteristic is
shown.
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Figure 5: Extracted scores plotted against the visibility of the
object.

To avoid that this peculiarity results in an unfavorable compari-
son for PatMaxR© we decided to take the angle tolerance interval
into account when using PatMaxR©. The recognition rate of the
normalized cross correlation does not reach 50% at all, even if
the minimum score is chosen small. In the right plot of Figure
4 the receiver operating characteristic curve is shown, i.e., the
false positive rate is plotted depending on the recognition rate.
Even for a small recognition rate the number of false positives
dramatically increases up to 32% (not visible in the plot due to
axis scaling) when using the Hausdorff distance. The normalized
cross correlation also tends to return false positives if the recog-
nition rate approaches the maximum value of about 50%. For
high recognition values even PatMaxR©returns wrong matches.
Also here, the best results are obtained using the modified Hough
transform and the shape-based matching.

Figure 5 displays a plot of the returned score value against the
estimated visibility of the object, i.e., the correlation between the
visibility of the object and the returned score value is visualized.
The instances in which the model was not found are denoted by
a score of 0, i.e., they lie on thex axis of the plot. For all ap-
proaches except for the Hausdorff distance the minimum score
was set to 30%, i.e., in those images in which the object has a
visibility of more than 30%, it should be found by the recognition
method. For the Hausdorff distance a minimum forward fraction
of 50% was used. In the plot of the Hausdorff distance the wrong
matches either have a forward fraction of 0% or close to 50%,
because of some false positives. Here, a noticeable positive cor-
relation can be observed, but several objects with a visibility of
far greater than 50% could not be recognized. This explains the
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Figure 6: The recognition rate of the different approaches indi-
cates the robustness against arbitrary illumination changes. This
figure shows the recognition rate of the five candidates depending
on the minimum score.

lower recognition rate in comparison to our approaches, which
was mentioned above. The normalized cross correlation also
shows positive correlation but the points in the plot are widely
spread and many objects with high visibility were not recognized.
In contrast, the plots of our new approaches show a point distri-
bution that is much closer to the ideal: The positive correlation
is evident and the points lie close to a fitted line, the gradient of
which is close to 1. In addition, objects with high visibility are
recognized with a high probability. Also PatMaxR© results in a
nearly ideal point distribution. Nevertheless, in some occlusion
cases the object was not found even though the visibility was sig-
nificantly higher than 30%.

Illumination. Figure 6 shows a comparison of the robustness
of all approaches. The recognition rate of the normalized cross
correlation is now substantially better than in the case of occlu-
sions. This can be attributed to its normalization, which compen-
sates at least global illumination changes. The Hausdorff distance
shows also good results especially in the case of large values for
the minimum score, but could not reach the performance of the
shape-based matching approach by far. If the minimum score
is set low enough, the recognition rate of the modified Hough
transform surpasses that of the shape-based matching, however,
for higher values its recognition rate rapidly falls. Here, also
PatMaxR© shows very good results: the recognition rate is nearly
constant when increasing the minimum score from 10% to 60%
but also drops down during further increase.

3.3.2 Accuracy Since the Hausdorff distance does not return
the object position in subpixel accuracy, only the accuracy of the
five remaining candidates are evaluated in this section. To assess
the accuracy of the extracted model position and orientation a
straight line was fitted to the mean extracted coordinates of posi-
tion and orientation. This is legitimated by the linear variation of
the position and orientation of the IC in the world as described in
Section 3.2. The residual errors of the line fit, shown in the Fig-
ures 7 and 8, are an extremely good indication of the achievable
accuracy.

As can be seen from the Figure 7 the position accuracy of the nor-
malized cross correlation, PatMaxR©, the modified Hough trans-
form, the shape-based matching and the least-squares adjustment
and are very similar. The corresponding errors are in most cases
smaller than 1/20 pixel. The two conspicuous peaks in the error
plot of Figure 7 occur for all three approaches with similar mag-
nitude. Therefore, and because of the nearly identical lines, it is
probable that the chip was not shifted exactly and thus, the error
must be attributed to a deficient acquisition. Since the errors iny
during a vertical translation approximately have the same magni-
tude as the errors inx we refrain from presenting these plots.
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Figure 7: Position accuracy as the difference between the actual
x coordinate of the IC and thex coordinate returned by the recog-
nition approach while shifting the chip successively by1/7 pixel
to the left.

Figure 8 shows the corresponding errors in orientation. Here, the
least-squares adjustment and PatMaxR© are superior to all other
candidates reaching maximum errors of 1/50◦ and 1/100◦ in this
example. In comparison, when looking at the result of the shape
based matching, the improvement of the least-squares adjustment
is evident: the maximum error is reduced to 1/50◦ compared to
the result of the shape-based matching without least-squares ad-
justment, which was about 1/16◦. The error magnitude of the
other three approaches is higher 1/6◦ (10’) in this example.

3.3.3 Computation Time The last criterion that was applied
is the computation time of the recognition approaches. In Table 1
the mean recognition times of all approaches using the sequence
with the shifted IC as well as using the sequence with the rotated
IC are listed. Additionally, the time increase∆ from the restricted
to the unrestricted angle interval is printed in percent.

First the angle interval was restricted to [-30◦;+30◦]. In this re-
spect the shape-based matching approach, the least-squares ad-
justment, the modified Hough transform and PatMaxR© are sub-
stantially faster than existing traditional approaches using the nor-
malized cross correlation. The results when using an unrestricted
angle interval are shown in an extra column of table 1. Here, the
modified Hough transform is slightly faster than the shape-based
matching approach, which indicates an advantage of the modified
Hough transform over the shape-based matching if the transfor-
mation space increases. This assumption is also supported when
looking at the percental time increase of the modified Hough
transform: The computation time merely increases by 56%, which
is the smallest value in this test. Also PatMaxR© shows only a
small increase, whereas the computation time of the normalized
cross correlation increases more dramatically. In this example
the computation times of our new approaches are only 0.2 to 0.5
times as high as those of the traditional methods but about 1.0 to
1.5 times as high as that of PatMaxR©.

For the most methods, a similar behavior is obtained when search-
ing for the rotated IC. What we recognized during evaluation is
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Figure 8: Orientation accuracy as the difference between the ac-
tual object orientation of the IC and the returned angle by the
recognition approach while rotating the chip successively by ap-
prox. 1/9◦ counterclockwise.

Shifted IC Rotated IC
R UR ∆ R UR ∆

[ms] [ms] [%] [ms] [ms] [%]
SBM 57 126 121 50 100 100
LSA 65 133 105 60 110 83
MHT 72 112 56 62 80 29
PM 55 88 60 80 193 141
NCC 132 281 113 294 373 27

Table 1: Mean computation times of the shape-based matching
(SBM), the least-squares adjustment (LSA), the modified Hough
transform (MHT), PatMaxR© (PM), and the normalized cross cor-
relation (NCC) on a 400 MHz Pentium II. Additionally, the time
increase∆ from the restricted (R) to the unrestricted (UR) angle
interval is printed in percent.

that the more the IC is rotated relatively to the reference orienta-
tion the longer the computation time of the normalized cross cor-
relation. Obviously, the implementation of (Matrox, 2001) does
not scan the whole orientation range at the highest pyramid level
before the matches are traced through the pyramid but starts with
a narrow angle range close to the reference orientation. Thus,
the computation time of the normalized cross correlation is not
directly comparable to the other approaches, because the orien-
tation range of [-30◦;+30◦] or [0◦;+360◦] is not really scanned,
i.e., a comparable computation time would be still higher. Also
the corresponding∆-values would be higher.

Also in the case of the rotated IC, the modified Hough transform
seems to be the method that is most suitable when dealing with
large parameter spaces because of its small time increase — in
this case — of only 29%. To get the effective computation time
of the least-squares adjustment we have to subtract the computa-
tion time of the shape-based matching. The difference is in the
range of 7 to 10 milliseconds and does not depend on the size of
the parameter space. Therefore, the larger the parameter space
the less the influence of this constant part, which is the reason for
the smaller∆-values in Table 1 of the least-squares adjustment in



contrast to the shape-based matching. By all means, it should be
pointed out that the computation time of PatMaxR© in this exam-
ple is much slower than in the example above. Thus, in this case
our new approaches are not only dramatically faster than the tra-
ditional methods but also considerably faster than PatMaxR©. The
reason for the totally different computation times of PatMaxR© in
the two example sequences is the automatic computation of the
coarse grain limit (see Section 3.2). During the first sequence us-
ing the shifted IC the grain limit was automatically set to 3.72 and
during the second sequence using the rotated IC the grain limit
was automatically set to only 2.92. There is no obvious reason
for this difference, because the object was the same in both cases.
Experiments have shown that the automatic computation of the
grain limit may result in a totally different value if the region of
interest is shifted by just 1 pixel without changing the number of
edge points within the region.

4 CONCLUSIONS

We presented an extensive performance evaluation of six object
recognition methods. For this purpose, the normalized cross cor-
relation and the Hausdorff distance as two standard similarity
measures in industrial applications were compared to PatMaxR©

— an object recognition tool developed by (Cognex, 2000) —
and two novel recognition methods that we have developed with
the aim to fulfill increasing industrial demands. Additionally, a
new method for refining the object’s pose based on a least-squares
adjustment was included in our analysis. We showed that our
new approaches have considerable advantages and are substan-
tially superior to the existing traditional methods especially in
the field of robustness and recognition time. Even in compari-
son to PatMaxR© particularly the shape based matching in com-
bination with the least-squares adjustment shows very good re-
sults. In contrast, we exposed some inconsistencies when using
PatMaxR©: restricting the parameter space to translations causes
the recognition rate to drop down dramatically. The automatic
setting of the grain limits is problematical since significantly dif-
ferent results are obtained using the same object and, although a
high value for the grain limits leads to a fast computation it also
results in a high risk of returning false positives. In contrast, a
low value means higher robustness but slow computation.

In most cases the shape-based matching approach and the modi-
fied Hough transform show equivalent behavior. The shape-based
matching approach should be preferred when dealing with in-
tense illumination changes and situations where it is important to
know the exact orientation of the object. In contrast, the modified
Hough transform is better suited when either the dimensionality
or the extension of the parameter space increases and the compu-
tation time is a critical factor.

The breakdown points of the normalized cross correlation are its
low robustness against occlusions/clutter and non-linear illumina-
tion changes. The relatively slow computation is another factor
that limits its applicability. As a breakdown point of the Haus-
dorff distance its trend to return false positives should be men-
tioned, which often occur in the presence of clutter.

Aside from these conclusions, it should be pointed out that some
of the results might change if we chose, for example, other im-
plementations of the approaches, other parameter constellations
or other image sequences. Therefore, our comparison is more of
a qualitative nature rather than of a quantitative one. Neverthe-
less, our results are very objective and help potential users to find
the optimum approach for their specific application. To facilitate
an extended comparison including other recognition methods, in-
terested parties are requested to send an e-mail to the authors in
order to get the sequences that we used for the evaluation.
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