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ABSTRACT: 
 
For 3-D building reconstructions of urban areas, we present a fully automatic shape recovery method that uses 3-D points acquired 
from aerial image sequences. This paper focuses on shape recovery of flat rooftops that are parallel to the ground. We recover each 
rooftop from a set of 3-D points located at nearly the same height. Such 3-D point sets are made by merging point sets under the 
MDL (Minimum Description Length) principle, which finds suitably concise point sets for 3-D building models. Often, only parts of 
rooftop shapes can be recovered because of the 3-D position errors being generated in the points. To refine the recovered shapes, we 
merge the parts under a heuristic condition in which shapes will have a pair of orthogonally oriented edges. To optimize parameters 
and estimate the viability of our method, we defined a success rate, called the cover ratio, as the area in which the recovered shape 
and a correct shape (given as reference data) overlap to the combined area of the recovered and correct shapes. Experimental results 
showed that our method achieved a cover ratio of 75.25%, and through improved cover ratio we also confirmed effectiveness of 
shape refinement. We also found that even if only one-ninth of the reference data could be used in the optimization of parameters, 
the cover ratio was 70.96%. The experimental results we obtained showed that our point-based method was effective in enabling the 
recovery of buildings in urban areas. 
 
 

1. INTRODUCTION 

Three-dimensional building models in urban area, i.e. 3-D city 
models, are used widely to numerically simulate events such as 
floods, fire spreading, wave propagation and heat convection. 
Computer graphic models for car navigation have also been 
rapidly shifting from 2-D to 3-D systems. Accordingly, 3-D city 
model reconstruction technologies are becoming increasingly in 
demand. 
 
There are mainly two ways to categorize recovery methods: 
measurement (aerial or ground) systems and sensing devices 
(camera or laser profilers). The airborne approach is suitable for 
reconstruction over a wide area. Especially over the past few 
decades, a considerable number of studies have been made on 
recovery methods in which line segments were extracted from 
aerial images and 3-D information was obtained by stereoscopic 
vision (Herman, 1986; Henricsson, 1998; Paparoditis, 1998). 
Not limited to the recovery of 3-D building shapes, line 
segments have been one of the important primitives in shape 
reasoning. However, two kinds of line segments, i.e. edge and 
pattern, frequently mingle together in images. While edge lines 
are very useful for contour detection, line patterns on flat 
surfaces have nothing to do with the contours. This makes it 
difficult to recover shapes on the basis of line segment 
connections. 
 
On the other hand, since points are more primitive than line 
segments, they have several advantages over line segments.  For 
one thing, they make it easer to acquire 3-D positions and to 
recover 3-D shapes. For example, 3-D shapes can be recovered 
simply by generating a triangle mesh over 3-D points. Actually, 
triangle meshes are applied widely in recovering curved 
surfaces (Terzopoulos, 1991). Application users, however, 

require a 3-D city model that is not a minute mesh model but a 
CAD model, i.e., one which is a set of concise polyhedrons. 
 
Recently, it has become easier to acquire high-resolution, high-
frame-rate image sequences, and therefore it is becoming 
feasible to recover building shapes with Shape from Motion 
(Miyagawa, 2000). In this paper, we present a fully automatic 
method of recovering shapes from 3-D points acquired from 
aerial image sequences to enable 3-D reconstruction of 
buildings in urban areas. The paper focuses on shape recovery 
of flat rooftops being parallel with the ground. Thus we recover 
each rooftop from a set of 3-D points located at nearly the same 
height. Such  3-D point sets are made by merging point sets 
under the MDL (Minimum Description Length) principle 
(Rissanen, 1984), which finds suitably concise point sets for 3-
D building models. Often, only parts of rooftop shapes can be 
recovered because of 3-D position errors in the points. To refine 
the recovered shapes we merge the parts under a heuristic 
condition under which the shapes will have a pair of 
orthogonally oriented edges after mergence. 
 
In Section 2 we show a recovery method based on MDL from 3-
D points. In Section 3 we explain refinement of recovered 
rooftop shapes considering 3-D position errors and recovered 
shapes. We show experimental results in Section 4. Finally, we 
summarize the main points of this paper in Section 5. 
 
 

2. RECOVERY METHOD FROM 3-D POINT SET 

Figure 1 depicts an outline of our recovery method. Here, the 
figure shows the (sub)sections where each step in the recovery 
process is explained. 
 



 

2.1 Acquisition of 3-D Point Set 

A 3-D point set is acquired automatically as follows: detect 
feature points, track them, acquire 3-D positions, remove 
outliers, and transform the camera coordinate system into a 
ground coordinate system (X,Y,Z) based on information of 
camera position and orientation. For the robust acquisition of 3-
D positions we adopt an iterative perspective factorization 
method (Christy, 1996). In the removal step, 3-D points are 
projected into all images. For each point we then measure the 
difference  between 2-D positions found by the tracking and 
those obtained by the projection for all images. Since these 
differences reflect errors in the tracking process, points which 
differ significantly are removed from the 3-D point set. Through 
this process, only highly precise points remain the 3-D point set. 

 
2.2 Layer and Cluster Generation 

In this subsection we show our method of recovering shapes 
from the 3-D point set. Establishing a Z coordinate for each 
point height, the method starts by slicing the point set into 
layers, which are sets of points at almost the same height. After 
generating the layers, each layer is divided into clusters, which 
are sets of points gathered together on an X-Y plane. A 2-D 
convex polygon covering each cluster is then formed as a 
rooftop 2-D shape. Our method recovers each rooftop as a flat 
roof building, the height of which is the average of the heights 
of points in each cluster. The recovery process is completed by 
adding vertical walls to the rooftops. 
 
In contrast to the results obtained using a laser profiler,  with 
our method horizontal distribution of the 3-D points acquired 
from images is not uniform. This makes it difficult to generate 
layers and clusters based on a height histogram (Ledur, 1998). 
The procedures our method follows are given below. 
 
Layer generation. Each initial layer is an individual 3-D point. 
Let initial layers be {L1, ..., Ln} in order of the height of the 
points. For each i (i=1,…,n-1), the standard deviation σi of the 
heights of points in Li and Li+1 is calculated. Minimal standard 
deviation σmin is found from n-1 σi. Then Lmin  merges with 
Lmin+1 and n = n-1. For each merge step MDL (defined in 
Subsection 2.3) is computed. Finally {L1, ..., Lk} whose MDL is 
minimal is output as the optimal layer set. 
 
Cluster generation. The following process is executed for each 
layer Li. Each point in Li becomes an initial cluster. First of all, 
distances for all point pairs (p,q) are calculated. Then, in order 
of the distance lengths of the pairs, the closest two clusters 
(including the respective points p and q) are checked and are 
merged if they pass the check. The check begins with creating 

the smallest convex polygon including all points of the two 
clusters on the X-Y plane. If the polygon also includes a point 
belonging to a layer lower than Li, the two clusters are not 
merged. If there are no such lower points, the two clusters are 
merged. This check enables us to form rooftop regions that are 
consistent with the upper and lower relations of layers. 
 
2.3 MDL-based Determination of the Number of Layers 

To prevent layers from being divided too much in the layer 
generation process, our proposed method determines the 
number of layers based on the MDL principle as follows: 
 
Suppose that the 3-D point set is divided into k layers {L1,
… ,Lk} and m(i) clusters {Ci,1,… ,Ci,m(i) } are generated from 
each layer Li (i=1,...,k). As a result, the 3-D point set is divided 
into sets of clusters { {Ci,1, …, Ci,m(i)} | i=1,...,k }. This means 
that the 3-D point set is expressed by rooftop models recovered 
from the cluster sets. Given the point set and the parameter k, 
the cluster set {{Ci,1,…,Ci,m(i) } | i=1,…,k } can be determined. 
For this reason we regard k as the degree of freedom of the 
rooftop models. k should be determined by balancing the 
simplicity of the models with the conformity of the points to the 
models. 
 
The MDL principle (Rissanen, 1984) is used in many research 
areas such as pattern recognition (Leclerc, 1990). Given a 
model and data, suppose that code length M is the sum of the 
two code lengths Mm and Md required for description of the 
model and the data. Based on the MDL principle, the model that 
minimizes M is the optimal model for describing data. For our 
problem, we define M as Equation (1): 
 
 
 
 
 
 
 

 (1) 

 
 
where n is the number of 3-D points, m is the number of clusters, 
σ is the standard deviation of the height of points in one cluster 
(we assume σ is constant over all clusters), Z(p) is the height of 
a point p, Z(C) is the average of the heights of points in a 
cluster C. The derivation of Equation (1) is shown in Appendix 
A. We employ the parameter k that minimizes M as the number 
of layers. 
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Figure 1. Outline of building recovery method 



 

3. CLUSTER REFINEMENT BASED ON CLUSTER 
SHAPE AND POSITION ERROR 

3.1 Relaxation of Exclusive Constraint 

As mentioned in Subsection 2.2, clusters are merged under a 
constraint such that a convex polygon of any cluster in a layer L 
may not cover any point included by any layer lower than L. In 
this paper we call the constraint the exclusive constraint. As 
pointed out in Subsection 2.1, points that have large projection 
errors are removed from the 3-D point set. After the removal, 
the 3-D position of the point set still contains some errors. 
Unless the exclusive constraint is relaxed, therefore, clusters are 
insufficiently merged and only fragments of  rooftop shapes are 
obtained. 
 
The optimization method Regularization is adopted in   
previous works in which the 3-D surface is recovered from 3-D 
points (e.g. Grimson, 1983). Suppose that D is a gap estimate 
function between 3-D points and a surface and S is a shape 
estimate function of the surface. Under these assumptions, the 
optimal surface is found by minimizing E = D + λS, where λ is a 
parameter. Minimization of E is often solved using numerical 
analysis methods for differential equations or using search 
methods, especially Dynamic Programming. For our method, 
however, clusters cannot be expressed in numerical form and 
cannot be independent of the generation process. Therefore 
neither the use of numerical analysis nor that of search methods 
is effective for our method. 
 
We do not apply the Regularization framework rigidly to our 
method. Based on estimate functions similar to D and S, we 
decide whether or not to relax the exclusive constraint and 
merge clusters. Parameters in the estimate functions are 
determined by optimization for reference data. To achieve the 
optimization, it is important to reduce the number of parameters 
in the estimate functions. We do not employ the parameter λ and 
we hold the number of parameters to a minimum, that is, we 
introduce only one parameter into the D and S functions. 
 
3.2 Penalty D for Breaking Constraint 

It is assumed that on the X-Y plane a convex polygon Pc 
includes all points in a cluster C in a layer L and a point qi in a 
layer lower than L. As a 3-D model the cluster C expresses a 
prism whose shape on the X-Y plane is Pc and whose height is 
Z(C), and then qi is located inside the prism (see Figure 2). 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. A point qi breaking exclusive constraint 
 

For each edge ej of the Pc, horizontal distance dij to qi is 
computed,  and min(dij) is the minimal value of dij. Then the 
depth of qi for C is defined as smaller than horizontal depth 
min(dij) or vertical depth Z(C)-Z(qi) (see Equation (2)). 
 
 

(2)  

 
 
Using di, Equation (3) defines probability P(C, qi) that the 
prism expressed by C represents as an actual building, where L 
is the peripheral length of Pc and α1 is a parameter. 
 
 

(3)  

 
 
Suppose that Pc includes n points {q1, ..., qn}. Assuming that 
P(C, qi)’s are independent of each other for all qi, probability 
P(C) of the rooftop shape being represented by Pc is the 
following: 
 
 
 

(4)  

 
 
Lettingα2 be a threshold of P(C), we can transform a condition  

2)( α≥CP into )log(/ 21 αα≤∑ Ldj
. For penalty that C includes 

the points {q1, ..., qn} in the lower layer, an estimate function 
D(C) is defined as Equation (5), 
 
 

(5)  

 
 
Finally, the exclusive constraint is relaxed by allowing D(C) to 
reach a thresholdα(=α1log(α2)). 
 
3.3 Shape Estimation Function S 

Most rooftop shapes in urban areas have right angles. This 
feature is often exploited for extracting rooftop shapes. Thus for 
cluster C we design the shape estimation function S(C) so that 
S(C) takes a larger value as an angle θij of an edge pair (ei, ej) 
in Pc becomes closer to a right angle. Note that (ei, ej) is taken 
from not only a pair of adjacent edges but also every edge pair 
in Pc. Even though Pc does not have a right angle, the 
positioning of the edge pair is evaluated highly in S(C) if Pc  
has orthogonally oriented edge pairs. 

 
S(C) is defined as Equation (6), which is an average of an 
exponential function withθij weighted by li lj, where li  is the 
length of ei and β is a parameter. 
 
 
 

(6)  
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From Equation (6), if Pc has orthogonally oriented pairs of long 
edges, S(C) becomes high, and if Pc is an excessively slender 
rectangle, S(C) becomes low. Thus we consider S(C) as an 
effective function in selecting shapes for rooftops. 
 
3.4 Constraint Relaxation Based on Cluster Shapes 

We relax the exclusive constraint based on S(C). It is better for 
the cluster shape to be estimated at final step in the generation 
process, but there are too many combinations of clusters for 
mergence to enumerate all clusters at the final step. Therefore, 
clusters are initially generated with a rigid exclusive constraint, 
i.e., without relaxation. After this step only fragments of a 
rooftop shape can be obtained. In this step every cluster pair 
(Ci,Cj) for which Ci and Cj have cancelled mergence by the 
exclusive constraint is listed in the order in which the 
cancellation happens. Secondly, suppose that C is a cluster  
including all points of Ci and Cj on the X-Y plane. Then S(C) is 
evaluated and it is decided whether or not we should relax the 
exclusive constraint and merge the two clusters. These 
evaluations and decisions are conducted in the order in which 
they appear on the cancellation list. We call the second process 
cluster refinement.  The mergence is accepted if Condition (7) is 
satisfied, where max() expresses a function which finds a 
maximum: 
 
 

(7)  

 
 
Using this condition, if a mergence brings a rooftop shape 
including orthogonally oriented long edge pairs, the exclusive 
constraint is relaxed and the mergence is executed. 
 
 

4. EXPRERIMENTAL RESULTS 

4.1 Definition of Recovery Ratio 

In our method parameters σ, α and β are used in the calculation 
of MDL and in judging whether to relax the exclusive constraint.  
We determine the parameters by maximizing the reference data 
recovery ratio. In this case the recovery ratio definition is 
inseparably connected to the determination of the parameters. 
Thus we here explain the definition of recovery ratio that we 
have used in our experiments. 
 
Recovery ratio is often defined based on the number of 
recovered buildings. Judgment whether each building is 
recovered or not, however, cannot avoid being subjective to 
some degree. In particular, judging shapes recovered by our 
method is often difficult, because polygons of the point-based 
method are more likely to have many vertices than in the line-
segment based method. Therefore we evaluate the recovered 
shapes objectively and quantitatively by comparing them with 
reference data. 

 
For each target object on the ground a rooftop polygon P is 
obtained manually on images as reference data. On the other 
hand, a rooftop polygon Pc is supposed to be recovered from a 
cluster C that expresses the rooftop of the object. Cover ratio  
E(P;Pc) of P for Pc is defined as 100*SP∩C / (SP+SC－SP∩C ), 
where SP, SC and SP∩C are respectively the areas of P, Pc, and 
the overlap of P and Pc. If two or more Pc lap over one 

reference polygon P, let maximal E(P;Pc) be cover ratio E(P) 
for P. E(P) can be computed automatically with this rule. 
 
Reconstructed 3-D city models are often applied for 
visualization or numerical simulation. In many cases shape 
errors of larger buildings have more negative influence on the 
applications. For this reason we employ an area weighted 
average of E(Pi) as cover ratio E({Pi}) for a set of reference 
polygons {Pi}. Assuming that SPi is the area of Pi, E({Pi}) is 
given by ΣSPi E(Pi) /ΣSPi. In the following section, we regard 
the cover ratio as the recovery ratio. 
 
4.2 3-D Point Set and Reference Data 

4.2.1 Acquisition of 3-D Point Set: Each 3-D point set was 
acquired from an aerial image sequence that consists of 80 
frames (1290×1080 pixels). In selecting nine urban area scenes, 
feature points were detected in the center area of the middle 
frame in each sequence. The center area was 1320×360 pixels, 
which was roughly equivalent to 220×60 meters on the ground. 
The feature points were tracked over all 80 frames by the Lucas-
Kanade technique (Bradski, 2000). 3-D points were projected 
into all 80 frames, and then points that had a projection error of 
more than three pixels were removed as outlier. In the end we 
obtain 4756.1 points on average per sequence. Figure 3a is a 
frame example for the feature point detection, in which the 
white-lined rectangle expresses the detection area. We also 
selected eight other dense urban area scenes as shown in Fig. 3a. 
Figure 3b shows a 3-D point set acquired from a sequence for 
which the middle frame is Fig. 3a. In Fig. 3b the more black 
there is, the higher the point is. 
 
 

 
Figure 3: An example of an image frame (3a:upper) and 3-D 

points (3b:lower) 
 

4.2.2 Collection of Reference Data: From the middle frames 
of each of the nine sequences we manually obtained reference 
data, which was a 2-D rooftop shape of man-made objects on 
the ground satisfying the following conditions: a) every shape 
was a convex polygon, b) area was over 1000 pixels (≒28 m2), 
c) height was over 10 meters. In the end we obtained 96 
polygons as reference data. There were 10.7 polygons on 
average per scene, and the number of polygons in one scene is 
18 at the maximum and six at the minimum. 
 
4.3 Evaluation Results of Recovery Method 

We evaluated our method in both the cases where the exclusive 
constraint was relaxed and where it was not. We call the former 

)())(),(max()( ijjiij CSCSCSandCD ≤≤ α

 



 

case the Relax method and the latter case the Rigid method. To 
optimize the parameters in the estimate functions we utilized the 
Powell method, which is one type of direction set method (Press, 
1992). 
 
4.3.1 Optimizing With All Reference Data: The Rigid 
method uses only one parameter σ contained in Equation (1). 
On the other hand, the Relax method has two additional 
parameters α and β. We optimized the parameters with all 
reference data and generated clusters using both the Rigid and 
Relax methods. The cover ratio with the clusters are shown in 
Table 4, 
 
 

 σ[m] α β E [%] 
Rigid 2.96 － － 68.18
Relax 1.80 0.106 0.285 75.25

Difference -1.16 － － 7.07 
 

Table 4. Optimization and estimation results. 
 
The Rigid and Relax methods achieved cover ratios of 68.18% 
and 75.25% respectively. Considering that the recovery was 
executed using only information about the 3-D point position, 
these results show the effectiveness of the 3-D point-based 
method. In particular, the Relax method raised the cover ratio to 
more than 7% that of the Rigid method, which confirms the 
effectiveness of the cluster refinement described in Subsection 
3.4. We consider values of σ in Table 4 as estimated values of 
the standard deviation of the height of points included in one 
cluster. Considering that the height of Japanese buildings per 
floor is about 4m according to statistics, the values seem valid. 
And this result shows that layer division based on the MDL 
principle worked well.  
 
Layers and clusters are generated so that M in Equation (1) is 
minimal. If σ is small, Md has more influence on M than Mm 
does. This means that height error Z(p)-Z(C) is regarded as  
more important than the number of clusters m. Considering that 
σ of the Relax method is smaller than that of the Rigid method, 
the Relax method acquired fragments of accurate shapes before 
relaxation. Then, by relaxing the  exclusive constraint, the 
fragments were merged. Finally, more accurate shapes were 
recovered with the Relax method than  with the Rigid method. 
Figure 5 shows the difference between the cover ratios achieved 
by the Rigid and Relax methods for all 96 reference data items, 
where the horizontal axis is the cover ratio of the Rigid method 
and the vertical axis is that of the Relax method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Cover ratio: Rigid vs. Relax 

In Figure 5, the points on the diagonal line show cases where 
there was no difference between the two methods, while the 
points in the upper-left area show cases where the Relax method 
achieved better results. The difference was less than 5% in 
exactly half of the cases (48 cases), while in many other cases 
the cover ratio was highly improved. In other words, the Relax 
method tended to maintain the cover ratio of the Rigid method 
or to greatly improve it in cases where improvement is possible. 
Condition (7) means two clusters are merged only if shape 
estimation is definitely improved. Thus, it can be said that the 
Relax method tends to relax the exclusive constraint in a 
conservative manner. And this tendency can be seen in 
evaluating it. 
  
4.3.2 Optimizing With Partial Reference Data: In actual 
applications, only a small reference data set can be used to 
optimize parameters. Therefore, widespread use is made of the 
Cross Validation estimation method (Shahraray, 1989). This 
method as follows. First, reference data is divided into n sets 
{A1,...,An}, and then parameters are optimized with Ai. Next, 
clusters are generated with the optimized parameters. Finally, 
the cover ratio of reference data without Ai is computed. In this 
process, we call parameter optimization learning and 
computation of cover ratio test. 
 
We performed Cross Validation for i=1,...,n and calculated the 
average of n test results. For n=2 the size of every Ai was 48 
(=96/2), and for n=4 the size of every Ai was 24±1. When n 
was 9, the size of Ai was not uniform; it varied between 6 and 
18 because each Ai was assumed to be a set of reference data 
housed within each of nine scenes. Figure 6 shows learning and 
test experimental results, where dashed and solid lines 
respectively express learning and test cover ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Cross Validation Results 
 
As the figure shows, as n becomes higher the learning cover 
ratio improves, in contrast to the test cover ratio, which 
decreases due to the reduced amount of learning data. Even for 
an n value of 9, however, the Relax method achieved a cover 
ratio of 70.96%, which was not much worse than 75.25% result 
obtained when the parameters are optimized with all reference 
data. 
 
 

5. CONCLUSIONS 

In this paper we proposed a fully automatic method of 
recovering shapes from a 3-D point set to reconstruct a of 3-D 
city model of buildings in urban areas. The features of the 
proposed method are 1) it determines the number of layers 
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based on the MDL principle and 2) it refines clusters based on 
the cluster shapes. We estimated the validity of our method with 
3-D point sets and reference data acquired from nine aerial 
image sequences in a dense urban area. When parameters were 
optimized with all reference data, the Relax method achieved a 
cover ratio of 75.25%, confirming the effectiveness of cluster 
refinement in comparison to the Rigid method. Furthermore, a 
cover ratio of 70.96% was achieved even if only one-ninth of 
the available reference data could be used for optimization. 
Experimental results showed that our point-based method 
recovers the shapes of buildings in urban areas effectively. 
 
 

APPENDIX A. DERIVATION OF CODE LENGTH M 

In this section we elaborate on the derivation of M (=Mm+Md) 
in Equation (1) with the same symbols used in Subsection 2.3. 
We consider only Z coordinates of all points as information 
being encoded and transmitted. Then Z(p) for every point p is 
divided into three kinds of information: a. a selection of cluster 
C that includes  p, b. the height h of the model recovered from 
C, and c. the difference between  h and Z(p). 
 
The code length that is necessary to divide a point sequence of n 
points into k layers is log2 n-1Ck-1. Once layers are determined, 
clusters can be obtained with X and Y coordinates. It follows 
that log2 n-1Ck-1 is long enough to encode information a. And  
according to the MDL principle (Rissanen, 1984), (m/2) log2 n  
is a code length sufficiently long for information b, considering 
that m is the number of Z(C) which are parameters of models. 
Finally, we define code length for model description Mm as (ln 
n-1Ck-1 + (m/2) ln n) / ln 2. 
 
Next we explain data description length Md. Let hi,j be the 
height of the upper surface of a 3-D model recovered from a 
cluster Ci,j; and assume that probability Q(p) for the height error 
δZ(p)=Z(p)－hi,j ( p∈Ci,j) obeys Normal Distribution whose 
standard deviation is σ. To minimize code length we should 
employ Z(Ci,j) as hi,j because Z(Ci,j) is the maximum likelihood 
estimator for hi,j. According to Shannon’s information theory, if 
the occurrence probability of data is P, code length –log2 P is 
long enough to encode the data. Assuming that Q(p) are 
independent for all point p, minimal code length Md(i,j) for 
cluster Ci,j  is the following: 
 
 
 
 
 
 

(8)  

 
 
Md(i,j) is the sum of minimal code lengths for information c for 
all points in Ci,j. We can obtain Md using the non-constant part 
of Md(i,j) as Equation (9):  
 
 

(9)  

 
 

Finally, M is obtained removing ln2, the common constant 
coefficient of Mm and Md. 
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