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ABSTRACT

We consider the problem of resampling for the data obtained by laser scanning on an irregular grid. The data obtained by
airborne laser scanning are scattered, and the resampling on a regular grid is needed for the generation of digital surface
models (DSM). Some well-known methods are considered in this article: triangle-based linear interpolation, triangle-
based nearest neighbor interpolation and kriging. An energy minimization approach is proposed which allows to avoid
the drawbacks relevant to these methods. This approach allows to impose a model of surface corresponding to urban
areas. The energy function is adapted to deal with the scattered data, and its parameters are chosen to fit the model of
a urban area. A correlation coefficient is used to compare the results. The methods are tested on real data - irregularly
spaced 3D points - laser scanner data of Brussels. Visual and numerical experimentation results are presented.

1 INTRODUCTION

Laser scanning allows to measure the height of the terrain
from an aircraft sending a pulse towards the ground and
measuring the time for the reflected pulse to come back.
As an output it gives coordinates of 3D points of the ter-
rain. We will consider the data representing urban areas.
Due to the acquisition technique, these points are irregu-
larly spaced while one needs to have them on a regular grid
for most of possible applications. In this paper we con-
sider methods of 3D resampling applied for urban areas.
Images of urban areas are characterized by homogeneous
zones (roofs, streets), separated by edges. In an altimetric
image height values are represented by gray level values.
Let us emphasize that edges contain critical information,
especially for urban images, since they delimit streets and
buildings.

Classical approaches for the resampling of laser data on a
regular grid are nearest neighbour and linear interpolation.
In (Behan, 2000), both approaches are tested and evaluated
with regards to the grid size and the DSM quantization to-
wards the problem of overlapping strips matching. The
grid size is recommended to be very similar to the original
density of the data, the better results are reached with linear
interpolation. Statistical interpolation methods, like krig-
ing and linear prediction, are also proposed for the resam-
pling over non-urban areas (Lohmann et al., 1999). The
main drawback of these different approaches is either to
oversmooth or to deform the building edges.

The suitable approach is supposed to give horizontal or
oblique surfaces, i.e. roofs of buildings, and strong discon-
tinuities, i.e. differences between roofs and ground, which
are usually presented by straight lines, because of the form
of facades. In order to cope with this problem we define the
sought image to be a minimizer of a regularized cost func-
tion. We describe this approach and its implementation.
Then we make experiments to determine the performance.
We check the relevance of our results comparing with the
altimetric data obtained from the optical images.

2 SOME RESULTS OF CLASSICAL APPROACHES

The classical methods for scattered data interpolation are
triangle-based linear interpolation, triangle-based nearest
neighbour interpolation (Watson, 1992) and kriging (Noel,
1991). Triangle-based linear interpolation gives results which
have problems with edges and represents facades with non-
vertical surfaces (Figure 1).

Figure 1: Result of linear interpolation based on the De-
launay triangulation of the initial data (city of Brussels,
c

�
Eurosense).

The drawback of triangle-based nearest neighbour inter-
polation is that the surface is very rough, i.e. there are
no slopes, and changes between groups of values are very
steep. Then oblique surfaces like some roof facets are rep-
resented with discontinous surface (Figure 2).

Kriging gives smooth areas, where edges are blurred (Fig-
ure 3). For this approach the spatial dependencies are ex-
pressed by the variogram (Noel, 1991), which has three
parameters to be fit according to the data.

The aerial image of the area we are working on is shown
on Figure 4. Its resolution is 8 cm per pixel.



Figure 2: Result of nearest neighbour interpolation.

Figure 3: Result of kriging with a spherical model of vari-
ogram.

Figure 4: Aerial image of the studied area of Brussels
( c

�
Eurosense).

3 ENERGY MINIMIZATION APPROACH

One method for image restoration with edge preserving is
based on energy minimization (Geman et al., 1992). In this
approach a solution is an image which minimizes a cost
function, also called energy. An expression for the energy
consists of two terms:

� data-fidelity term, which penalizes variations between
a surface and experimentally measured data

� regularization term, which imposes a roughness penalty.

The optimization of the energy is, in the general case, too
expensive. One generally chooses to introduce a marko-
vianity assumption which makes possible to ensure that a
minimum can be obtained as a sum of local terms (this
seems reasonable in our case, since it is probable that the
quality of reconstruction of a roof of a building does not
concern the geometry of other distant buildings). During
the reconstruction, one makes iterative calculations of the
surface so that a minimum of an energy is obtained. Sev-
eral elements are significant for the method: the defini-
tion of the neighbourhood considered around each point,
the definition of the terms of energy and the corresponding
potentials, and, finally, a method to decrease an energy.

3.1 Definition of neighbourhood

Let observed data samples be
� � � ��� � � � 	 


at positions
� ��� � � � 	

for �
��� � � � � � � . We are looking for samples � � � � � 	 on a
regular grid

� � � � 	
.

The neighbourhood for the regularization term consists of
points inside a circle, which includes 8 nearest points on
the regular grid (Figure 5).
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Figure 5: Definition of the neighbourhood of a pixel: it is
represented by all the points located inside the circle. The
stars represent the irregularly distributed original data, the
circles are the regular points which one wants to determine.

So the neighbourhood for the regularization term for each
point (i,j) is:

� � � � � 	 � � � � � � � � 	�� � � � � � � � � � � � 	 � � � � � 	 	���� 




� � � � � � � � � 	 � � � � � 	 	 � � � ���
� 	 ��� � ��� � 	 �
The radius

�
is chosen to encompass to the 8 nearest neigh-

bours on a regular grid.

The neighbourhood for the data-term is:� � � � � 	 � � � � � � � � 	 � � � � � � � ��� � � � 	 � � � � � 	 	 ��� 

Thus for every position

� � � � 	
we obtain a set of indexes

of data points, say � � � � � 	 , which are placed in the neigh-
bourhood of

� � � � 	
:� � � � � 	 � � � � � ��� � � � 	�	 � � � � � 	 


3.2 Expression for the cost function

The form of the energy generally consists of 2 terms, data-
fidelity term and regularization-term. For our problem, we
have chosen the following cost function:


 � � 	 ��� 
 � � �������� 
 � � � ����� � � � � � � �  "! � 
 � � �
dist

� � � � � � � � � � 
 � � � � #�%$ ��& � 
 � � � ' � ! � 
 ( � � ( �  "! � 
 � � �
dist

� � 
 ( � � ( � � � 
 � � � � #
)*

(1)

where
�

and
'

are potential functions, and the multiplier$
gives a weight to the regularization term. The first sum-

mation (on
�

and
�
) will be made on all the points of the

regular grid. The second summation (on the set K) is done
on all the points of the irregular grid inside the circle of
neighbourhood of the current point i,j. The third summa-
tion is done on the 8 neighbors of the current point i,j. The
solution +� will be a surface which minimizes the cost func-
tion: +� ��, - .0/�1 2 
 � � 	 (2)

3.3 Potential functions

The choice of the potential functions
'

and
�

is supposed
to lead us to the best solution which is determined by fea-
tures of altimetric reconstruction in urban environment. Let
us express some common-sense remarks about urban envi-
ronment.

1. A lot of surfaces are horizontal (or about): streets,
pavements, terraces, gardens and yards, etc.

2. Other surfaces are flat, but oblique, in particular the
sides of the roofs.

3. Many discontinuities have to be found in the verti-
cal ortho-photographic projection which we want to
make of the city, the frontages in particular. Never-
theless, these surfaces can give measurements which
do not correspond the real model because of the angle
of scanning of the laser which can hit the frontages or
cling on convex objects: balconies, canopies, etc.

4. Finally, a small number of objects do not correspond
to any of these models. It happens for vegetation, ve-
hicle surfaces of car parks where these vehicles are
gathered in a very dense way.

A lot of studies have been done to determine potential func-
tions for filtering images while recovering edges (Nikolova,
2000; Charbonnier et al., 1997; Bouman et al., 1993). Some
potential functions are convex, some are not. They can be
smooth or non-smooth at the origin. We limit our interest
to four choices for potential functions. Each of them, ex-
cept for total variation, has a parameter to tune (denoted by3

).

Huber function (Figure 6(a)):' � � 	 � � � 4 � 5 � 5 6 3 	7� � 3 � �98 3 5 5 � 5 � 3 5 	 4 � 5 � 5 : 3 	 (3)

where I(p)=1 if p is true and I(p)=0 otherwise. This func-
tion is supposed to preserve slopes on the surface.

Total variation function (Figure 6(b)):' � � 	 � 5 � 5 � (4)

Since this function is non-smooth at zero, it causes steplike
zones on the surface (Nikolova, 2000).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(a) (b)

Figure 6: (a) Huber and (b) total variation function.

Generalized Gaussian function (Figure 7(a)):' � � 	 � 5 � 5 ; � � 3 �<8 � (5)

Truncated quadratic function (Figure 7(b)):' � � 	 �<= � > � � � � 3 
 � (6)
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Figure 7: (a) generalized Gaussian and (b) truncated
quadratic function.

3.4 Optimization algorithm

In order to find an optimum of the cost function several
algorithms may be used (Li, 1995). Conjugated gradient is
one of them. It is useful when the cost function is convex.
Since not all the potential functions are convex in our case,
we can use stochastic optimization methods. One of them
is Iterated Conditional Modes (ICM) (Li, 1995) algorithm
which has the following steps.



1. Initialization of the surface;

2. For each point
� compute cost function values for all possible val-

ues the surface can have� attribute to the point the value which minimizes
the cost function

3. Stop calculations if there are no changes at step 2;
otherwise - come back to step 2.

ICM algorithm is a relatively fast optimization technique
which unfortunately does not converge towards the global
optimum unless initial point is close from it. Another very
known technique is simulated annealing which gives a global
optimum but is considerably more expensive in calculation
time (Picard et al., 1995).

4 COMPARISON OF RESULTS

4.1 Methodology

Obviously, the quality of the results is not to be determined
only visually. Correlation values with a ground truth can
be used as quality measures in this case. The Digital Eleva-
tion Model (DEM), obtained from high resolution optical
images, is taken as a reference here. A correlation coef-
ficient is calculated between two vectors: a vector

�
of

the DEM elevation values and a vector � of the surface
elevation values obtained with the laser scanner data:

� �
���

��� �
� � �

� � �
where � � � � ����� � � � � 	 �
	 > � � � � � ����� � � � � 	
where

��
,
�� - mean values of the vectors

�
and � re-

spectively,
� � � � � 	

,
� � � � � 	 - their standard deviations,

�
- a number of elements in a vector,

�
- the correlation co-

efficient. A perfect correspondence between interpolated
measurements and the DEM should lead us to a coefficient
r equal to 1.

The resolution of the DEM is 10cm, and the resolution of
a surface issued from laser is 1.80m. In order to com-
pare our results to the reference, we perform the follow-
ing steps. For each point of the resultant surface we find
the corresponding point in the reference DEM. Then the
value for comparison is taken as the median value of all the
points inside the 5x5 window the reference DEM. There
are some points where the reference DEM does not pro-
vide any information (Figure 8) (absence of textures on
very uniform surfaces or hidden parts during the construc-
tion of the DEM). In the first case, the median value makes
it possible to correct this absence, in the second (too large
zones) the point is ignored in the correlation calculation.

We also noticed that the area of study contained 2 different
zones: the largest part of the area contains mostly build-
ings, but the part of the area located at the top of the scene,

has vegetation with much more irregular geometry. Since
this vegetation area may strongly influence the compari-
son, we evaluated our results with and without this zone.

Figure 8: The Digital Elevation Model used as a reference.
The black values correspond to pixels where altitude val-
ues are not determined

4.2 Experimentation

To start, we choose both potential functions to be the same:� � ' . We initialized the optimization algorithm with dif-
ferent surfaces: white noise, results of triangle-based linear
interpolation, results of nearest neighbour interpolation, re-
sults of kriging.

The density of primary laser data is about 1 point per 3.24= � . We selected the grid size to have the same density of
points in the DSM: it corresponds to a sampling step of
1.8m.

The chosen method of optimization is the ICM for its more
reduced calculating time. A significant parameter in this
algorithm is the choice of the step in altitude (the height
discretization). A too small step significantly increases the
calculations since it is necessary to calculate the potential
function for all these altitudes. A too coarse step leads to
a too schematic description of the buildings but can also
produce false minima. We chose a step of 50 cm, quite
compatible with the required space resolution. For these
initial surfaces, we obtained the results of correlation of
Table 1.

At the initialisation, we can notice that kriging gives better
results than the linear interpolation, the nearest neighbor
interpolation is worse. We also can see that the zone of
vegetation has tendency to degrade the correlation.

We take linear interpolation results as an initial surface, be-
cause they give the better output for

$ ��� (see Table 1).
The results are presented on Figures 9 and 10.The horizon-
tal line gives the correlation between the DEM and the best
initialization surface (kriging for both figures) in order to
see if the energy minimization approach outperforms the
classical ones or not. A curve located below this line indi-
cates that optimization degrades the initial solution.



Initialisation After optimization
1 2 1 2

White noise 0.0170 0.0177 0.9249 0.9395
Linear

interpolation 0.9060 0.9311 0.9268 0.9402
Nearest neighbour

interpolation 0.8627 0.8989 0.9254 0.9396
Kriging 0.9193 0.9406 0.9221 0.9201

Table 1: Correlation coefficients between the reference
DEM and the calculated DSM at the initialisation (differ-
ent interpolation methods are tested) and after energy min-
imization with the Huber function (

$ � � � 3 � � ). Results
are evaluated with the vegetation area (column 1) or with-
out (column 2).
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Figure 9: Search for an optimum for the area with vegeta-
tion

For the generalized Gaussian function we take
3 � � � 8 ,

and for truncated quadratic function we take
3 � � �

, be-
cause it gives better correlation results than other values
of
3

. We can see the results for four potential functions,
where truncated quadratic function gives the best result
(for

$ � 8 ), while total variation gives the worst result.
The results of the evaluation without the zone of vegeta-
tion are presented on Figure 10. We notice that for a bet-
ter initial value of correlation, it is difficult to improve it.
In particular the total variation potential function always
gives results lower than the initial solution, showing very
clearly which the imposed solution (a solution by horizon-
tal zones, without discrete slopes) is not in agreement with
the DEM measured with stereo correlation.

Figure 10: Search for an optimum for the area without veg-
etation

The best result for the area including the vegetation is shown
on Figures 11 and 12.

Figure 11: Potential functions are truncated quadratic
functions and

$ � 8

Figure 12: 3D representation of Figure 11

The best result without the vegetation part is on Figures 13
and 14, i.e. for getting these results we exclude the vege-
tation part (the upper part on the image) before calculating
the correlation coefficient.

5 CONCLUSION

The choice of potential functions as well as their parame-
ters obviously determine the quality of reconstruction. We
chose the same potential functions for both terms of the
energy. That seems to be logical but not necessary and
we will check this point. One can imagine that the results
could still be improved in two ways: by reducing the step
of the grid of sampling (taken here equal to 1.8 m), by re-
ducing the discretization of altitude (selected here to 0.5
m). Nevertheless, this progress is probably modest and
will be paid by calculation time. A more interesting direc-
tion is probably to introduce these improvements gradually
during the reconstruction: starting with coarse parameters,
one refines them during optimization. This technique is
connected with the multi-grid approaches of the numerical
analysis.



Figure 13: Potential functions are generalized Gaussian
functions and

$ � �

We notice that in all our results, a choice of a strong param-
eter of regularization (about 3) improves the quality crite-
rion of correlation. We did not connect yet this value to
precise physical sizes allowing to explain this result. One
can see that in the equation of the potentials, the summa-
tions are made on very different numbers of points for the
data-term (a number of terms depends on the local den-
sity of measurements) and for the term of regularization (a
number fixed and chosen equal to 8). That seems logical
since in the absence of measurement one wishes to have
more regularized surfaces, while in the case of strong den-
sity of measurements, one will have confidence in the data
(the regularization is thus adaptive according to the data).
Nevertheless this weighting probably deserves a particular
study because the law of adaptation is very empirical and
can probably be improved.

Figure 14: 3D representation of Figure 13

We also saw that the potential functions guided the recon-
struction well towards theoretically foreseeable specific pro-
files. The model adopted today does not make it possible
however to control locally the type of a solution. It would
certainly be useful to be able to vary the criterion locally.
Unfortunately, it will probably not be possible to guaran-
tee an unspecified property (convergence, optimality, ad-

equacy with the model) of the solution thus obtained. It
is however a direction which we wish to explore. Its dif-
ficulty lies of course in the choice of the criterion which
makes it possible to decide about a type of reconstruction:
without discontinuity, with discontinuity of the derivative,
discontinuity of the function.

Finally we also notice that we seriously miss a good qual-
ity measure of the reconstruction. We adopted the criterion
of correlation with the DEM model we have. First of all
this DEM is not perfect and some details may have been
filtered in the reference DEM which can exist in the laser
profile. Then the correlation is not an irreproachable crite-
rion. We also tested a least squares criterion between the
two surfaces which should be equivalent for very close sur-
faces, but gave in fact results a little bit different from the
ones of the correlation. A visual observation of the recon-
structed images shows that the correlation prefers surfaces
a little too smoothed whereas the human observer is less
disturbed by local noises if the transitions are strictly re-
spected.
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