
A NEW MODELLING TECHNIQUE FOR OBJECT-ORIENTED PHOTOGRAMMETRIC
COMPUTER VISION ALGORITHMS

H. Müller a, *, E. Gülch a, W. Mayr a

a Inpho GmbH, Smaragdweg 1, 70174 Stuttgart, Germany –
(hardo.mueller, eberhard.guelch, werner.mayr)@inpho.de

Commission III

KEY WORDS: Mathematics, Design, Modelling, Algorithms, Development

ABSTRACT:

Photogrammetric Computer Vision algorithms often deal with complex numerical calculations and complex data structures. For
modelling the numerical calculations usually a mathematical model is used. For the data structures an Object-Oriented model is
appropriate. But there is still a lack in modelling the combination of both kinds of notation.
In this paper we present a new modelling technique for presenting mathematical and object-oriented aspects in one model. This
modelling technique is based on the Unified Modelling Language (UML) and optimally suited for algorithms with complex
numerical models and data models. For the semantics of class members in the UML model we use a formal description of
constraints, which is similar to the Object Constraint Language (OCL) included in the UML specification. Since OCL is not
capable of complex mathematical expressions, we enhance this notation to handle mathematics, and we name it OCL+M. We
show, that typical problems in photogrammetry can be modelled by using an object-oriented model with OCL+M.
The advantages of this modelling technique are: 1. A clear presentation of the mathematical model within the object-oriented
model, 2. The methods of the classes are easy to implement, 3. The implementation is straightforward and maintainable and 4.
The model can be tested with little efforts.

* Corresponding author.

1. INTRODUCTION

Photogrammetric Computer Vision algorithms often deal with
complex numerical calculations at the one hand and with
complex data structures at the other hand. For modelling the
numerical calculations typically a mathematical model is used.
For the data structures sometimes an Object-Oriented model is
used. But there is still a lack in modelling the combination of
both kinds of models. The relations between the mathematical
model and the object-oriented model of a method for Computer
Vision algorithms or similar topics are frequently unclear.

In this paper we present a new modelling technique for
presenting mathematical and object-oriented aspects in one
model. This modelling technique is UML based and optimally
suited for algorithms with complex numerical and data models.

We show, that typical problems in Photogrammetry can be
modelled using this technique and several examples are
presented to illustrate it.

2. MATHEMATICAL AND OBJECT ORIENTED
MODEL

To describe a complex system, a method or phenomena we
need a model, which contains all relevant properties. A model
is essential for communication between actors, who have to
deal with it. Depending on the application field it should depict
all relevant properties of structure and behaviour.

2.1 The Mathematical Model

For most engineering and natural science applications a
mathematical model is used. It consists usually of a set of
algebraic expressions, which describe the coherences between
the related features.

In the following example we have the mathematical model of a
simple camera, which is described by the collinearity equations
(Kraus, 1993).

)()()(

)()()(

033032031

013012011

ZZrYYrXXr

ZZrYYrXXr
ckx −+−+−

−+−+−
= (1)

)()()(

)()()(

033032031

023022021

ZZrYYrXXr

ZZrYYrXXr
cky −+−+−

−+−+−= (2)

where
ZYX ,, = Coordinates of a point in object space

yx kk , = Coordinates of a projected point

c = Focal length

000 ,, ZYX = Coordinates of the projection center

ijr = Elements of the rotation matrix

Using this model, we can see the relation between a point in
object space and the pictured point in the focal plane of the
camera. On the other hand it is not possible, to recognize only
from the mathematical model, which elements are assignable

as camera parameters (e.g. for camera calibration), if no
additional semantic information is available.

In case of objects with a lot of attributes and a complex
structure, e.g. the earth surface with a lot of diverse geographic
features, it is not practicable to use only a mathematical model
to express all properties. So, the mathematical model is limited
and in some cases we need another model to describe the
world.

2.2 The Object Oriented Model

Object Oriented Models are frequently used for software
development, database, and GIS design as well as for business
modelling. Real world objects are in this case represented as
instances of classes with attributes and methods. The model
elements can be depicted both using a graphical notation and
as programming constructs in an object oriented programming
language.

In the following examples we will use the Unified Modeling
Language (UML) as a graphical notation, since it has become
in the meantime a wide spread standard (Booch, 1999; OMG,
2001).

In case of the camera example the object oriented model of a
simple camera is shown as an UML diagram in figure 1.

Camera

rotationMatrix: Matrix
focalLength: Real
projectionCenter: Vector

objectToCamera(X: Real, Y: Real, Z: Real): Vector

Figure 1. Object oriented model of a simple frame camera

From the model, it is clearly recognizable, which properties
and functionalities belong to a camera, but it is not obvious,
how these properties are used.

So, the object oriented model gives information, which is not
in the mathematical model and vice versa. Thus, these two
kinds of modeling techniques are not concurrent, but
complement each other.

3. COMBINATION OF BOTH MODELS

To specify the semantics of the model elements in an object
oriented model, the Object Constraint Language (OCL) has
been included in the UML specification. With OCL
expressions, one can model constraints for attributes or
methods. It is also possible to express mathematical formulas
in OCL, as shown in the case of the camera example:

context Camera::objectToCamera
(X: Real, Y: Real, Z: Real): Vector

post:
let X0:Real = self.projectionCenter.element(0)
let Y0:Real = self.projectionCenter.element(1)
let Z0:Real = self.projectionCenter.element(2)
let c:Real = self.focalLength
let r11:Real = self.rotationMatrix.element(0,0)
let r12:Real = self.rotationMatrix.element(0,1)
let r13:Real = self.rotationMatrix.element(0,2)
let r21:Real = self.rotationMatrix.element(1,0)
let r22:Real = self.rotationMatrix.element(1,1)
let r23:Real = self.rotationMatrix.element(1,2)
let r31:Real = self.rotationMatrix.element(2,0)
let r32:Real = self.rotationMatrix.element(2,1)
let r33:Real = self.rotationMatrix.element(2,2)
result.element(0)=

c * (r11*(X-X0)+r12*(Y-Y0)+r13*(Z-Z0))
/ (r31*(X-X0)+r32*(Y-Y0)+r33*(Z-Z0))

result.element(1)=
c * (r21*(X-X0)+r22*(Y-Y0)+r23*(Z-Z0))

/ (r31*(X-X0)+r32*(Y-Y0)+r33*(Z-Z0))

The problem here is, that OCL was not designed for
mathematical purposes, and so an OCL expression becomes
quickly intricate as can be seen in the above example.

If the OCL would be extended with mathematical notation, one
could express the camera example as follows:

context Camera::objectToCamera

(X: Real, Y:Real, Z:Real): Vector
post:
let

)0element(.Centerprojection.self0 =:RealX
let

)1element(.Centerprojection.self0 =:RealY
let

)2element(.Centerprojection.self0 =:RealZ
let

Lengthself.focalc:Real =
let

ionMatrixself.rotatMatrix:R ==)(ijr





















−+−+−
−+−+−

−+−+−
−+−+−

=

)()()(

)()()(

)()()(

)()()(

033032031

023022021

033032031

013012011

ZZrYYrXXr

ZZrYYrXXr

ZZrYYrXXr

ZZrYYrXXr

cresult

In this case the mathematical model is combined with the
object-oriented model in an unambiguous way, and the form is
well readable. Therefore, we suggest this approach in order to
combine mathematical and object-oriented modeling to take
advantage of both kinds of techniques. We name the extension
of the OCL in the following OCL+M to distinguish it from
pure OCL expressions.

4. EXAMPLE: AN EDGE EXTRACTOR

The usability of the combined mathematical and object-
oriented model is shown by another example, in this case an
edge extractor (Fuchs, 1998). The object-oriented model of the
edge extractor is shown in figure 2. The model consists of a set
of classes, whose methods are constrained to result in the
mathematical relations of the edge extraction method. The
most important elements are the GrevalueImage class, which

represents a single channel image as input data, and the
EdgePixelImage class with the isEdgePixel method, which
represents among other things a binary image with edge pixels.
This is articulated by OCL+M expressions in the following
sections.

GreyvalueImage

pixel(r: Integer, c: Integer): Real

Image
rows: Integer
cols: Integer

GradientImage

gradient(r: Integer, c: Integer): Vector

source1

GradientSquareImage

gradSquare(r: Integer, c: Integer): Matrix

AverageGradientSquareImage

filterWidth: Integer

averageGradSquare(r: Integer, c: Integer): Matrix
averageGradValue(r: Integer, c: Integer): Real
averageGradValue(r: Real, c: Real): Real
averageGradDirection(r: Integer, c: Integer): Real

EdgePixelImage

gradientValueThreshold: Real

hasSigificantGradValue(r: Integer, c: Integer): Boolean
isLocalGradMaximum(r: Integer, c: Integer): Boolean
isEdgePixel(r: Integer, c: Integer): Boolean

Figure 2. Object oriented model of an edge extractor

4.1 The Gradient Image

The first step of the edge extraction method is to calculate a
gradient image. The GradientImage class uses for this
purpose the Sobel operator and the result is an image with 2d-
gradient Vectors as elements, as the following OCL+M
expression shows:

context GradientImage::gradient
(r: Integer, c: Integer): Vector

post:
let

)pixel(.source.self:)g(r,cRealer, c: Integr: Integer =

let

















−
−
−

==
101

202

101

8

1
)(r

ijdrD

let

















−−−
==

121

000

121

8

1
)(c

ijdcD











−+−+= ∑∑

= =
c
ij

r
ij

i j d

d
jcirg

3

1

3

1

)2,2(result

4.2 The Squared Gradient Image

From the GradientImage class, the GradientSquareImage

class is derived, which extends it by a method for calculating
the square of the gradients.

context GradientSquareImage::gradSquare
(r: Integer, c: Integer): Matrix

let

1)eent(self.gradi r,c:Realc:Integerr:Integer, =)(g r

let

2)eent(self.gradi r,c:Realc:Integerr:Integer, =)(gc

post:









=

2
ccr

cr
2

r

)(g)(g)(g

)(g)(g)(g

r,cr,cr,c

r,cr,cr,c
result

4.3 The Averaged and Squared Gradient Image

A box filter, whose width depends on the expected edge width,
convolves the squared gradient image. This process is
modelled in the method averageGradSquare of the
AverageGradientSquareImage class.

context AverageGradientSquareImage def:
let

)re(geGradSquaself.avera

Matrix:)H(

r,ch

c:Integerr:Integer,

ij ==)(

context
AverageGradientSquareImage::averageGradSquare

(r: Integer, c: Integer): Matrix
post:
let

rWidthself.filtef =
let

)quare(self.gradSMatrix:)G(r,cc:Integerr:Integer, =

∑ ∑
+

−=

+

−=+
=

fr

fri

fc

fcjf
c)G(r,result

12
1

The averageGradValue method returns the absolute value of
the averaged gradient. This method is overloaded by a method

with Real type parameters of the image position, which returns
a bilinear interpolated value of the original method.

context
AverageGradientSquareImage::averageGradValue

(r: Integer, c: Integer): Real
post:

)H(r,cresult trace=

context
AverageGradientSquareImage::averageGradValue

(r: Real, c: Real): Real
post:
let

)dValue(averageGra.self)b(r,c: Realer, c: Integr: Integer =
let

)(floor:0 rIntegerr =
let

)(floor:0 cIntegerc =

























































++
+

+



















++++
++

++
=

−

1)1,1(

),1(

)1,(

),(

111)1)(1(

11)1(

11)1(

1

00

00

00

00

1

0000

0000

0000

0000

c

r

rc

crb

crb

crb

crb

crcr

crcr

crcr

crcr

result

T

The last method of this class is averageGradDirection. It
returns the direction of the average squared gradient.

context
AverageGradientSquareImage::averageGradDirection

(r: Integer, c: Integer): Real
post:

22211212
1)),(),(),,(2arctan(π+−= crhcrhcrhresult

4.4 The Edge Pixel Image

The EdgePixelImage class represents an image, whose pixels
are Boolean values. They are true, if the pixel in the associated
grey value image is an edge pixel.

context EdgePixelImage def:
let

)dValue(averageGra.self)b(r,c: Real: Realr: Real, c =

One of the constraints of an edge pixel is that the absolute
gradient has a significant value, which is tested by the method
hasSignificantValue.

context EdgePixelImage::hasSigificantGradValue
(r: Integer, c: Integer): Boolean

let

resholdentValueThself.gradiTb =
post:

bTr,cresult >=)b(

Another constraint of an edge pixel is that the absolute
gradient value is a local maximum in the direction
perpendicular to the edge. This is tested by the method
isLocalGradMaximum.

context EdgePixelImage::isLocalGradMaximum
(r: Integer, c: Integer): Boolean

post:
let

),(dDirectionaverageGra.selfReal:):,:(crIntegercIntegerr =φ

)b()cossinb(and

)b()cossinb(

r,c(r,c)(r,c),cr

r,c(r,c)(r,c),crresult

<−−
<++=

φφ
φφ

The last method of this class is called isEdgeImage and returns
whether the pixel is an edge pixel or not.

context EdgePixelImage::isEdgePixel
(r: Integer, c: Integer): Boolean

post:

)(dMaximumisLocalGra.selfand

)lue(cantGradVahasSignifi.self

r,c

r,cresult =

5. CONCLUSIONS

We have shown, that the combination of object-oriented and
mathematical modelling leads to results, which are helpful for
a lot of applications.

The advantages of this modelling technique are:
1. A clear presentation of the mathematical model
within the object-oriented model. Using this technique it
is self-evident, which mathematical expression belongs to
which class, attribute or method in the object-oriented
model and vice versa.
2. The methods of the classes are easy to implement,
since their semantic is well defined. If an algorithm is
modelled that way, the software development process is
accelerated and results in high quality software.
3. The implementation is straightforward maintainable.
4. The model can be tested with little efforts, because
the results of methods and values of attributes are exactly
defined by the modelling technique.

Especially for software developers, it would be supportive, if a
lot of algorithms and methods would be modelled in that way.
But this technique may not only be used for software
development purposes, since the utilization of the object-
oriented model in combination with the mathematical model
offers a clear and less unambiguous mapping of real world
objects via the object-oriented model to the mathematical
model.

REFERENCES

Booch, G., 1999. The Unified Modelling Language User
Guide. Addison Wesley Longman, Inc.

Fuchs, C., 1998. Extraktion polymorpher Bildstrukturen und
ihre topologische und geometrische Gruppierung. DGK- Reihe
C 502, München

Kraus, K., 1993. Photogrammetry. Dümmler, Bonn, pp. 12-15

OMG, 2001. OMG Unified Modelling Language Specification.
Version 1.4., September 2001, http://www.omg.org (accessed
July 2002)

