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ABSTRACT: 
 
By relating the projective camera model to the perspective one, using homogenous coordinates representation, the interior 
orientation parameters constitute what is called the calibration matrix. This paper presents two new algorithms to retrieve the 
calibration matrix from the projective camera model. In both algorithms, a collective approach was adopted, using matrix 
factorization. The calibration matrix was retrieved from a quadratic matrix term. The two algorithms were framed around a correct 
utilization of Cholesky factorization to decompose the quadratic matrix term. The first algorithm used an iterative Cholesky 
factorization to retrieve the calibration matrix from the quadratic matrix term. The second algorithm used Cholesky factorization to 
factor the quadratic matrix term but after its inversion. The basic argument behind the two algorithms is that: the direct use of 
Cholesky factorization does not reveal the correct decomposition due to the missing matrix structure in terms of lower-upper order. 
In both algorithms, a successful retrieval of the calibration matrix was achieved. This paper explains the key ideas behind the two 
algorithms, accommodated with a simulated example to demonstrate their validity.     

 
1. INTRODUCTION 

 
Calibration of cameras, analog and digital-alike, is a 
prerequisite task for the precise extraction of metric 
information from imagery in photogrammetry, computer 
vision, and other vision applications in which precise 
quantitative measurements are needed. 
 
  Most current vision applications, employed off-the-shelf 
digital cameras that exhibit a considerable amount of 
distortions due to various reasons. The camera assembly is 
often misaligned, the CCD chip may not be orthogonal to the 
optical axis, the effective focal length may not be known, and 
the camera lens may exhibits a high radial and decentric 
distortions. The removal of these distortions constitutes the 
objectives of geometric camera calibration; see (Seedahmed 
et al., 1998). Generally, the camera calibration problem is 
formulated under the perspective or the projective camera 
model. Under the perspective camera model an extended 
calibration  can be achieved and retains the geometric fidelity 
of the extracted features, but at the cost of solving a non-
linear system of equations. On the other hand, a partial 
calibration can be achieved using the projective camera 
model but with the main advantage of having a closed form 
solution.    
 
In the context of the 3-D projective transformation, the 
camera interior orientation parameters are implicitly confined 
to five parameters, namely, the principal point coordinates 
location, two camera constants, and a non-orthogonality 
factor. By establishing the relationship between the 
projective or the Direct Linear Transformation (DLT) and the 
perspective camera model, the interior orientation parameters 
can be retrieved either sequentially; see (Abdel-Aziz and 
Karara, 1971), or simultaneously. The sequential retrieval 
leads to the original relationship between the Direct Linear  

 
 
transformation and the collinearity model. The simultaneous 
or collective retrieval leads to what is called the calibration 
matrix. This study provides two new algorithms to the 
simultaneous retrieval of the calibration matrix. In addition, 
this study showed that one of the classical simultaneous 
retrieval algorithm does not provide the general solution. 
 
Cholesky factorization in its original format is suggested as a 
decomposition method to retrieve the calibration matrix from 
the projective camera model, see (Forstner, 2000; Urbanek et 
al., 2001). We showed in sequel of this paper that this is not a 
valid factorization when the principal point is displaced from 
its true location. 
 
This paper introduces two algorithms based on the correct 
use of Cholesky factorization and can accommodate any 
amount of principal point displacement without affecting the 
quality of the solution. The first algorithm used an iterative 
Cholesky factorization to retrieve the calibration matrix from 
a quadratic matrix term. The second algorithm used 
Cholesky factorization to factor the quadratic matrix term but 
after its inversion. The key idea behind the two algorithms is 
that: the direct use of Cholesky factorization will not reveal 
the correct decomposition for the calibration matrix housed 
in the quadratic matrix term, despite the fact that we have a 
symmetric positive definite matrix, and this is due to the 
missing matrix structure in terms of lower-upper order. The 
quadratic matrix term, which housed the calibration matrix, 
has an upper-lower ordering. The two algorithms rebuild the 
missing matrix structure for Cholesky factorization and 
enable the correct retrieval of the calibration matrix. 
 
This paper is organized as follows. Section 2 briefly reviews 
the 3-D projective camera model and emphasizes its 
linearity. Section 3 presents the principle of matrix 
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factorization and explains the relationship between the 
projective and the perspective camera model using matrix 
factorization. Section 4 and 5 present the new algorithms for 
the retrieval of the calibration matrix and are explaining the 
key ideas behind them. Section 6 presents the experimental 
results. Finally, section 7 concludes the paper.  
 

2. THE 3-D PROJECTIVE CAMERA MODEL 
 
In the projective model, the camera is considered as a system 
that performs a linear projective transformation from the 
projective space P3  into the projective plane P2. 
Mathematically this mapping can be written as: 
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                      (1)                      α : skewness factor. 

where      x, y  image coordinates. 
X, Y,  Z  Object space coordinates. 
L1..L12  camera parameters. 
 

In addition, this model can be written as :  
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Equation (2) and (3) are the non-linear version of the 3-D 
projective model. By setting L12=1 as normalization 
criterion, see (Seedahmed and Schenk, 2001). A linear 
version of equations 2 and 3 can be written as: 
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                (4)                                               Also from equation (9), we can write: 
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where    ex and ey  are the true unknown errors associated 
with  the image coordinate measurements. 

X, Y, and Z are treated as error free coordinates in 
equations 4 and 5. 
 

3. PRINCIPLE OF MATRIX   FACTORIZATION 
 
This section reviews the principles of matrix factorization. 
The matrix factorization technique provides a compact link 
between the projective and the perspective camera model. By 
using matrix factorization, the perspective camera model can 
be written as a product of the following matrices (Hartley 
and Zisserman, 2000): 
 

[ ]XXIKRx o−= |3               (6) 
 

[ ]Toooo ZYXX =               (7) 
 
where      x  : homogenous image coordinates vector. 

K :  calibration matrix. 
R :  rotation matrix. 
Xo : the position of the camera in the object space. 
X  : homogenous coordinates vector of a point in   

the object space. 
I3   :  the identity matrix.  

 
The general form of the calibration matrix is: 
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where      xp, yp are  the coordinates of the principal point. 

Cx, Cy focal length along the x and y axes. 

 
From equations (1) and (6), the following equivalency 
between the projective and perspective cameras can be 
inferred: 
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From equation (9), we can write: 
 

DKR =                              (10) 
 
where: 
 
















=

11109

765

321

LLL
LLL
LLL

D             (11) 

 

 
dKRX o =−              (12) 
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From equation (10), we can write a quadratic term for the 
calibration matrix as follows: 
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Then: 
 

TT DDKK =              (15) 
 
since: 

3IRRT =              (16) 
 
At this stage, we should denote that equation (15) is rotation 
and translation invariant. 
 
where       I3 : is the identity matrix. 
 



The normalized calibration matrix can represented by: 
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Equation (15) is the starting point for the two algorithms 
presented in this paper. The basic argument behind the two 
algorithms is that: the direct use of Cholesky factorization 
will not reveal the correct decomposition to the matrix 

, despite the fact that we have a symmetric positive 
definite matrix, and this is due to the missing matrix structure 
in terms of lower-upper ordering. The missing matrix 
structure can be confirmed by checking the structure of the 
calibration matrix (K) in connection with the matrix .      
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4. THE FIRST ALGORITHM 
 
The first algorithm utilized Cholesky factorization coupled 
with an iterative update of the principal point assuming that 
the skewness factor is very small. At every iteration the 
principal point is  updated and the observed image 
coordinates were corrected due to the principal point 
displacement. We observed that after a very few iterations, 
the solution converged to the correct calibration parameters. 
  
The key idea behind this algorithm can be captured by the 
following two arguments. First, Cholesky factorization alone 
will not reveal the correct decomposition of the matrix 

 since we had upper-lower matrix structure instead 
of lower-upper matrix structure. Second, the iterative 
solution reduced the factored matrix to a diagonal structure, 
which made Cholesky factorization a valid decomposition. 
Step-wise this algorithm can be stated as follows: 
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1. Compute the camera parameter using equation 

(4) and (5). 

2. Form the quadratic matrix term, , using 
equation (15). 

)( TDD

3. Apply Cholesky factorization to the quadratic 
matrix. This step leads to un-normalized 
calibration matrix (K). 

4. Normalize the calibration matrix by dividing its 
elements by K(3,3) using equation (17). 

5. Extract the principal point from the normalized 
calibration matrix. 

6. Update the principal point. 
7. Displace the observed image coordinates using 

the updated principal point. 
8. Repeat steps 2-8 until the convergence of the 

solution to a stable principal point.  
 
The net result of this algorithm is a reduced calibration 
matrix in the sense that the elements correspond to xp and yp 
are equal to zero. The principal point solution is recovered in 
two separate terms.   
 

5. THE SECOND ALGORITHM 
 
The second algorithm is based on a very simple idea. This 

idea states that: by inverting the matrix  we will 
end-up with the correct order in terms of lower-upper matrix 

structure, which will lend itself to a direct Cholesky 
factorization. Step-wise this algorithm can be stated as 
follows: 

)( TDD

 
1. Compute the camera parameters using equations 

(4) and (5). 
2. Form the quadratic matrix term, ( , using 

equation (15). 
)TDD

3. Invert the matrix ( . )TDD
4. Find the Cholesky factorization of the matrix 

. 1)( −TDD
5. Invert the factored matrix and this is represents the 

un-normalized calibration matrix (K). 
6. Normalize the calibration matrix, by dividing its 

elements by K(3,3), to end-up with the calibration 
matrix (K) using equation (17).  

 
The net result of this algorithm is the full calibration matrix 
as depicted by equation (17). 
 

6. EXPERIMENTAL RESULTS 
 
This section presents the experimental results of a simulated 
example using a single image. We set-up 8 control points at 
the object space, as shown in table 1, and project them to the 
image space using the perspective camera model with 
specified exterior orientation parameters presented in table 3. 
Table 4 shows the interior orientation parameters, used in 
connection with the exterior orientation parameters to project 
the control point into the image space. 
 

POINT ID X Y Z 
P1 -200.0 -200.0 100.0 
P2 -200.0 2200.0 100.0 
P3 2200.0 2200.0 100.0 
P4 2200.0 -200.0 100.0 
P5 2200.0 1000.0 100.0 
P6 200.0 1000.0 100.0 
P7 900.0 2000.0 50.0 
P8 1100.0 100.0 150.0 

  
Table 1: Object space Points in meters. 

 
POINT ID X Y 

P1 -96.9105 -90.3249 
P2 -81.8805 95.4951 
P3 105.4855 85.5611 
P4 94.1925 -106.8049 
P5 99.9025 -9.5429 
P6 -58.6375 1.4631 
P7 1.4425 73.6151 
P8 6.7605 -76.9579 

  
Table 2: Image space points in mm. 

 
Xo (m) Yo (m) Zo (m) 
1000.1 999.81 2000.1 
   
ωo ϕo κo 
1.0002 1.5 3.9999 

 
Table 3: Exterior camera parameters. 

 



where ω, ϕ, and κ: are the elements of the rotation matrix R. 
 
In this study four experiments are presented to show the 
validity of the two algorithms. The only difference from 
experiment to experiment is that the image coordinates are 
shifted from their true locations using four different sets of 
principal point as depicted in table 4. In all experiments an 
identical skewness factor was used that is equal to 0.13615. 
 
Experiment# Cx  mm Cy  mm xp  mm yp  mm 

1 150.01 149.91 0.0 0.0 
2 150.01 149.91 0.130 5.4 
3 150.01 149.91 9.01 11.97 
4 150.01 149.91 19.01 21.97 

 
Table 4: Interior camera parameters. 
 

In the sequel of this section, we used experiment #4 to 
demonstrate the validity of the two algorithms.  Using the 
Cholesky factorization in its original format we end-up with 
the following calibration matrix: 
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It is evident that the direct use of Cholesky factorization 
alone will not reveal the correct calibration matrix. 

 
By using the first algorithm, we are able to retrieve the 
correct calibration parameters. By examining the graph 
depicted in figure 1, we can deduce that we need 2 to 3 
iterations to obtain the correct solution for the reduced 
calibration matrix and the principal point.  
 
The reduced calibration matrix is: 
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The principal point solution is: 
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Figure 1: Principal Point Solution vs. Iteration# 

By applying the second algorithm the quadratic matrix term, 
we end-up with the calibration matrix K. 
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7. CONCLUSIONS 

 
The basic idea behind the two algorithms is that: the direct 
use of Cholesky factorization will not reveal the correct 
decomposition, despite the fact that we have a symmetric 
positive definite matrix, and this is due to the missing lower-
upper matrix structure. The two algorithms rebuild the 
missing matrix structure and enable the correct retrieval of 
the calibration matrix. The first algorithm adopts an iterative 
strategy that leads to the correct retrieval of the calibration 
matrix. The second algorithm avoid the iterative strategy by 
applying Cholesky factorization in the inverse domain and 
this establishes the correct matrix structure in term of lower-
upper order, which in turn achieved the correct retrieval of 
the calibration matrix. Direct Cholesky factorization, applied 
to DDT, is a valid algorithm if the principal point 
displacement is very small. The two algorithms support the 
proposed argument of the missing matrix structure and 
provide the correct solution, but for practical applications the 
second algorithms is a suitable choice since it obviates the 
need of the iterative solution. 
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