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ABSTRACT

This paper presents an algorithm for the extraction of surface clusters from airborne laser data. Surface structure analysis
is fundamental to almost any application involving LIDAR data, yet most algorithms focus only on identifying planar
segments. The proposed algorithm is more general insofar as it aims at extracting surface segments that exhibit an
homogeneous behavior, without restriction to one specific pattern. The algorithm adopts a data clustering methodology
for this purpose, which offers a very general and flexible way to identify homogeneous patterns in the data.

1 INTRODUCTION

Laser altimetry has emerged in recent years as a leading
technology for the extraction of information of physical
surfaces. The dense description of physical objects and the
terrain that is achieved by current airborne systems have
led to an increased interest in utilizing the data for geo-
spatial analysis as well as to surface reconstruction and ter-
rain models generation. Growing experience shows, how-
ever, that the ability to use the raw data directly for deriv-
ing products and for analysis is rather limited, mainly as
the data consists of a mixture of terrain, surface, and non-
surface points without any semantic information that may
distinguish one set of points from the others. As a result,
applications that require separating one type of points from
the others, e.g., masking vegetation, terrain points from
non-terrain points, object points from non-object points, or
applications that depend on evaluating local surface prop-
erty require introducing some level of surface analysis to
the data. It has been suggested to apply point based tech-
niques as a potential solution to some applications, but ex-
perience shows that they have their own limitations and
that a more rigorous approach is preferable. The role of
surface structure analysis goes beyond filtering or masking
the data. As digital surface models (DSM) generation, 3D
object recognition, or applications such as 3D city model-
ing require laser surfaces as an input, laser surface analy-
sis becomes prerequisite for any application that involves
interpretation of the data. As laser surfaces are defined
by laser points, identifying surface structure consists of
grouping the points into segments with common attributes.

Segmentation of range data is still an active field. The ma-
jority of the reported algorithms concern close-range ap-
plications, as the works by, Besl (88); Köster and Spann
(2000) or the review in Hoover et al. (1996), indicate. Yet,
close range applications are usually applied to modeling
objects with well-defined, smooth shapes; the surfaces sur-
veyed by airborne LIDAR systems offer, in contrast, far
more complex shapes representing a variety of natural phe-
nomena. Notwithstanding, the majority of the reported
algorithms focus on extracting planar surfaces (see, e.g.,
Lee and Schenk, 2001; Vosselman, 2001), mostly in asso-
ciation with the extraction of roof facets for building ex-

traction. By narrowing their scope to this specific type of
surfaces these algorithms are likely to fail with complex
building shapes or with mixture of vegetation and build-
ings; they also lack the generality required in associating
the laser points in the dataset with a segment (the essence
of data segmentation). Based on similar arguments Maas
(1999) and Oude Elberink and Maas (2000) tackle the seg-
mentation of airborne laser data. The authors propose seg-
mentation algorithms for a rasterized and quantized ver-
sion of the range data. They identify classes in the data
based on height texture measures. Their algorithms clas-
sify the data by attaching a label to each pixel but prac-
tically do not provide surface segments. So, while an as-
sociation of the data with classes is achieved, identifying
structure in the data is not guaranteed at all.

This paper presents a point clustering algorithm for ex-
tracting homogeneous segments in the laser data. Homo-
geneity refers to clusters of data sharing consistent attributes,
and in the current case surface attributes. Clustering is a la-
bel for a variety of procedures aiming at grouping the data
into homogeneous patterns, usually without an explicit a
priori definition for the patterns. The clustering method-
ology offers generality and flexibility in accommodating
spatial relation and attributes and also the ability to incor-
porate different cues into the process in a very natural way.
Clustering can be seen as a combination of two processes
– identifying patterns in the data based on attributes and
grouping the data into clusters. Attributes should identify
the properties that capture the sought-after information and
produce the best separation among classes. Grouping con-
cerns identifying areas with homogeneous attributes; the
goal is to find clusters that are spatially meaningful and at
the same time to avoid an algorithmic tendency for over-
segmentation of the data. With laser data, further details
regarding the data acquisition systems should be consid-
ered. The data itself consists by nature of a set of irreg-
ularly distributed points that carry only a limited amount
of information, namely their x, y, and z coordinates. The
spatial point distribution and the point density cannot be
assumed fixed as they depend on the scanning system. The
algorithm that is presented here copes with the varying
point density and operates on the laser points directly with-
out rasterization or other preliminary processing that may



introduce unnecessary distortions. So, in addition to the
algorithmic concerns, an adaptation of image-processing
concepts to the irregular pattern becomes necessary. With
the aim of identifying structure in the data in mind, the pro-
posed algorithm is general and can be applied in a variety
of applications.

2 SURFACE CLUSTERING

Similar to data segmentation, the goal of data clustering
is to subdivide the data into disjoint regions each with a
homogeneous property that distinguishes it from its sur-
rounding. The regions are defined by the set of points in-
cluded within each segment, where different regions can-
not share points. The proposed algorithm considers the
surface clusters an instantiations of more generic processes
defined here as surface categories. The algorithm aims at
distinguishing among four different surface categories, i)
forested/wooded area, ii) low vegetation areas and rough
surfaces iii) smoothly varying topography, and iv) planar
surfaces. Surfaces refer here to the interpretation of the
data obtained by laser scanning system, and the categories
present one interpretation of the laser data surface. The
surface classes are not aimed at providing a topographic
structure of the terrain, mainly since the acquired data is
not the terrain itself. Yet the clusters provide a separation
of the surface into homogeneous parts. The distinction be-
tween smoothly varying topography and planar surfaces is
made here because of the tendency of man-made object
to have planar facets, and the value of this information to
other applications.

2.1 The feature vector

By nature, laser data attributes will be derived from surface
texture measurement.1 The measures should be sufficient
to differentiate among surface categories and among sur-
faces within each category. Several measures have been
proposed for segmentation of range data, among them are
the analysis of the height differences in a window via his-
togram followed by segmentation based on thresholding.
Axelsson (1999) uses the second derivatives to find varia-
tions, and Maas (1999) uses a feature vector including the
Laplace operator, maximum slope measures and the origi-
nal height data in order to classify the data.

In this implementation clustering is performed based on
an attribute vector consisting of the following measures –
the point position, the parameters of the tangent plane to
that point, and the relative height difference between the
point and its neighbors. Together they form a 7-tuple vec-
tor ����� ���	�
����
������������������� ��� � �������� ��"! for each point, with�
����
�������� , the laser point coordinates, ��#����� ��� � ����� , the sur-
face parameters (normal measured by two parameters and
a constant), and  �� the height difference of the point to its
neighbors.

The inclusion of the point position as an attribute is es-
sential for measuring proximity to other points that share
$
If reflectance measurements are available, information can also be

derived from these values.

Figure 1: Potential inseparability of surfaces based on
height differences

similar properties. Height differences are perhaps the most
commonly used measures as they measure local variation
and are expected to be reliable up to the level of noise in
the data. They provide an adequate indication for the exis-
tence of high vegetation but they are insufficient for surface
separation as the example in Figure 1 demonstrates. From
an analytical standpoint height differences capture the ex-
istence of step edges in the data, and emulate the effect of
an edge operator in raster data. Their main contribution is
in enhancing the separation of clusters from one another.
The tangent plane parameters consist of the normal direc-
tion and the constant. The slope parameters capture first-
order discontinuities, thereby enhancing the separation of
surface elements with different trend such as the ones in
Figure 1. Slopes capture no positional information, but the
constant value positions the plane in space and enables sep-
arating surfaces with similar slopes. Surface parameters
and the height differences share some similarity; consider
for example two horizontal planes for which the difference
in the surface constant is in-fact the height difference. Yet,
the plane constant refers to an infinite plane and is a rather
global measure while the latter measures difference to a
neighboring points, and is rather local.

Category Surface Height
Slopes Difference

High vegetation Rapidly varying Large
Low vegetation Rapidly varying Medium
Smooth surface Locally constant Small
Planar surface Fixed Small

Table 1: Surface categories vs. attributes

Table 1 lists the expected characteristics of these attributes
for each of the four surface categories. The measures are
qualitative and not strict, but they are sufficient to indicate
that the chosen features make the identification of these
four categories possible. Translating these measures into
quantitative values is partially the essence of the algorithm.

2.2 Metrics to measure the attributes

Successful clustering of the data depends on the features
representation. While height differences consist of a sin-
gle measure and have a natural metric unit, planar surfaces
can be described in various ways. It is common to use
the explicit three parameters representation consisting of
the slopes in the � and 
 direction, %�& � %	' and the intercept
point. However, this representation breaks down with ver-
tical or near vertical structures (e.g., walls.) The represen-
tation of the surface slopes by their tangents also offers
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Figure 2: A plane in 3–D space

non-linear variations as the surface slopes increase. Mea-
suring surface consistency may become then more diffi-
cult. With the implicit representation of a plane� ����������
��	� �
� � (1)

with a normalized normal vector � �� � �
� (where �� � �� ��������� ) any surface can be defined uniquely, but the
non-linearity is still not solved and furthermore the dimen-
sionality of the feature vector increases. Maintaining the
three parameter representation and circumventing the non-
linearity can be achieved by a polar representation of the
surface normal. As is illustrated in Figure (2), with this
representation the surface slopes angles can be computed
as �

����� %�� ��� ��� (2)� ��� ��� � �"! ��$# (3)

The normal direction is then given by,

�����%
& � � �'% ' � � �)(* ���,+- �.(* ��� % � ��� % �%�/ � � ��� % �
%�/ � � +- (4)

leading to the polar representation� ����� % � ��� % � �0� %�/ � � ��� % � 
�� %�/ � �
�1� � (5)

In this representation, � , is the distance from the origin to
the plane. A plane is now defined by the angles,

�
� �

with
angular units (radians or degrees), and � with a metric unit.

2.3 Surface texture analysis

Surface texture is usually analyzed by measuring the at-
tributes variation in the neighborhood (usually a window)
of each point and identifying the point’s class by these
measures. While point classification implicitly assumes
homogeneous texture inside the window, that might not al-
ways be the case. For example, in inhomogeneous cases
where different processes are covered by the window (e.g.,
around edges and building corners) erroneous surface classes
will be assigned to the laser points. So, by assigning a
class to each point this approach becomes rather restrictive
in forming clusters in the data and relies heavily on the
neighborhood size that is chosen.

The approach taken here is different. It is based on direct
evaluation of the points features in a feature space with
dimensions similar to the one of the feature vector; the
values of the feature vector for each laser point determine
the point’s coordinate in the feature space. Data clustering
is conducted in this space via unsupervised classification.
Notice that by analyzing all the points simultaneously no
window based analysis is needed at all, in fact all windows
are analyzed simultaneously. To accelerate the clustering
of the data the implementation of the algorithm here parti-
tions the feature vector into a 4D attribute space consisting
of the tangent plane parameters and the height differences,
and the 3D point position in object space. The removal
of the positional content does not allow for establishing
proximity measures in the feature space. The clusters in
this space can only be considered as “surface classes” that
contain all of the points that share similar features. Ta-
ble 1 shows that the attributes are sufficient for extracting
distinct surfaces classes, but a surface class may consist
of more than one point cluster in object space. Thus, fol-
lowing the surface class extraction, point clusters are iden-
tified in object space by proximity measures. The current
implementation uses a topological neighborhood that is es-
tablished by the triangulation of the dataset as a measure.
Smooth surfaces tend to cluster in the attribute space but
“vegetation” surfaces (categories (i) and (ii) in Table 1) do
not. Rough or “vegetation” surfaces are defined by their
lack of consistency, and are identified by analyzing the un-
clustered points. The surface attributes that are used here,
in particular the surface normals, enhance the tendency of
vegetation not cluster. One consequence is that vegetation
and structured surfaces are unlikely to be grouped together.
Clustering the ”vegetation” points is carried out by analyz-
ing the “unstructured” points. The separation between high
vegetation and low vegetation is conducted by analyzing
the points according to their height difference and graph
connectivity, although in mixed areas such separation may
not be possible.

2.3.1 Relation to other parameter-space based repre-
sentations As the tangent plane parameters are the key
feature in identifying surface structure (height differences
are mostly used to eliminate edge points from the analy-
sis) one may associate this representation and the Hough-
transform for planar surfaces. In reality, this similarity
is rather limited but the comparison enables illuminating
some properties of the current representation. The Hough
transform (see details in Vosselman, 2001, for example) is
optimal for grouping data that have no connectivity, for ex-
ample the set of all points that form together a line, or in
this case a plane. However, connectivity between points
is one of the more important attributes of the sought after
surface elements. By identifying surface of unconnected
points the Hough transform generates proposals for many
spurious planes that do not exist in reality. With the in-
crease of the size of the dataset that is processed the num-
ber of spurious surfaces will increase rapidly. The extrac-
tion of real surface from the Hough space will become
complex and slow, and identifying physical surfaces with
a relatively small number points will become more diffi-
cult. The current, feature based representation, computes



attributes locally with the goal of finding points that share
similar attributes, so the odds of finding a significant num-
ber of points that share similar attributes but are not con-
nected are low. The local computation of the attributes also
suggests that this method is largely independent of the vol-
ume of data that is analyzed, an increase in the size of
the dataset has only little effect on the number of spuri-
ous surfaces. In addition, as surface classes are identified
by grouping points with similar surface parameters, the
clustering algorithm can support the extraction of smooth
surface and not only planar ones, a feature that cannot be
achieved by the Hough representation. Comparing the fea-
ture space based approach to region-growing based seg-
mentation shows that there is no dependency here on the
selection of seed-points in this implementation. This is an-
other merit of this approach, structure is obtained directly
from the parameter space.

3 THE CLUSTERING ALGORITHM

The clustering algorithm consists of three main processes –
generation of cluster proposals, validation, and refinement.
Based on the formation of the feature space the clustering
algorithm can be described as follows

1. initialize � � � � the minimal number of points per clus-
ter and % ��� & an accuracy threshold

2. compute attributes  �� and �������� ��� � ������� laser points

3. generate a feature space

4. propose a surface class and identify points associated
with the class

5. group points according to the neighborhood system

6. for each group

7. if group size � � � � � then dismiss group else

compute surface attributes for the group in

particular the estimated standard deviation %
8. if %�� % ��� & then

9. Test for the existence of outliers

10. Test for the existence of more than one class and

split if needed

11. endfor

12. repeat steps 3–10 until no meaningful surfaces are
proposed

13. Extend each cluster based on its attributes until no
further points can be added, or another cluster was
reached

14. Merge clusters that share similar attributes and test for
surface model

15. Analyze and group unclassified points based on height
variation

The computation of the features is governed in large by
the existence of noise and outliers in the data, which may
distort the feature values and thereby affect the analysis of
the parameter space and the clusters. Outliers are identi-
fied as points that statistically do not belong to their sur-
rounding. Analysis is performed here by � -test. The term
outlier may be misleading since some of these points are
in fact reflected from physical objects (e.g., power lines or
poles). Notice that by computing the attributes based on
the point neighborhood the computation becomes a geo-
metric implementation of a low-pass filter integrated into
the computation of the first derivatives.

Surface clusters are derived by the extraction surface classes
and grouping the points in object space. Many unsuper-
vised classification algorithms can suit for the extraction
of surface classes; the one that was implemented here is
based on a mode seeking algorithm, which does not re-
quire predefining the number of clusters such as in many
other unsupervised classification methods. A mode seek-
ing algorithm is better suited for identifying planar surface
elements, therefore planar surface fitting is used for val-
idation of surface cluster. In case of a large cluster and
inadequate plane fitting results a smooth surface model is
tested as well; the determination of the actual surface shape
(planar or smooth) is done at a later stage. The validation
concerns testing whether the cluster is homogeneous and
indeed composed of only one surface class; and if that is
the case, validating that all points in the cluster belong to
the same class. It is possible (and happens indeed) that
due to smoothing, points that do not belong to the class (or
that are marginal) obtain attributes similar to their neigh-
bors. The algorithm handles the two scenarios as follows.
The null-hypothesis assumes that the cluster represent only
one class. Therefore, the existence of outliers is tested
first. The implementation of outlier detection is carried out
by an analysis of the normalized residuals. Instead of the
standard deviation the median deviation, a measure that is
more robust to the existence of outliers is used. Indeed,
robust methods for detection of up to 50% outliers, like
the least-median-of-squares (Rousseeuw and Leroy, 1987),
exist. But as they are essentially greedy algorithms they are
very slow. The current situation is by the nature of the pro-
cess more controlled, and leads to the simplified algorithm
to work well. Its failure is an indication that the cluster
may be composed of more than on surface. Testing for the
existence of more than one surface is implemented here by
tuning the clustering to the given set of points.

The cluster refinement phase involves extending the clus-
ter by collecting points that were not identified first as part
of the cluster, and then merging clusters that are part of the
same surface. Extension of the cluster to neighbor points
is only a natural step, usually the cluster constructed by
the feature space will not include boundary points. Inclu-
sion of points is done by testing whether the point is from
the same distribution as the cluster is. Points along crease
edges may be associated with several neighboring surfaces,
they are marked as ambiguous points. The merging of clus-
ters is decided upon testing whether the clusters share sim-
ilar mean (which are the estimated surface parameters) and



Figure 3: Clustering results for Stuttgart data (1.5m res-
olution). a.) the original range data, b.) The clustered
data. Bright points – part of a smooth or planar surface,
gray points – vegetation points or ones with high elevation
variation.

standard deviation. The merging part involves also testing
the surface model. The preference is for simple description
of the surface, so if both surface elements are planar, then
merging into one planar surface is tested first; if this test
fails the following test analyzes if both surface elements
are part of one smooth surface. Smooth surfaces are mod-
eled here as biquadratic surfaces. Notice that this way an
extension to other surface models can be incorporated in a
very straight-forward way.

The size of the segments is controlled by the standard devi-
ation thresholds that are being set. In addition to the upper
limit % ��� & a lower bound limit, % � � � is also set to avoid un-
dersegmentation. The value is set in accordance with the
expected accuracy of the laser points themselves. When
a segment is extended and its std. is below the minimum
threshold, % � � � is used instead. Using the fitting accuracy
as the measure to evaluate clusters offers a very natural
way to control a cluster, and the use of lower threshold
is another way to encourage bigger clusters. The prefer-
ence of planar surfaces in the merging phase and the es-
tablishing of upper and lower bounds for the std. of the
parameterized surface enables avoiding over- and under-
segmentation of the data, as well as overparameterization
of a surface.

4 DISCUSSION AND RESULTS

Results for testing the algorithm are presented for datasets
with medium to relatively low resolutions, which are less
detailed and considered more difficult to process. The first
dataset is taken in the Stuttgart area. The spacing is about
1.5 m between points. The scene contains several build-
ings, smooth ground surface and vegetation that is close to
the buildings. The dataset is presented in Figure 3.a and

Figure 4: Clustering results for Vahingen data (2.5m reso-
lution). a.) the original range data, b.) the clustered data.
Bright points – part of a smooth or planar surface, gray
points – vegetation points or ones with high elevation vari-
ation.

the results of applying the clustering algorithm are in Fig-
ures 3.b. Bright points are part of a smooth surface, gray
ones are part of a vegetation or unclassified points with
high elevation variation. As can be seen, the algorithm
managed to separate successfully the smooth objects, like
roof tops or smooth parts on the ground, from the vegeta-
tion, even in cases were both were close one to the other.
Since the vegetation is rather sparse it is difficult to dis-
tinguish between high and low vegetation. Therefore, they
are classified as one structure.

The second dataset has a lower ground spacing of about
2.5m between points. The dataset is acquired over the
Vahingen area in Germany. Buildings here are smaller in
size and lower in height; therefore, finding structure like
planar surfaces is more difficult. The results show that the
algorithm managed to identify successfully the facets of
the building at the center of the scene and also the one
at the far right. Considering the complexity of the shape
of the central building and the point spacing, the results
indicate that the algorithm is capable of identifying fine
structures without any preliminary knowledge of their lo-
cation. The algorithm does not favor, however, identifying
structure when one does not exit as the mostly correct clas-
sification of the vegetation indicate.

The final example is a natural terrain with heavy vegeta-
tion taken from the Stuttgart dataset. The vegetation con-
sists mainly of wooded area over a side of a hill. Down the
hill by the vegetation, a roof face can be noticed and then
a part of a road. The results of the clustering algorithm are
given in Figure 5. The algorithm has managed to separate
the surface from the vegetation successfully, to identify the
roof facets and to find ground segments on the sloping ter-
rain wherever they formed a significant segment.

The quality of the clusters is analyzed, for the first two
datasets, by the standard deviation of the laser points from
the fitted surface. The minimal size of clusters was set



Figure 5: Clustering results for vegetated area in the
Stuttgart data overlaid on mesh of the data. Bright points –
smooth or planar surface, gray points – vegetation points.

Dataset std. range [m] number
of clusters [%]� � % ��� ��� 61

Stuttgart
� � ��� � % ��� � � 38� � � � � % ��� ��� 1� � % ��� ��� 60

Vahingen
� � ��� � % ��� � � 34� � � � � % ��� ��� 6

Table 2: Accuracy estimate of the surfaces clusters

to seven points, which offers redundancy of four point in
plane fitting, and also refers to the point density and the
size of objects in the Vahingen dataset (in particular roof
faces). Results are summarized in Table 2. The quality of
the results is an indication to the potential quality of infor-
mation that can be achieved by LIDAR data. As can be
seen from Table 2 in both cases the majority of the clus-
ters had a std. smaller than 5 cm, which was the minimum
threshold that was set. In both cases a small fraction of
clusters had a std. larger then 10 cm but did not exceed 13
cm even though the upper limit was set to 15 cm. The re-
sults indicate that the cluster proposals manage to propose
natural clusters. The surface fitting accuracy of the large
clusters within all three datasets was below 5 cm. The size
of the large clusters was on the order of several hundred of
points per cluster. The majority of the clusters in the high-
accuracy category had a relatively large number of points
per cluster. There is a high similarity between the number
of points per cluster and surface quality, so in addition to
the data density the number of points has an effect on the
ability to determine the surface parameters accurately. This
realization was very evident in the Vahingen dataset, where
few of the roof faces clusters had their fitting accuracy in
the third category ( � ���
	 � % �� ��� ��� �
	 ), without much
place for improvement by removing points. It was evi-
dent that these points represent a structure, as they all were
part of one roof face, so dismissing them seemed a wrong
decision. As these objects are very likely to represent a
structure in the data that due to low point density cannot
be defined more precisely, these points are considered as a
coarse representation of these objects. The std. value that
is attached to these clusters serves as an indication for that.

5 CONCLUSIONS

The paper presented a methodology for clustering laser
data surfaces. As a first step surface categories were de-
fined; the categories present one way to interpretation of
the surface. Features that enable distinguishing among these
categories and among surfaces within each category were
defined and a way to measure them was developed. Fol-
lowing the definition of the features a method for modeling
surface texture in the data was derived, and the clustering
algorithm was established. The approach that is taken does
not require defining windows to identify surface texture in
the data and does not require limiting the data volume that
is processed. The interaction between the parameter space
and object space, and the validation phase relaxes the de-
pendency of parameters that are determined within the al-
gorithm, and makes the process more robust to the exis-
tence of errors. The results show that even with relatively
sparse datasets, structure can be identified alluding to the
generality of the algorithm.
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