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ABSTRACT:

Perceptual organization is proposed as a promising intermediate process toward object recognition and reconstruction
from 3D surface points, which can be derived from aerial stereo-images, LIDAR data or InSAR data. Here, percep-
tual organization is to group sensory primitives originating from the same object and has been emphasized as a robust
intermediate-level grouping process toward object recognition in human and computer vision. Despite intensive research
on 2D data, perceptual organization of 3D entities is still in its infancy, however. Therefore, the purpose of this research is
to develop a robust approach for constructing perceptual organization particularly with irregularly distributed 3D surface
points. The scope of perceptual organization presented in this paper is limited to signal, primitive and structural levels.
At the signal level, we organize raw 3D points into spatially coherent patches. Then, at the primitive level, we merge the
patches into co-parametric surfaces. Finally, at the structural level, we group the surfaces into perceptually meaningful
surface clusters. We establish a novel approach and implement the approach as an autonomous system. The system is
evaluated with real LIDAR data by inspecting the quality of organized output. The evaluation substantiates a promising
performance of the system. The organized output serves as a valuable input to higher order perceptual processes, including
the generation and validation of hypotheses in object recognition tasks.

1. INTRODUCTION

A far-reaching goal of digital photogrammetry is to re-
construct the world with an abstract description generated
from various sensory inputs as autonomously as possible.
This inversion problem is ill-posed and the solutions are
usually based on introducing assumptions about the 3D ob-
ject space and by applying suitable constraints. It has long
been recognized that surfaces play an important role in
the quest of reconstructing scenes from sensory data such
as images. Surfaces are predominantly represented (mea-
sured) by irregularly distributed 3D points. Such a point
cloud can be derived from aerial imagery (stereopsis), LI-
DAR data or InSAR data.

Perceptual organization deals with grouping sensory in-
puts that originate from the same object by finding struc-
tural regularity from or imposing structural organization on
the inputs. It has been recognized as a crucial component
that makes human perception powerful and versatile. In
computer vision, perceptual organization is often used as a
robust intermediate-vision process toward object recogni-
tion.

Sarkar and Boyer (1993) propose a classificatory structure
of perceptual organization based on the dimension over
which an organization is sought and the abstraction level
of features to be grouped. The structure has two axes: one
axis denotes 2D, 3D, 2D plus time and 3D plus time; and
the other axis represents signal, primitive, structural and
assembly levels. For example, segmentation of surfaces

from a 3D point cloud is classified into 3D signal level per-
ceptual organization. In addition, further grouping of seg-
mented surfaces is categorized into 3D primitive or struc-
tural level perceptual organization.

Previous work in perceptual organization concentrated on
2D organization, dealing with all the abstraction levels and
emphasizing the structural level. In 3D organization, most
previous studies address only the signal level, particularly
focusing on range image segmentation (Koster and Spann,
2000; Jiang et al., 2000; Liu and Wang, 1999; Hoover et
al., 1996). The need of perceptual organization in vari-
ous levels of 3D will increase because 3D sensors have
become cheaper and more readily available. Boyer and
Sarkar (1999) conclude that perceptual organization in 3D
is one of the most important research directions in this area.

Therefore, the purpose of the research reported in this pa-
per is to develop a robust approach for constructing percep-
tual organization, particularly with irregularly distributed
3D surface points. In the interest of brevity we focus on
the most salient features of the proposed approach. The
interested reader may find missing details in Lee (2002).

2. PROPOSED APPROACH

A conceptual framework for computing perceptual orga-
nization from 3D surface points is described by Lee and
Schenk (2001). Under this framework, we have devel-
oped a novel approach that is based on a bottom-up (or



data driven strategy) and thus less application-dependent
although it slightly favors urban applications.

We now summarize the overall process. From a given
set of irregularly distributed 3D surface points we com-
pute perceptual organization at the signal, primitive and
structural levels. At the signal level, we organize the raw
points into spatially coherent surface patches. Then, at the
primitive level, we merge the patches into co-parametric
surfaces and identify surface boundaries. Finally, at the
structural level, we group the surfaces into perceptually
meaningful surface clusters and derive intersections, cor-
ners, and the ground surface from them.

2.1 Signal Level Process

At the signal level, we organize raw 3D points into spa-
tially coherent patches. The signal level process involves
establishing and refining adjacency among points, select-
ing seed patches, and growing patches from the seeds. Each
patch is identified with the interior points and the parame-
ters of a plane approximated to the points. The input and
output of the process are summarized in Table 1.

Input • A set of points.
Output • A set of patches.

• A point adjacency graph.

Table 1: Input and output of the signal level process.

2.1.1 Point Adjacency Adjacency is based on the dis-
tance between points. Five types of adjacency are intro-
duced. First, ’2D’ adjacency is assigned to any pair of
points if the horizontal distance between the points is less
than a given threshold. For a 2D adjacent pair, ’3D’ ad-
jacency is assigned if the 3D distance is also less than the
threshold and ’2D only’ adjacency is assigned otherwise.
3D adjacent pairs are further classified into ’3D refined’ if
they pass a refining process and ’3D unnecessary’ other-
wise.

The refining process is to identify some unnecessary ones
from 3D adjacent pairs. For example, a point on the top of
a car is undesirably identified to be adjacent to other point
on the ground once the distance between them is not so
large. Such unnecessary adjacent pairs can be identified if
other pairs within the same area are statistically consistent
except them. The refining process is summarized as:

1. Select a point as a center and collect all 3D adjacent
points.

2. Fit a plane to the collected points using a robust esti-
mator such as Least Median Squares Estimator (Koster
and Spann, 2000).

3. Classify the points into inliers and outliers with re-
spect to the robustly fitted plane.

4. If the center is an outlier, eliminate the adjacency be-
tween the center and every other point. Otherwise,
eliminate the adjacency between the center and every
outlier.

5. Repeat step 1 to 4 for every point.

Based on the adjacency assignment, we establish a point
adjacency graph, where a node incorporates a point; an arc
links a pair of adjacent points, retaining the type of the
adjacency.

2.1.2 Seed Patches Seed patches serve as initial patches
from which planes start to grow. Hence, seed patches should
be as complete and homogeneous as possible. Here, com-
pleteness implies that all the actual planes should grow
from seed patches; homogeneity indicates that seed patches
should satisfy planar surface models. To accomplish com-
pleteness and homogeneity, we propose the following se-
lection procedure:

1. For every point in a data set, generate a small patch
by clustering a fixed number of neighboring points.

2. Fit a plane to each patch and compute the fitting error.

3. Establish an ordered-list (heap) of the seed patches so
that the patch with the minimum fitting error will be
fetched first.

2.1.3 Patch Growing Patches are growing from seed
patches, followed by verification. The growing process
comprises four main tasks:

1. Fetch a non-corrupted seed patch.

2. Find the nearest point to the current patch.

3. Perform a hypothesis test to examine whether the point
is statistically consistent with the current patch.

4. After passing the acceptance test, the current patch is
updated accordingly.

The first task keeps fetching a seed patch from the seed
heap until a non-corrupted one is found, where a corrupted
seed is one that contains one or more points that have al-
ready been assigned to another patch during the previous
growing processes. Also, an arc heap is initially created
with the arcs of 3D refined types in the point adjacency
graph, which link at least a point of a seed patch. This heap
is constructed so that the arc of the minimum length will be
fetched first, where the length is defined as the distance be-
tween two points linked by the arc. The second task finds
the nearest point to the current patch among the external
points adjacent to at least an internal points based on the
3D refined adjacency. An arc in the arc heap connects two
internal points, or one internal point and one external point.
Hence, one should repeatedly pop the shortest arc from the
heap until an arc connected to an external point is found.
Then, the external point is the nearest point to the patch. If
the heap becomes empty, or the length of the shortest arc
exceeds a threshold, the growing process terminates. The
third task statistically determines whether the nearest point
is consistent with the current patch based on a hypothesis



test. The null hypothesis is ”the point is on the surface”
while the alternative hypothesis is ”the point is not on the
surface”. The last task updates the current estimates of the
plane parameters by incorporating the new point into the
current model using a sequential least squares estimator.

After growing each patch, we verify it in terms of its size,
roughness, and geometry. If one of these criteria is vio-
lated, the patch is discarded and its points are reset to un-
segmented status so that they can be segmented to other
patches.

2.2 Primitive Level Process

At the primitive level, we generate surfaces by merging
some segmented patches. The primitive level process in-
volves constructing patch adjacency graphs, computing merg-
ing confidence of adjacent patches, merging adjacent patches
of high merging confidence into surfaces, and deriving sur-
face boundaries. Each surface is identified with the interior
points, the surface parameters, and the surface boundaries.
The input and output of the process are summarized in Ta-
ble 2.

Input • A set of patches.
Output • A set of surfaces.

• A set of surface boundaries.
• A patch/surface adjacency graph.

Table 2: Input and output of the primitive level process.

2.2.1 Patch Adjacency Graph A patch adjacency graph
includes segmented patches as nodes and adjacency be-
tween the patches as arcs. Adjacency between two patches
are assigned if at least a point of a patch is adjacent to a
point of the other patch. Based on the types of the point
adjacency, the patch adjacency retains three different types
such as ’2D’, ’3D’, and ’2D only’. The 2D only adjacency
is assigned to two patches that are adjacent to each other
only in 2D. For example, the 2D only adjacency can be es-
tablished between a roof patch of a building and its neigh-
boring ground patch. The 2D only adjacency is particularly
important since it often suggests the existence of a missing
vertical patch between 2D only adjacent patches.

2.2.2 Merging Confidence Adjacent patches are to be
merged if there exists a significant evidence that they share
the same surface parameters and roughness. The merging
confidence represents the degree of confidence in merging
two patches. The merging confidence between two patches
P1 and P2 is defined as:

θmerge(P1,P2) = θmerge(P1 ← P2) · θmerge(P2 ← P1)

where θmerge(P1,P2) is the confidence in merging P1 and
P2; θmerge(P1 ← P2) is the confidence in merging P2

into P1; θmerge(P2 ← P1) is the confidence in merging
P1 intoP2. θmerge(P1 ← P2) is defined as the p-value de-
termined by a test statistic of a statistical test. This test ex-
amines whether the points of P2 are consistent with those
of P1 in terms of the parameters of the surface fitted to the
points and the associated fitting errors. The surface model
can be primitively a plane model but easily extended to
more complex surfaces such as quadratic surfaces.

2.2.3 Merging Patches Two adjacent patches with high
merging confidence are merged into one surface. The merg-
ing process is summarized as follows:

1. Construct or update the patch adjacency graph.

2. Compute the merging confidence between every pair
of adjacent patches.

3. Select the pair of the highest merging confidence.

4. If the confidence of the selected pair is greater than a
threshold, merge the patches and go to step 1.

5. Otherwise, quit the merging process.

The patch adjacency graph finally updated after the merg-
ing process is considered as the surface adjacency graph.

2.2.4 Surface Boundaries Surface boundaries represents
a general shape for a cluster of points included by each
merged surface, being computed from interior points based
on the α-shapes (Edelsbrunner et al., 1983) algorithm. Here,
the α-shapes are generalizations of the convex hull of a
point set. They are constructed as subgraphs of the De-
launay triangulation. Parameter α controls the level of the
shape details.

2.3 Structural Level Process

At the structural level, we organize the merged surfaces
into perceptually meaningful surface clusters. The pro-
cess involves identifying surface adjacent boundary edges,
computing various perceptual cues such as connectedness,
continuity, parallelism and elevatedness, constructing the
graph associated with each cue, hypothesizing intersec-
tions and corners, grouping surfaces into meaningful sur-
face clusters, and identifying ground surface clusters and
above-ground polyhedral structures. Table 3 summarizes
the input and output of the process.

Input • A set of surfaces.
• A set of surface boundaries.
• A surface adjacency graph.

Output • A set of surface clusters.
• A set of intersections.
• A set of corners.
• A surface adjacent boundary edge set.
• A surface connectedness graph.
• A surface continuity graph.
• A surface parallelism graph.
• A set of ground surface clusters.
• A set of above-ground structures.

Table 3: Input and output of the structural level process.

2.3.1 Adjacent boundary edges If boundary edges are
adjacent to boundaries of other surfaces they become adja-
cent boundary edges. Their identification is very useful at
the structural level because some important attributes such
as connectedness and elevatedness are based on them.



2.3.2 Surface Connectedness Surface connectedness is
defined as a random variable indicating the confidence in
the hypothesis that two surfaces are connected. This re-
tains continuous and non-continuous types, according to
the changes of the surface normals near their adjacent bound-
aries. The non-continuous types are further classified into
convex and concave types. Connectedness with a type is
computed from every pair of the 3D adjacent surfaces iden-
tified from the surface adjacency graph.

2.3.3 Surface Continuity Continuity indicates how
smoothly two surfaces can be connected. Although two
surfaces are not connected, they can be continuously con-
nected through an imaginary intermediate surface between
the surfaces. Then, the continuity between the surfaces
is high while the connectedness is very low. This is the
main difference from connectedness. In addition, contin-
uously connected surfaces show high continuity but non-
continuously connected surfaces show low continuity.

2.3.4 Surface Parallelism Parallelism is defined as a
random variable indicating the confidence in the hypothe-
sis that two surfaces are parallel. It is associated with the
similarity of the surface normals, the closeness of surfaces
in the normal direction, and the area of the overlap of the
surfaces.

2.3.5 Surface Elevatedness Elevatedness is an attribute
of a surface that indicates how much elevated a surface is
than adjacent surfaces along the surface boundaries. Ele-
vatedness is a good indicator to identify ground surfaces
from a set of surfaces since a ground surface is usually less
elevated comparing to its adjacent surfaces. For example,
the average elevation of a ground surface can be higher
than a roof of building. However, if we compare eleva-
tions only along adjacent boundaries, the ground surface is
much lower. Hence, elevatedness is a promising attribute
for the identification of ground surfaces.

2.3.6 Perceptual Cue Graphs Based on connectedness,
continuity, and parallelism computed from a set of sur-
faces, we establish surface connectedness, continuity, and
parallelism graphs.

2.3.7 Intersections An intersection can be hypothesized
by every pair of two surfaces connected non-continuously.
This hypothesis is then confirmed if the straight line inter-
sected by two surfaces is close to the adjacent boundaries
of the surfaces. The ending points of the confirmed inter-
section are deliberately determined along the straight line.

2.3.8 Corners A corner can be derived by every set
of three surfaces connected non-continuously. To identify
such sets, we derive so-called tri-arcs from the connected-
ness graph, where a tri-arc is assigned to three nodes con-
nected to each other. A tri-arc invokes a corner hypothesis.
This hypothesis is confirmed if the corner is close to the
adjacent boundary edges of the three surfaces.

2.3.9 Grouping Surfaces Surfaces are grouped into sur-
face clusters so that all the surfaces originating from the
same object (ex. at least the ground) is organized into the

same cluster. The grouping criteria is designed to cluster
two surfaces that retain high connectedness and low elevat-
edness between them. This design is based on two obser-
vations, that is, 1) highly connected surfaces must belong
to the same object; 2) vertical discontinuities hardly exist
between the surfaces originating from the ground. Every
arc from the connectedness graph provides a surface pair to
be examined for grouping with the grouping criteria. The
grouping algorithm is summarized as follows:

1. Establish a union-find structure where every surface is
assigned to a separate cluster. This structure supports
efficient operations of union of two clusters and find
the cluster of a surface.

2. Push all the arcs of the connectedness graph into a
heap, where the heap stores the arc of the highest con-
nectedness at the head.

3. Pop the arc of the highest connectedness from the
heap and identify the two surfaces linked by the arc.

4. If the type of the connectedness between the surfaces
is concave, go to step 9.

5. If the connectedness is less than a threshold, go to
step 10.

6. Find two surface clusters including each surface. If
they are the same, go to step 9.

7. Compute elevatedness between the clusters. If its ab-
solute value is is greater than a threshold, go to step 9.

8. Union of the two clusters.

9. Repeat steps 3 to 8 until no more arcs remain at the
heap.

10. Identify the cluster assigned to every surface using the
union-find structure.

2.3.10 Ground Surface Clusters We compute the ele-
vatedness and the area for every surface cluster and iden-
tify the cluster of the lowest elevatedness and the largest
area as ground surface clusters.

2.3.11 Above-ground polyhedral structures Above-
ground polyhedral structures such as buildings may retain
concave connectedness and significant elevatedness in a
structure. Hence, after excluding the clusters identified as
the ground, we further group the surface clusters with re-
laxed criteria comparing to those in section 2.3.9. Then,
each cluster is identified as an above-ground polyhedral
structure.

3. IMPLEMENTATION AND EXPERIMENTS

3.1 Implementation

We implemented the proposed approach as an autonomous
system that generates a three-level perceptual organization



from 3D surface points. The system consists of three cas-
caded subsystems, where the subsystems produce signal,
primitive and structural level organizations, respectively.

We attempted to fully incorporate the strategies of Object
Oriented Programming (OOP) for developing the system
software. The entire software was thus programmed with
ANSI C++ with Standard Template Library (STL). The
software involves many newly defined classes correspond-
ing to main objects and algorithms of the system, such as
points, edges, patches, surfaces, surface clusters, graphs,
LMS estimation, LMeDS estimation and others. The soft-
ware has been compiled and tested mainly under Microsoft
Windows Operating Systems (OS), but it is platform inde-
pendent.

The system is then theoretically analyzed in terms of pa-
rameter selection and computation complexity. The analy-
sis indicates that the system is robust to parameter selection
and maintains moderate computational complexity. Lee
(2002) provides further details.

3.2 Experiments

The main test areas are the sub-sites of the Ocean City test
site. A more detailed description of this test site is pre-
sented by Csatho et al. (1998). The data sets, acquired by a
LIDAR system, cover many urban areas in Ocean City. We
tested the proposed system with many sets and presented
the results of two sets among them. The main properties
of these sets are summarized in Table 4. Set A is selected
to illustrate the full system processes; and set B is used to
demonstrate the overall quality of the output over a large
area. Figure 1 and 2 show the perceptual organization gen-
erated from set A and B, respectively.

Set No. Area Density
points [m2] [points/m2]

A 4633 5564 0.83
B 32493 32926 0.99

Table 4: Properties of the test data.

4. CONCLUSIONS

We constructed a novel approach that computes percep-
tual organization at three levels from 3D surface points
and implemented this approach as an autonomous system.
This system was tested with real LIDAR data sets of vari-
ous characteristics. The system performance was evaluated
by inspecting visually the quality of the organized output.
This evaluation strongly demonstrates the usefulness of the
proposed approach.

The proposed approach produces autonomously with mod-
erate computation loads, robust, explicit, complete, com-
putationally efficient and hierarchical descriptions from raw
surface points. The organized output thus serves as a valu-
able input to higher order perceptual processes, includ-
ing the generation and validation of hypotheses in object
recognition tasks.

Future research will concentrate on the following topics:

• To evaluate rigorously the system performance through
quantitative analysis as well as qualitative inspections,
with the input data of various ranges and characteris-
tics.

• To develop a mechanism that adjusts the system based
on domain knowledge specific to a given input and a
pursuing application.

• To apply the output to higher level processing such as
DEM generation, building reconstruction, change de-
tection, urban modelling and other object recognition
and reconstruction tasks.
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Figure 1: Perceptual Organization of Set A: (a) 3D surface points with the elevations encoded by the colors. (b) Aerial
photo of the same area. A building, a parking place and a road are identified. (c) Segmented patches visualized with six
different colors. (d) Merged surfaces with boundaries. (e) Derived intersections and corners. (f) Grouped surface clusters.
(g) Identified ground surface cluster. (h) Extracted Above-ground surface clusters.
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Figure 2: Perceptual Organization of Set B: (a) 3D surface points. (b) Merged surface with boundaries, and derived
intersections and corners. (c) Grouped surface clusters. (d) Identified ground surface cluster.


