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ABSTRACT

In this paper we present a new method for single image orientation using an orthographic drawing or map of the scene.
Environments which are dominated by man made objects, such as industrial facilities or urban scenes, are very rich of
vertical and horizontal structures. These scene constraints reflect in symbols in an associated drawing. For example,
vertical lines in the scene are usually marked as points in a drawing. The resulting orientation may be used in augmented
reality systems or for initiating a subsequent bundle adjustment of all available images.
In this paper we propose to use such scene constraints taken from a drawing to estimate the camera orientation. We use
observed vertical lines, horizontal lines, and points to estimate the projection matrix P of the image. We describe the
constraints in terms of projective geometry which makes them straightforward and very transparent. In contrast to the
work of (Bondyfalat et al., 2001), we give a direct solution for P without using the fundamental matrix between image
and map as we do not need parallelity constraints between lines in a vertical plane other than for horizontal lines, nor
observed perpendicular lines.
We present both a direct solution for P and a statistically optimal, iterative solution, which takes the uncertainties of
the contraints and the observations in the image and the drawing into account. It is a simplifying modification of the
eigenvalue method of (Matei and Meer, 1997). The method allows to evaluate the results statistically, namely to verify
the used projection model and the assumed statistical properties of the measured image and map quantities and to validate
the achieved accuracy of the estimated projection matrix P.
To demonstrate the feasibility of the approach, we present results of the application of our method to both synthetic data
and real scenes in industrial environment. Statistical tests show the performance and prove the rigour of the new method.

1 INTRODUCTION

Many tasks in computer vision and photogrammetry re-
quire prior estimation of a camera’s orientation and cal-
ibration. This problem has been well investigated in the
past by many researchers (Faugeras, 1993, Kanatani, 1996,
Klette et al., 1998, Faugeras and Luong, 2001). Most of
these methods use point and line correspondences between
the images and/or calibration patterns to estimate the cam-
era’s intrinsic and extrinsic parameters. However, camera
calibration may be more reliable and easier to carry out
if further scene constraints are taken into account. Scenes
which are dominated by man made objects are usually very
rich of such constraints. For example, urban scenes or
scenes in industrial environment contain lots of vertical
and horizontal structures (see Fig. 1). Many works in com-
puter vision and photogrammetry literature exploit these
constraints by using vanishing points for recovery of cam-
era orientation (Caprile and Torre, 1990, Wang and Tsai,
1991, Youcai and Haralick, 1999, van den Heuvel, 1999).
Here, we propose to take advantage of horizontal and ver-
tical structures in conjunction with a map or drawing of
the scene. It is important to note that very often such maps
or drawings are readily available. Drawings are with no
doubt the most important and commonly used documents
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in many industries. These documents are created during
the design process, and they are used and completed by
builders. Furthermore, drawings are referred to on a daily
basis for maintenance and update of buildings and facili-
ties. It is therefore quite advantageous to use these doc-
uments. In practice, many have taken advantage of such
documents to find some reference points in order to regis-
ter virtual and real world coordinates.

In this paper we aim at providing methods for direct sin-
gle view orientation using these commonly available doc-
uments. We use vertical lines, horizontal lines, and points
to estimate the projection matrixP. We describe the con-
straints in terms of projective geometry which makes them
straightforward and very transparent. In contrast to the
work of (Bondyfalat et al., 2001), we give a direct solu-
tion for P without using the fundamental matrix between
image and map as we do not need parallelity constraints
between lines in a vertical plane other than for horizontal
lines.

We present both a direct solution forP and a statistically
optimal, iterative solution, which takes the uncertainties of
the contraints and the observations in the image into ac-
count. It is a simplifying modification of the eigenvalue
method of (Matei and Meer, 1997). The method allows to
evaluate the results statistically, namely to verify the used
projection model and the assumed statistical properties of



Figure 1: Image of a high voltage switch gear and the as-
sociated drawing. Many horizontal and vertical structures
occur in the image, which correspond to lines and points in
the drawing.

the measured image and map quantities and to validate the
achieved accuracy of the estimated projection matrixP.

The result of such an image-drawing orientation may be
used in augmented reality systems or just as approximate
values for a subsequent rigorous bundle adjustment using
all available images.

The remainder of this paper is organized as follows: After
introducing notation, geometric relations and statistical es-
sentials in section 2, we describe the scene constraints in
terms of projective geometry in section 3. In section 4 we
provide both an algebraic solution forP and a statistically
optimal one, along with statistical tools for self-diagnosis.
Experiments on synthetic and real data are presented in
section 5. We finally conclude in section 6.

2 MATHEMATICAL FOUNDATIONS

First, we briefly describe the represention of geometric en-
tities, the assumed representation for uncertain geomet-
ric entities, basic error propagation, estimation and testing
techniques used later in the paper.

Notation: We denote coordinate vectors of planar geo-
metric objects with small bold face letters, e. g.x, in 3D
space with capital bold face letters, e. g.X. Vectors and
matrices are denoted with slanted letters, thusx or R. Ho-
mogeneous vectors and matrices are denoted with upright
letters, e. g.x or A. We use the skew matrixS(x) = [x]×

of a 3-vectorx in order to represent the cross product by
a × b = S(a)b = −b × a = −S(b)a. We will use the
vec-operator collecting the columns of a matrix into a vec-
tor, thus vecA = vec(a1, a2, ...) = (aT

1 , aT
2 , ...)T, and use

the relation

vec(ABC) = (A⊗ CT)vec(BT) = (CT ⊗ A)vecB (1)

with the Kronecker productA⊗ B = {aijB}.

2.1 Geometry

We mainly follow the representation of projective geome-
try as introduced in (Hartley and Zisserman, 2000). Hence
we represent points and lines both in 2D and 3D by homo-
geneous vectors. We write 2D points asx = (u, v, w)T
and 2D lines asl = (a, b, c)T. Lines in 2D can easily be
constructed from two points byl = x×y and the incidence
constraint of a point and a line is given byxTl = 0. We
only need points in 3D, they are represented analogously
by X = (U, V, W, T )T.

We can write the projection of a 3D pointX into an image
pointx image plane as

x = PX =




PT
1

PT
2

PT
3


X = (I3 ⊗XT)p (2)

with p = vec(PT) = (P1, P2, P3)T,

whereP is the3 × 4 projection matrix,PT
i its rows, and

p = vec(PT) its vector version. Note that due to its homo-
geneity, only 11 of its elements are independent.

Analogically, we can write the parallel projection yielding
the drawing (cf. fig. 1)

xd = PdX with Pd =




1 0 0 0
0 1 0 0
0 0 0 1


 ,

inducingxd = (x, y)T.The task is to deriveP from ob-
served pointsx andxd in the image and the drawing and
further constraints from the interpretaion of the drawing.
Straight linesl in the image always are assumed to be de-
rived by two measured pointsx andy, the same holds for
lines in the drawing.

2.2 Statistics

Estimation with linear constraints: All constraints will
have the form

A(y)p = e != 0

whereA is a matrix depending on measurements collected
in the vector of observationsy, andp is the vector of the
unknown elements of the projection matrix, appearing lin-
ear in the constraints.
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Figure 2: Relation between scene, image and drawing.
Vertical lineL1, passing through pointU1, maps told1 =
ud

1. Horizontal lineL2 has the same vanishing point as its
projectionld2.

Minimizing the Euclidean distance ofe and0

eTe = pTATAp under |p| = 1,

leads to the well known algebraic solution

ATAp̂ = λp̂,

namely the right eigenvalue ofA.

The statistically optimal solution instead of the Euclidean
distance minimizes the Mahalanobis distance ofe and0

eTΣ−1
ee e = pTATΣ−1

ee Ap under |p| = 1.

Here the covariance matrix of the residualse = e(y,p)
can be obtained from error propagation

Σee = B(y,p)ΣyyBT(y,p) with
∂e(y,p)

∂y
= B(y,p).

(3)
It can be shown (see (Förstner, 2001)) that the solution can
be obtained iteratively from

[
A(ŷ(ν))T(Σ̂

(ν)

ee )−1A(y)
]

p(ν+1) = λp(ν+1)

using

Σ̂
(ν)

ee =
(

B(ŷ(ν), p̂(ν)) Σyy BT(ŷ(ν), p̂(ν))
)

,

where we need the fitted valuesŷ of the observations:

ŷ
(ν)
i =

(
I−ΣyiyiB

T
i

(
BiΣyyBT

i

)−1

Bi

)
yi,

and where the JacobianB = B(ŷ(ν−1), p̂(ν−1)) has to be
evaluated at the fitted values of the previous iteration(ν −
1).

Selfdiagnosis and performance characteristics: The re-
sult can be evaluated based on the optimal value of the Ma-
halanobis distance

Ω = êTΣ−1
ee ê = p̂TATΣ−1

ee Ap̂ ∼ χ2
R,

where the JacobianA = A(ŷ) andΣ−1
ee needs to be evalu-

ated at the fitted values.

In case the assumed model holds,Ω is χ2
R distributed with

R degrees of freedom, whereR is the redundancy of the
system:

R = G− (U − 1)

which is the number of independent constraints minus the
number of unknown parameters, here 11.

Assuming the test has not been rejected, we may use the
estimated covariance matrix of the estimated parameters

Σ̂bpbp = σ̂2
0(ATΣeeA)+, with σ̂2

0 =
Ω
R

, (4)

to evaluate the obtained accuracy of the parameters. The
calculation of the pseudo inverse can make use of the known
nullspacêp of the matrix. In case the geometric constraints
hold, one can conclude that the observations have a stan-
dard deviation which is larger by a factor ofσ̂2

0 .

Further, we could use the covariance matrixΣ̂bpbp to predict
the reprojection error:

Σ̂bxbx = (I3 ⊗XT)Σ̂bpbp(I3 ⊗XT)T + P̂ΣXX P̂
T

(5)

using (2),x̂ = P̂X, and taking the uncertainty of botĥP
andX into account.

Or one could determine the covariance matrixΣ̂bZ bZ of the

estimated projection center̂Z = −Ĥ
−1

ĥ from P̂ = (Ĥ|ĥ) =
(Ĥ| − ĤẐ) (for the derivation cf. appendix):

Σ̂bZ bZ = Ĥ
−1

(ẐT ⊗ I3) Σ̂bpbp (Ẑ⊗ I3) Ĥ
−T

.

This uncertainty may be compared with some specification
coming from the application.

3 SCENE CONSTRAINTS

In the following we derive constraints between measurable
quantities in the image on one hand and the map and the
unknown projection matrix on the other hand.

3.1 Vertical Lines

We first turn our attention to vertical structures in the scene.
Man made objects are very rich of such features, one may
think of buildings, all kinds of technical installations, etc.

Observationsli, i = 1, ..., I of vertical linesLi in the im-
age reflect as a point coordinate in the drawing, sayxd

i =
(xd, yd)i. Two 3D-pointsUi andVi on the same verti-
cal line, therefore, only differ by their third component (cf.
fig. 2). Thus, the vertical line is fully characterized by two
points

Ui = (X, Y, Z1, 1)Ti and Vi = (X,Y, Z2, 1),T (6)



whereXi = xd
i andYi = yd

i . The twoZ-valuesZ1 and
Z2 may be arbitrarily chosen, however, for reasons of nu-
merical stability they should be chosen within the range of
the heights, e. g. the minimum and maximum height in the
scene.

In general, for the projection of a 3D point on the im-
age, sayxi = PXi, which lies on a lineli in the image,
lTi xi = li′

TPXi = 0 should hold. Hence, two points on a
vertical line provide us with two constraints on the projec-
tion matrix. We have
(

lTi PUi

lTi PVi

)
= ei

!= 0 or

(
lTi ⊗UT

i

lTi ⊗VT
i

)
p = ei

!= 0.

(7)
Thus, the two residualsei of the constraints should vanish.

Introducing a third point constraint on the same vertical
line would not add any information since the line is al-
ready fully defined by two points. When adding a third
constraint, the rank of the matrix on the left hand side of
(7b) would not exceed two.

3.2 Horizontal Lines

Besides vertical lines, horizontal lines are frequently ob-
servable features. In this case, observed lines in the image
correspond to lines in the drawing.

Let the line in the drawing be defined by two measured
pointsxd

j andyd
j . The point at infinity of that line is(ydT

j −
xdT

j , 0). As the point at infinity of a line does not depend
on its position we obtain the point at infinity of the 3D-line
as

X∞j =

(
yd

j − xd
j

0
2×1

)
=




Rj

Sj

0
0


 .

Actually Rj andSj are the coordinate differences of the
two points defining the direction of the line in the drawing.

The observed linelj should pass through the image of
X∞j , namelyPX∞j , known as the vanishing point. Hence,
we obtain

lTj PX∞j = ej
!= 0 or (lj ⊗X∞j)Tp = ej

!= 0, (8)

only constraining the first two columns ofP. They do not
have any influence on the third and fourth column ofP.
In fact, by providing a line in the drawing, we only define
the direction of this line. We are neither constraining the
line’s height nor can we use the horizontal position of the
line. Therefore, we also may use contours ofhorizontal
cylinderswith a given direction.

3.3 Observed Points

The third type of scene constraint we consider in this paper
is the observation of points in the image which are marked
as points in the drawing, which is the classical setup of es-
timating the projection matrix from points. Let the obser-
vation of a point feature in the imagexk = (uk, vk, wk)T

be corresponding to a point element in the drawingXk =
(Uk, Vk,Wk, Tk)T. Both points are linked by projection
such thatxk = PXk holds. Thus, we obtain the constraints

xk × PXk = 0

or Sxk
PXk = −SPXk

xk = fk
!= 0

or (Sxk
⊗XT

k )p = fk
!= 0.

Only two of these constraints are independent. As the mea-
sured points are finite, the first two constraints are guaran-
teed to be independent. Thus, we use the two constraints

Sxk
PXk = −SPXk

xk = ek
!= 0

or (Sxk
⊗XT

k )p = ek
!= 0

(9)

with

Sxk

.=
(

uT
1

uT
2

)
Sxk

=
(

0 −wk vk

wk 0 −uk

)
, (10)

whereui is thei-th unit vector.

3.4 Other Constraints

In (Bondyfalat et al., 2001) additional constraints are ex-
poited and used to constrain the fundamental matrixF and
the projection matrix: Observing parallel lines in a given
plane, leads to constraints which are linear in the elements
of F but quadratic in the elements ofP. In our scheme
we, therefore, cannot include them in the same manner.
However, parallel lines which are in the horizontal plane
are likely to be contained in the drawing and parallel lines
not being horizontal or vertical are not very likely to be
present at the object. The same argument holds for observ-
ing two orthogonal lines in a given plane. Not using these
two types of constraints, therefore, is practically accept-
able and gives the way for a direct and an optimal solution
of P.

4 ESTIMATION OF P

We propose to use a two step procedure to estimateP sim-
ilar to (Matei and Meer, 1997). In the first step we solve
directly for P using the classical algebraic solution. In the
second step we take the uncertainties of all measurements
into account in order to obtain a statistically optimal solu-
tion.

4.1 Direct Solution

In order to obtain a first estimate forP we integrate all
constraints into a system of equations and solve in a least
squares sense.

Writing the constraints fori = 1, . . . I observations of ver-
tical lines,j = 1, . . . J horizontal lines, andk = 1, . . . K



points in a system of equations, we obtain:




aiUT
i biUT

i ciUT
i

aiVT
i biVT

i ciVT
i

ajXT
∞j bjXT

∞j cjXT
∞j

0 −wkXT
k vkXT

k

wkXT
k 0 −ukXT

k







P1

P2

P3




=




lTi ⊗UT
i

lTi ⊗VT
i

lTj ⊗XT
∞j

Sxk
⊗Xk




p =




ei

ej

ek


 != 0

(11)

the matrix being of size(2I +J +2K)× 12. The solution
which minimizes

∑
i |ei|2 +

∑
j |ej |2 +

∑
k |ek|2 is the

right eigenvector.

Note that almost any combination of scene constraints may
be used in a way that the overall number of constraint is
equal to or greater than 11. However, at least two point ob-
servations in different heights have to be provided in order
to fix the vertical origin and the vertical scaling.

The solution may be changed by arbitrarily weighting the
individual constraints, therefore, it definitely is not opti-
mal.

4.2 Uncertainty of Measurements

For achieving an optimal solution we may want to take the
uncertainty of the measured entities into account. These
are the pointsxd

i , xd
j , yd

j andXk from the drawing and
the pointsxk from the image. We, therefore, have to make
assumptions about their uncertainty, or – better – derive it
empirically.

In our investigation we adopt the following assumptions:

Points in the drawing: We assume the points in the draw-
ing to be measured independently with equal accuracy in
both coordinates: Therefore, we assume their homogeneous
coordiante vector to be normally distributed with

xd ∼ N(µxd ,Σxdxd), whereΣxdxd = σ2
xd




1 0 0
0 1 0
0 0 0


 .

In case we know the height of a point from the drawing, we
assume it to be defined with the same accuracy. Therefore,
the uncertainty of the 3D-points taken from the drawing
are characterized by:

Xd ∼ N(µXd ,ΣXdXd),

ΣXdXd = σ2
Xd




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 or = σ2

Xd




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




with σxd = σXd . The second covariance matrix is taken
for points with fixed heights.

The points in the image are measured with a different ac-
curacy. We assume the same simple structure of the distri-
bution:

x ∼ N(µx,Σxx), whereΣxx = σ2
x




1 0 0
0 1 0
0 0 0


 . (12)

2D-lines: Original measurements in the image as well as
in the drawing consist of points only, points at infinity and
lines are treated as derived entities.

Following standard error propagation methods, we obtain
the uncertainty of an image (or a drawing) linel = x×y =
Sxy = −Syx by

Σll =
∂l
∂y

Σyy

(
∂l
∂y

)T

+
∂l
∂x

Σxx

(
∂l
∂x

)T

= SxΣyyST
x + SyΣxxST

y

which with (12) yields

Σll = σ2
x

(
2 0 −x1 − y1

0 2 −x2 − y2

−x1 − y1 −x2 − y2 y1
2 + x1

2 + y2
2 + x2

2

)

assuming stochastic independence ofx andy.

Point at inifinity: The pointX∞ has covariance matrix

ΣX∞X∞ = 2σ2
xd

(
I

2×2
0

2×2

0
2×2

0
2×2

)
.

4.3 Jacobians for Optimal Estimation

We now provide the JacobiansAi(yi) and Bi(yi,p) for
the individual constraints.

4.3.1 Observed Vertical Lines We have the vectoryT
i =

(lTi ,xdT
i ) of the measured entities, relevant for vertical lines.

Therefore, we obtain from (7)

Ai(yi) = Ai(li,xd
i ) =

∂ei

∂p
=

(
lTi ⊗UT

i

lTi ⊗VT
i

)
.

The other Jacobian can be obtained by

Bi(yi,p) = Bi(li,xd
i ,p) =

∂ei

∂yi

=
(

∂ei

∂li
,

∂ei

∂Ui

∂Ui

∂xd
i

)

=


 UT

i PT lTi P(I2 0
2×2

)T

VT
i PT lTi P(I2 0

2×2
)T




using the Jacobian∂Ui/∂xd
i from (6). Note that we here

only considerli and the coordinatesX = xd
i andY =

yd
i on the drawing as uncertain. The heights of the 3D

points,Z1 andZ2, may be fixed arbitrarily and, therefore,
are treated as deterministic values.



4.3.2 Observed Horizontal Lines We have the vector
yT

j = (lTj ,XT
∞j) as uncertain observations. We, therefore,

obtain from (8)

Aj(yj) = Aj(lj ,X∞j) =
∂ej

∂p
= (lj ⊗X∞j)T,

and

Bj(yj ,p) = Bj(l′j ,X∞j ,p) =
∂ej

∂yj

=
(
XT
∞jPT , lTj P

)
.

4.3.3 Observed Points We have the vectoryT
k =

(xk,T ,XT
k ) as uncertain measurements. Therefore, we ob-

tain from (9)

Ak(yk) = Ak(xk,Xk) =
∂ek

∂p
= Sxk

⊗XT
k .

The other can be obtained by

Bk(xk,Xk,p) =
∂ek

∂yk

=
(
−SPXk

, Sxk
P

)
. (13)

This holds for arbitrary point correspondences.

4.4 Optimization function

Using the assumed covaraince matrices for the observed
entities and the derived Jacobians, we can derive the co-
variance matricesΣeiei , Σejej , andΣekek

of the constraints’
residualsei, ej andek as given in (3).

We now have all components at our disposal necessary to
estimateP. Thus, we need to solve iteratively

[∑

i

AT
i (ŷ(ν)

i )
(
Σ̂

(ν)

eiei

)+

Ai(yi)

+
∑

j

AT
j (ŷ(ν)

j )
(
Σ̂

(ν)

ejej

)+

Aj(yj) (14)

+
∑

k

AT
k (ŷ(ν)

k )
(
Σ̂

(ν)

ekek

)+

Ak(yk)
]
p̂(ν+1) = λp̂(ν+1),

wherep contains the unknown parameters ofP. The itera-
tion can be initialized by results from a direct estimation of
p as in (11), which is equivalent to settingΣeiei = Σejej

= Σekek
= I. The fitted observationŝyi, ŷj , andŷk, are

initialized by the actual observations in the image and the
drawing.

5 EXPERIMENTS

In this section we describe the experiments conducted to
evaluate the characteristics of the presented method. We
first show the correctness of error prediction by testing the
method on synthetic data. Then, the practical usability
of self-diagnosis tools is demonstrated by showing results
of application to images and a drawing of a high voltage
switch gear.

5.1 Synthetic Data

In order to guarantee realistic test conditions we use geo-
metric dimensions which come very close to those given in
the real data experiments in the following section. We use
a drawing of 400× 400 pixels, the camera is placed off
the drawing at approximately(252,−222, 108)[pixel] and
has a viewing angle of approximately 50 degrees. We gen-
erate uniform distributed points on and above the ground,
vertical lines, and horizontal lines. We may then project all
features into the camera, using a known realistic projection
matrix, to have an ideal set of observations.

As a first indication for correctness of the estimated covari-
ance ofP, Σ̂bpbp, we compare the estimated back-projection
error of a 3D point with its true covariance under well de-
fined noise conditions. Therefore, we estimate the pro-
jection matrix from randomly perturbed observations, and
back-project a perturbed 3D point using the estimated pro-
jection. Using a perturbation ofσd = 0.5[pixel] for obser-
vations from the drawing, andσi = 1.2[pixel] for image
features, we repeat the estimation ofP n = 5000 times
using 10 vertical lines, 10 horizontal lines, and 10 points.
The resulting Gaussian distributed point cloud is depicted
in Fig. 3. The experiment shows that the predicted 90%
confidence region from (5) and the empirically obtained
one are very close. Using the same setup, we now consider
the Mahalanobis distance between the estimated projection
parameters and the true onesp̃:

||p̂− p̃||2Σββ
= (p̂− p̃)TΣ̂

+

bpbp(p̂− p̃)

If the model is correct, the Mahalanobis distance isχ2
11

distributed, since the projection matrix has 11 degrees of
freedom. The histogram in Fig. 3 shows the distribution of
the Mahalanobis distance based on 1000 experiments. The
comparison with the analytically plottedχ2

11 distribution
shows good conformity.

5.2 Real Data

A large field of application for the presented pose esti-
mation method is as-built reconstruction in industrial en-
vironments. Therefore, we chose images of a high volt-
age switch gear and the associated top view drawing to
demonstrate the feasibility of the algorithm. The drawing
has a dimension of 1220×820 pixel. Its scale [pixel]:[m]
is 1:0.012, i. e. 1 pixel is equivalent to 12mm in the real
world. The images have a size of 1530× 1018 pixel. We
select feature points and lines in the image and in the draw-
ing with a standard deviation of 1 pixel and 0.5 pixel, re-
spectively. We assume that the selection process itself on
the drawing does not have any uncertainty, since drawings
are in general vectorized documents. However, drawings
reflect the as-built situation only up to a certain accuracy.
In our case, the drawing depicts the real world installation
up to approx.± 6mm, which results in the mentioned stan-
dard deviation.

As observations in the image we select 6 vertical lines, 5
horizontal lines, 3 points on the ground and 2 above. Once



874 878 882 886
668

672

676

680

u [pixel]

v[
pi

xe
l]

0 10 20 30 40
0

0.05

0.1 Chi Square Distribution  
Histogram of Mahal. Dist.
(1000 Experiments)       

Figure 3: Top: Back-projection of a 3D point using es-
timated projection matrices. The projection is estimated
based on randomly perturbed observations in the image
and in the drawing. 5000 samples are taken to obtain the
empirical 90% confidence region (solid), which is very
close to the predicted one (dashed) from (5).Bottom:
The Mahalanobis distance of the estimated projection ma-
trix and the true projection matrix isχ2

11 distributed. The
histogram represents the distribution obtained by 1000 ex-
periments on perturbed data. The curve indicates the true
χ2

11 distribution. The mean Mahalanobis distance is 10.87,
compared to 11, which is statistically not different.

the projection matrix̂P and the associated covariance ma-
trix Σ̂bpbp are estimated, we can obtain the uncertainty of
any 3D point projected in the image. To visualize this, we
select 3D points on the ground plane and points above of
each, in heights of 100, 200 and 300 pixels. The uncertain-
ties of their projections are shown in Fig. 4. Note that the
ellipses are plotted magnified by a factor of 10 for better
visibility.

Self-diagnosis can be bound to the estimated variance fac-
tor σ̂2

0 (cf. (4)). Here we obtain̂σ2
0 = 1.5, thusσ̂0 = 1.25.

Assuming the constraints actually hold, we can conclude
that the standard deviation of the measurements are worse
by a factorσ̂2

0 = 1.25, which practically confirms the as-
sumed standard deviation. An indicator for characterizing
the accuracy of the estimated projection matrix is the un-
certainty of the camera’s center of projectionẐ (cf. A.1).
Computing the standard deviations for the camera center of
the image shown in Fig. 4, we obtain standard deviations
of σX ≈ 11mm, σY ≈ 37mm, andσZ ≈ 10mm, where
the indicesX, Y , andZ indicate the coordinate axes of the

Figure 4: Uncertainty of projected 3D points. The el-
lipses show the covariances of 3D points on the ground,
and points above of each in heights of 100, 200, and 300
pixels. The ellipses are plotted magnified by a factor of
10 for better visibility. In this case, the ground plane is
not located on the actual ground, but at the top edge of the
concrete foundations.

drawing. In this case, the camera’s principal axis is roughly
parallel to theY -axis of the drawing. Due to the fact that
the intrinsic parameters, in particular the principle distance
c, is estimated, this appears to be a reasonable result and is
fully acceptable in many applications. For augmented real-
ity applications, it is very useful to superimpose the image
of an installation and the associated drawing. Fig. 5 shows
such an overlay resulting from application of our method to
another scene. All information contained in the drawing is
directly connected to the respective components in the real
world. At the same time, blending drawings and images
can be used as a visual accuracy check of the projection
matrix.

6 CONCLUSION

We presented a new method for single image orientation
using scene constraints in conjunction with a drawing of
the scene. We use vertical lines, located in the drawing or
the map, the direction of horizontal lines, which may also
be contours of cylinders, and points. Besides a direct so-
lution, we provided a statistically optimal estimation pro-
cedure for the projection matrixP. This allows us to ver-
ify the results statistically, in particular to test whether the
assumed noise model is correctly chosen. We applied the
method to synthetic data to validate the correctness of error
prediction. Statistical tests on experiments using real data
showed that good results can be obtained using a compara-
tively small number of constraints. The availability of this
type of statistical tools for self-diagnosis and for charater-
izing the performance increases the usefulness of image
analysis considerably.

A APPENDIX
A.1 Uncertainty of the Camera Center

Let the projection matrix be partitioned in the classical way

P = (H | − HZ) = (H |h).



Figure 5: Superimposition of an image and the associated
drawing of the scene. Again, the ground plane is not lo-
cated on the actual ground, but at the top edge of the con-
crete foundations.

Then the projection centerZ fulfills

h + H Z = 0 or explicitely Z = −H−1 h.

From total differentiationdh + dH Z + H dZ = 0 we
obtain withZ = (ZT, 1)T and vec(P)T = ((vecH)T,hT)
the differential

dZ = −H−1 dHZ − H−1 dh

= −(H−1 ⊗ZT) vec(dH)− H−1 dh

= −H−1 (I3 ⊗ZT | I3 ⊗ 1) vec(dP) = −H−1 (I3 ⊗ ZT) vec(dP)

= −H−1 (ZT ⊗ I3) vec(dPT) = −H−1 (ZT ⊗ I3) dp

from which the covariance matrix

ΣbZ bZ = H−1 (ZT ⊗ I3)Σbpbp (Z⊗ I3) H−T

follows.
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