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ABSTRACT

In this paper we present a new method for single image orientation using an orthographic drawing or map of the scene.
Environments which are dominated by man made objects, such as industrial facilities or urban scenes, are very rich of
vertical and horizontal structures. These scene constraints reflect in symbols in an associated drawing. For example,
vertical lines in the scene are usually marked as points in a drawing. The resulting orientation may be used in augmented
reality systems or for initiating a subsequent bundle adjustment of all available images.

In this paper we propose to use such scene constraints taken from a drawing to estimate the camera orientation. We use
observed vertical lines, horizontal lines, and points to estimate the projection matrix P of the image. We describe the
constraints in terms of projective geometry which makes them straightforward and very transparent. In contrast to the
work of (Bondyfalat et al., 2001), we give a direct solution for P without using the fundamental matrix between image
and map as we do not need parallelity constraints between lines in a vertical plane other than for horizontal lines, nor
observed perpendicular lines.

We present both a direct solution for P and a statistically optimal, iterative solution, which takes the uncertainties of
the contraints and the observations in the image and the drawing into account. It is a simplifying modification of the
eigenvalue method of (Matei and Meer, 1997). The method allows to evaluate the results statistically, namely to verify
the used projection model and the assumed statistical properties of the measured image and map quantities and to validate
the achieved accuracy of the estimated projection matrix P.

To demonstrate the feasibility of the approach, we present results of the application of our method to both synthetic data
and real scenes in industrial environment. Statistical tests show the performance and prove the rigour of the new method.

1 INTRODUCTION in many industries. These documents are created during
the design process, and they are used and completed by

Many tasks in computer vision and photogrammetry rebuilders. Furthermore, drawings are referred to on a daily

quire prior estimation of a camera’s orientation and calbasis for maintenance and update of buildings and facili-

ibration. This problem has been well investigated in theli€S- It is therefore quite advantageous to use these doc-
past by many researchers (Faugeras, 1993, Kanatani, 19981€nts. [n practice, many have taken advantage of such
Klette et al., 1998, Faugeras and Luong, 2001). Most Ofiocqments to find some referepce points in order to regis-
these methods use point and line correspondences betwe&h Virtual and real world coordinates.

the images and/or calibration patterns to estimate the Cam- i baper we aim at providina methods for direct sin-
era’s intrinsic and extrinsic parameters. However, camerg pap P 9

oo . : le view orientation using these commonly available doc-
calibration may be more reliable and easier to carry ouf g Y

if further scene constraints are taken into account. Scem{}”ems' We use vertical lines, horizontal lines, and points

which are dominated by man made objects are usually ver trgisrﬂrsnierl\t(taetr?ssporgjergt'le(:):ti\r/rf]eatfcc)rxgﬁrdsvshﬁgr? ?ntglfegotﬂ-em
rich of such constraints. For example, urban scenes oOfr, broj 9 y

scenes in industrial environment contain lots of verticaIStra'ghtforward and very transparent. In contrast to the

and horizontal structures (see Fig. 1). Many works in com%?fﬁﬂé%&?ﬁé’ﬂ?ﬁéi? Eitlr;ézfagégn\i\;en tgell;lagtg:(rigtvsvg:r;

puter vision and photogrammetry literature exploit theseima e and mab as WS do not need parallelity constraints

constraints by using vanishing points for recovery of cams 9 X P . P Y ;

era orientation (Caprile and Torre, 1990, Wang and Tsaibetween lines in a vertical plane other than for horizontal
X ' lines.

1991, Youcai and Haralick, 1999, van den Heuvel, 1999).
Here, we propose to take advantage of horizontal and Velie present both a direct solution fBrand a statistically

tical structures in conjunction with a map or drawing of optimal, iterative solution, which takes the uncertainties of

the scene. Itis import_ant to note that Very often such Mabthe contraints and the observations in the image into ac-
or drawings are readily available. Drawings are with NOLount. It is a simplifying modification of the eigenvalue

doubt the most important and commonly used dOCurT‘entfhethod of (Matei and Meer, 1997). The method allows to

“This work was done while M. Appel was with the InstitiirfPho- ~ €valuate the results statistically, namely to verify the used
togrammetrie, Universit Bonn projection model and the assumed statistical properties of




of a 3-vectorx in order to represent the cross product by
axb =S(a)b = —b x a = —S(b)a. We will use the
vec-operator collecting the columns of a matrix into a vec-
tor, thus ve& = vedai, as, ...) = (af,al,..)7, and use
the relation

veqABC) = (A® C")veqBT) = (CT @ AjvedB (1)

with the Kronecker produdh ® B = {a,;B}.

2.1 Geometry

We mainly follow the representation of projective geome-
| try as introduced in (Hartley and Zisserman, 2000). Hence

== we represent points and lines both in 2D and 3D by homo-
/;/mf/ ‘ geneous vectors. We write 2D pointsas= (u,v,w)"
L e —— and 2D lines a3 = (a,b,c)". Lines in 2D can easily be
“{f‘;‘ i i constructed from two points Hy= x x y and the incidence
! constraint of a point and a line is given 1 = 0. We
only need points in 3D, they are represented analogously
by X = (U,V,W,T)T.
We can write the projection of a 3D poil into an image
pointx image plane as
Figure 1: Image of a high voltage switch gear and the as- PI
sociated drawing. Many horizontal and vertical structures x=PX = Pg X=(32X")p 2
occur in the image, which correspond to lines and points in =

the drawing.
with p=veqP") = (P,Ps,P3)T,
the measured image and map quantities and to validate the
achieved accuracy of the estimated projection méarix whereP is the3 x 4 projection matrix,Pl.T its rows, and
p = veqP") its vector version. Note that due to its homo-

The rgsult of such an image-drawing (_)rientation may b eneity, only 11 of its elements are independent.
used in augmented reality systems or just as approximate

values for a subsequent rigorous bundle adjustment usingnajogically, we can write the parallel projection yielding

all available images. the drawing (cf. fig. 1)

The remainder of this paper is organized as follows: After 100 0
introducing notation, geometric relations and statisticales- a4 _ pdx  ith PpPi—| 0 1 0 0
sentials in section 2, we describe the scene constraints in 00 0 1 ’

terms of projective geometry in section 3. In section 4 we

provide both an algebraic solution fBrand a statistically

optimal one, along with statistical tools for self-diagnosis.

Experiments on synthetic and real data are presented iRducingz? = (z,y)".The task is to derivé from ob-

section 5. We finally conclude in section 6. served pointsc andx? in the image and the drawing and
further constraints from the interpretaion of the drawing.
Straight lined in the image always are assumed to be de-

2 MATHEMATICAL FOUNDATIONS rived by two measured pointsandy, the same holds for
lines in the drawing.

First, we briefly describe the represention of geometric en-

tities, the assumed representation for uncertain geomeg-2 Statistics

ric entities, basic error propagation, estimation and testing

techniques used later in the paper. Estimation with linear constraints:  All constraints will

. ) have the form
Notation: We denote coordinate vectors of planar geo-

!
metric objects with small bold face letters, e.@, in 3D Aly)p=e=0
space with capital bold face letters, e. §.. Vectors and whereA is a matrix depending on measurements collected
matrices are denoted with slanted letters, thus R. Ho-  in the vector of observationg, andp is the vector of the
mogeneous vectors and matrices are denoted with uprighihknown elements of the projection matrix, appearing lin-
letters, e. gx or A. We use the skew matri®(x) = [x]x  ear in the constraints.



where the JacobiaA = A(y) andX__'needs to be evalu-
ated at the fitted values.

z
scene
X4 image In case the assumed model holfisis y% distributed with
R degrees of freedom, whete is the redundancy of the
Vit X3 system:
T L R=G-(U-1
1 1 | 1 : Y - ( )
mﬂg which is the number of independent constraints minus the
1 X, =
X |g 3 4 number of unknown parameters, here 11.
ud =|d

1 1 drawing . .
Assuming the test has not been rejected, we may use the

Figure 2: Relation between scene, image and drawinggstimated covariance matrix of the estimated parameters
Vertical line L, passing through poirltJ;, maps tol¢ =

u‘f..Ho_rizontaI lineL, has the same vanishing point as its f;bb =52 (ATEeeA)JF, with
projectionly.

o (2

0y = E? (4)

to evaluate the obtained accuracy of the parameters. The

Minimizing the Euclidean distance efand0 calculation of the pseudo inverse can make use of the known
nullspacep of the matrix. In case the geometric constraints
e'le=p'ATAp under Ip| =1, hold, one can conclude that the observations have a stan-

dard deviation which is larger by a factor &f.

leads to the well known algebraic solution

T Further, we could use the covariance maﬁ% to predict
A"Ap = Ap, the reprojection error:

namely the right eigenvalue éX. fhab T XT)f)bb(Ig o XT)T + ISEXXI3T 5)

The statistically optimal solution instead of the Euclidean N .

distance minimizes the Mahalanobis distance ahd0 using (2),x = PX, and taking the uncertainty of both
andX into account.

e'S le=p 'ATS 'Ap under |p|=1.

. ) ) Or one could determine the covariance maﬁigb of the
Here the covariance matrix of the residuals= e(y, p)

. o N P s
can be obtained from error propagation - estimated projection centéf = —H hfromP = (H|h) =
de(y. ) (H| — HZ) (for the derivation cf. appendix):
. e(y,
Eee = B(ya p)zyyBT(Y»p) with % = B(yv p) o~ ~—1 5T ~ ~ ~—T

It can be shown (see @Fstner, 2001)) that the solution can

; . > This uncertainty may be compared with some specification
be obtained iteratively from ymay P P

coming from the application.

o)

[A@W)T(zee >1A<y>} PO+ = Ap(+D)

3 SCENE CONSTRAINTS

using In the following we derive constraints between measurable
guantities in the image on one hand and the map and the
s¥_ (B(ﬂ(”), ™)) =, BT@(”),ﬁ(”>)) ’ unknown projection matrix on the other hand.

where we need the fitted valu§f the observations: 3.1 \Vertical Lines
 _(i—-s BT (B> BT -1 B We first turn our attention to vertical structures in the scene.
Yi = 17 B ( iSyyPi ) i) Yis Man made objects are very rich of such features, one may
think of buildings, all kinds of technical installations, etc.
and where the Jacobi@ = B(5"” ", p~1) has to be

evaluated at the fitted values of the previous iteration- ~ Observations;,i = 1, ..., I of vertical linesL; in the im-
1). age reflect as a point coordinate in the drawing, Bay=

(x4, y4);. Two 3D-pointsU; and V,; on the same verti-
Selfdiagnosis and performance characteristics: There- cal line, therefore, only differ by their third component (cf.
sult can be evaluated based on the optimal value of the Mdig. 2). Thus, the vertical line is fully characterized by two
halanobis distance points

Q=¢'2_'e=p'ATS_'Ap ~ x4, U, = (X,Y,Z,,1)] and V,;=(X,Y,Z,1)," (6)



whereX; = z¢ andY; = y¢. The twoZ-valuesZ; and  be corresponding to a point element in the drawg =

Z5 may be arbitrarily chosen, however, for reasons of nu{Uy, Vi, Wy, Ti.)T. Both points are linked by projection
merical stability they should be chosen within the range obuch thai; = PX}, holds. Thus, we obtain the constraints
the heights, e. g. the minimum and maximum height in the

scene. X X PXj

In general, for the projection of a 3D point on the im- or S;.PXy=-Spx.xr =1

age, sayk; = PX;, which lies on a lind; in the image, or (S, ® X{)p =, oo
liTxi = li’TPXZ» = 0 should hold. Hence, two points on a
vertical line provide us with two constraints on the projec-Only two of these constraints are independent. As the mea-

tion matrix. We have sured points are finite, the first two constraints are guaran-
TPU. ' T o UT ' teed to be independent. Thus, we use the two constraints
4 'J=e =0 or i 4 =e; =0.
(IIPVi) L (L—T@VZ) L = = !
(7) SLk PXk = —SpXka =€ = 0 (9)

Thus, the two residuals; of the constraints should vanish. or (gzk @ X;—)p — e, Lo
Introducing a third point constraint on the same vertical . h
line would not add any information since the line is al- Wit
ready fully defined by two points. When adding a third ( T )

S, = (

constraint, the rank of the matrix on the left hand side of S,, = u%

Uy

0 —Wg Vg
W 0 —Uu >’ (10)

(7b) would not exceed two.

3.2 Horizontal Lines wherew; is thei-th unit vector.

Besides vertical lines, horizontal lines are frequently ob-3.4 Other Constraints
servable features. In this case, observed lines in the image

correspond to lines in the drawing. In (Bondyfalat et al., 2001) additional constraints are ex-

oited and used to constrain the fundamental mé&téxd

he projection matrix: Observing parallel lines in a given
plane, leads to constraints which are linear in the elements
of F but quadratic in the elements &. In our scheme
we, therefore, cannot include them in the same manner.

Let the line in the drawing be defined by two measure
pointsx{ andy¢. The point at infinity of that line iy " —

xJ7,0). As the point at infinity of a line does not depend
on its position we obtain the point at infinity of the 3D-line

as R. However, parallel lines which are in the horizontal plane
yd — xd S]- are likely to be contained in the drawing and parallel lines
Xooj = ( J 0 I ) = Oj . not being horizontal or vertical are not very likely to be

2x1 0 present at the object. The same argument holds for observ-

ing two orthogonal lines in a given plane. Not using these
Actually R; and S; are the coordinate differences of the two types of constraints, therefore, is practically accept-
two points defining the direction of the line in the drawing. able and gives the way for a direct and an optimal solution

of P.
The observed lind; should pass through the image of

X i, NamMelyPX . ;, known as the vanishing point. Hence,
we obtain 4 ESTIMATION OF P

T'PX.;=e; =0 or (,®Xu;) p=¢e; =0, (8 -

We propose to use a two step procedure to estifaien-
only constraining the first two columns Bf They do not ilar to (Matei and Meer, 1997). In the first step we solve
have any influence on the third and fourth columnPof  directly for P using the classical algebraic solution. In the
In fact, by providing a line in the drawing, we only define second step we take the uncertainties of all measurements
the direction of this line. We are neither constraining theinto account in order to obtain a statistically optimal solu-
line’s height nor can we use the horizontal position of thetion.
line. Therefore, we also may use contourshofizontal
cylinderswith a given direction. 4.1 Direct Solution

3.3 Observed Points

In order to obtain a first estimate fé we integrate all
The third type of scene constraint we consider in this papegonstraints into a system of equations and solve in a least
is the observation of points in the image which are markegdquares sense.
as points in the drawing, which is the classical setup of es-
timating the projection matrix from points. Let the obser-Writing the constraints fof = 1, ... I observations of ver-
vation of a point feature in the image, = (ux, vy, wx)"  tical lines,j = 1,....J horizontal lines, andt = 1,... K



points in a system of equations, we obtain: with 0« = oxa. The second covariance matrix is taken

for points with fixed heights.
a; U] b Ul U]

VT bVT VT The points in the image are measured with a different ac-
e ‘e e Py curacy. We assume the same simple structure of the distri-
anIOj ijIoj CjXIoj Py bution:
0 —wpX] o X] Ps 1 00
_ 2

wi Xy 0 —up X} a1 X~ Ny, Ber), whereS,, = o 8 (1) 8 . (12)

1] @UT

T T .
LoV _ ez_ Lo 2D-lines: Original measurements in the image as well as
17T. ® Xl—oj P=1 9% | = in the drawing consist of points only, points at infinity and
_— ©k lines are treated as derived entities.

Following standard error propagation methods, we obtain
the matrix being of sizé27 + J + 2K) x 12. The solution  the uncertainty of an image (or a drawing) lihe xxy =
which minimizesy_, |e;|* + 3=, |e;|* + >_, lex|* isthe S,y = —S,x by
right eigenvector.

I o' al o\’
Note that_almost any combination of scene constraint; may = ay “v \ gy + ox "\ ox
be used in a way that the overall number of constraint is T T
; = 5;3,,S, +Sy3::S
equal to or greater than 11. However, at least two point ob- T Hyy Oy y Sz Sy

servations in different heights have to be provided in orde(NhiCh with (12) yields
to fix the vertical origin and the vertical scaling.

2 0 —T1— Y1
The solution may be changed by arbitrarily weighting thes:;;, = 52 0 2 —Zo — Y2
individual constraints, therefore, it definitely is not opti- —x1 —y1 —T2—y2 Y1°+ w1 4y 4 2
mal.

assuming stochastic independenc& aindy.

4.2 Uncertainty of Measurements . o . . .
y Point at inifinity: ~ The pointX ., has covariance matrix

For achieving an optimal solution we may want to take the | 0
uncertainty of the measured entities into account. These Sxox. =202, 22 2x2
are the pointse?, x4, y? i o L9, L0

pointsey, x5, y§ and X;, from the drawing and I%2  9%2

the pointsey, from the image. We, therefore, have to make

assumptions about their uncertainty, or — better — derive it . _ L
empirically. 4.3 Jacobians for Optimal Estimation

We now provide the Jacobiars (y;) andB;(y;, p) for

In our investigation we adopt the following assumptions: L ;
9 P 9 P the individual constraints.

Points in the drawing:  We assume the pointsinthe draw-, 4 ) qpcorved Vertical Lines We have the vectay! =
ing to be measured independently with equal accuracy in't™™ - - S
both coordinates: Therefore. we assume their homogene%’h x¢") of the measured entities, relevant for vertical lines.

& T ;
coordiante vector to be normally distributed with erefore, we obtain from (7)

Ai(y;) = AL, zf) = o < rovr )
Xd ~ N(IJ’;pd> Exdxd)a Wher@mdzd = o':?:d P Z Z

O O
o= o
o O O

The other Jacobian can be obtained by

d 8ei 8ei 861' 8UZ
In case we know the height of a point from the drawing, we Bi (¥ P) = Bi(li, 7, p) = oy, <3li ' 9, am(_z)
assume it to be defined with the same accuracy. Therefore, ToT T ’ T !
the uncertainty of the 3D-points taken from the drawing U;p P(|2292)
are characterized by: |\ vIPT IZTP(|2202)T

X

X%~ N ) , _ ,
* (P, Bxaxa) using the JacobiadU,/0x¢ from (6). Note that we here
1000 1000 only considerl; and the coordinate¥ = z¢ andY =
Syaxa = o'g(d 8 é (1) 8 or = Jg(d 8 (1) 8 8 yf_on the drawing as unqertain. 'The. heights of the 3D
points, Z; and Zs, may be fixed arbitrarily and, therefore,
0000 0000 are treated as deterministic values.



4.3.2 Observed Horizontal Lines We have the vector 5.1 Synthetic Data
y; = (1], X1 ;) as uncertain observations. We, therefore,

obtain from (8) In order to guarantee realistic test conditions we use geo-
de. metric dimensions which come very close to those given in

Aj(y;) = A1, Xoj) = 87] =L ® X)), the real data experiments in the following section. We use

p a drawing of 400x 400 pixels, the camera is placed off
and the drawing at approximatel{252, —222, 108)[pixel] and

has a viewing angle of approximately 50 degrees. We gen-

B,(y;,p) = Bj(l;,Xooj,p) — % _ (XIOJPT : IJT_p) . erate uniform distributed points on and above the ground,
dy,; vertical lines, and horizontal lines. We may then project all

features into the camera, using a known realistic projection

4.3.3 Observed Points We have the vectag] = matrix, to have an ideal set of observations.

T.XT) as uncertain measurements. Therefore, we ob- o . .
t(;i]r? frbmk()9) ’ As afirst indication for correctness of the estimated covari-

ance ofP, Xy, we compare the estimated back-projection

Oe, = T error of a 3D point with its true covariance under well de-

A (i) = Ar(xr, Xi) = op Say, @ X fined noise conditions. Therefore, we estimate the pro-

i jection matrix from randomly perturbed observations, and

The other can be obtained by back-project a perturbed 3D point using the estimated pro-
dey, _ _ jection. Using a perturbation ef; = 0.5[pixel] for obser-
B (xx, Xk, P) = Ju. = (*prk ; Sxkp) . (13)  vations from the drawing, and;, = 1.2[pixel] for image
Yk features, we repeat the estimationPf = 5000 times

This holds for arbitrary point correspondences. using 10 vertical lines, 10 horizontal lines, and 10 points.

The resulting Gaussian distributed point cloud is depicted

4.4 Optimization function in Fig. 3. The experiment shows that the predicted 90%

] ] ) confidence region from (5) and the empirically obtained
Using the assumed covaraince matrices for the observeghe are very close. Using the same setup, we now consider

entities and the derived Jacobians, we can derive the Cene Mahalanobis distance between the estimated projection
variance matriceX, ., X, ,, and¥,, ., of the constraints’ parameters and the true orngs

residualse;, e; andey, as given in (3).

~ ~ 112 _a ~ TA+ ~ ~
We now have all components at our disposal necessary to b= Plls,, = (P~ D) Epp(p —P)

estimateP. Thus, we need to solve iteratively ) o i
If the model is correct, the Mahalanobis distancecfs

distributed, since the projection matrix has 11 degrees of
i freedom. The histogram in Fig. 3 shows the distribution of
[ZAiT@EV)) (gi"i) Ai(y;) the Mahalanobis distance based on 1000 experiments. The
. o comparison with the analytically plotteg?, distribution
shows good conformity.

+
~(v a@)
zj: I Y e 5.2 Real Data
+
+3 AL@Y) (§£:1k> Ar(yy) }ﬁ(”“) =xp™, A large field of application for the presented pose esti-
& mation method is as-built reconstruction in industrial en-
vironments. Therefore, we chose images of a high volt-

wherep contains the unknown parametersofThe itera-  29€ Switch gear and the associated top view drawing to
tion can be initialized by results from a direct estimation ofd€monstrate the feasibility of the algorithm. The drawing
p as in (11), which is equivalent to settidg, .. = 3. .. has a dimension of 12220 pixel. Its scale [pixel]:[m]

o - is 1:0.012, i. e. 1 pixel is equivalent to 12mm in the real

= X, = |. The fitted observationg,, ¥, andy,, are ) . .
initialized by the actual observations in the image and thd/0rld. The images have a size of 15801018 pixel. We
drawing. select feature points and lines in the image and in the draw-

ing with a standard deviation of 1 pixel and 0.5 pixel, re-
spectively. We assume that the selection process itself on
5 EXPERIMENTS the drawing does not have any uncertainty, since drawings
are in general vectorized documents. However, drawings
In this section we describe the experiments conducted treflect the as-built situation only up to a certain accuracy.
evaluate the characteristics of the presented method. Wa our case, the drawing depicts the real world installation
first show the correctness of error prediction by testing theip to approx= 6mm, which results in the mentioned stan-
method on synthetic data. Then, the practical usabilitydard deviation.
of self-diagnosis tools is demonstrated by showing results
of application to images and a drawing of a high voltageAs observations in the image we select 6 vertical lines, 5
switch gear. horizontal lines, 3 points on the ground and 2 above. Once



6801

676}
Z
>
672}
60874 878 fpixel 882 886 = . | .~ :
u |pIXe 3 P =
0.1r — Chi Square Distribution —_— & == M=
A\ | [ Histogram of Mahal. Dist. Figure 4: Uncertainty of projected 3D points. The el-
% a (1000 Experiments) lipses show the covariances of 3D points on the ground,
I and points above of each in heights of 100, 200, and 300
z pixels. The ellipses are plotted magnified by a factor of
n 10 for better visibility. In this case, the ground plane is
0.05 / not located on the actual ground, but at the top edge of the
concrete foundations.

/ drawing. In this case, the camera’s principal axis is roughly
parallel to theY -axis of the drawing. Due to the fact that
the intrinsic parameters, in particular the principle distance

00 20 ¢, is estimated, this appears to be a reasonable result and is

fully acceptable in many applications. For augmented real-
Figure 3: Top: Back-projection of a 3D point using es- ity application_s, it is very useful_to superimposelthe image
timated projection matrices. The projection is estimate®f an installation and the associated drawing. Fig. 5 shows

based on randomly perturbed observations in the imagg|UCh an overlay resulting from application of our method to
and in the drawing. 5000 samples are taken to obtain th nother scene. All information contained in the drawing is

empirical 90% confidence region (solid), which is very irectly connected to Fhe respect_ive comp_onentsin_the real
close to the predicted one (dashed) from (Bottom: world. At the same time, blending drawings and images

The Mahalanobis distance of the estimated projection meEn Pe used as a visual accuracy check of the projection

trix and the true projection matrix ig?, distributed. The ~Matrix.

histogram represents the distribution obtained by 1000 ex-

periments on perturbed data. The curve indicates the tru@ CONCLUSION

X3, distribution. The mean Mahalanobis distance is 10.87,

compared to 11, which is statistically not different. We presented a new method for single image orientation
o A~ ) ] using scene constraints in conjunction with a drawing of

the projection matrbP and the associated covariance Ma-ihe scene. We use vertical lines, located in the drawing or

trix pp are estimated, we can obtain the uncertainty othe map, the direction of horizontal lines, which may also

any 3D point projected in the image. To visualize this, wepe contours of cylinders, and points. Besides a direct so-

select 3D points on the ground plane and points above qfition, we provided a statistically optimal estimation pro-

each, in heights of 100, 200 and 300 pixels. The uncertaircedure for the projection matriR. This allows us to ver-

ties of their projections are shown in Fig. 4. Note that theify the results statistically, in particular to test whether the

ellipses are plotted magnified by a factor of 10 for betteflassumed noise model is correctly chosen. We applied the

visibility. method to synthetic data to validate the correctness of error

rediction. Statistical tests on experiments using real data

howed that good results can be obtained using a compara-

ina th . v hold | dtively small number of constraints. The availability of this
Ahssuhmmg t g cgndstre.un.ts acftur? y hold, we can concludg ne of statistical tools for self-diagnosis and for charater-
that the standard deviation of the measurements are Worgg, o ihe performance increases the usefulness of image

by a factorg? = 1.25, which practically confirms the as- analysis considerably.
sumed standard deviation. An indicator for characterizing

the accuracy of the estimated projection mAatrix is the Uny  APPENDIX
certainty of the camera’s center of projecti@n(cf. A.1).
Computing the standard deviations for the camera center
the image shown in Fig. 4, we obtain standard deviationg o the projection matrix be partitioned in the classical way
of ox ~ 11mm, oy ~ 37mm, andoz ~ 10mm, where

the indicesX, Y, andZ indicate the coordinate axes of the P=(H| -HZ)=(H|h).

Self-diagnosis can be bound to the estimated variance fa
tor 5§ (cf. (4)). Here we obtaig§ = 1.5, thuss, = 1.25.

ééf.l Uncertainty of the Camera Center
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Then the projection centef fulfills
h+HZ =0 orexplicitey Z=—-H 'h.

From total differentiationdh + dHZ + HdZ = 0 we
obtain withZ = (Z7,1)T and ve¢P)" = ((vecH)T,hT)
the differential

dZ =-H'dHZ —H 'dh

= (H'®Z")veddH) — H ' dh
=-H'(I50Z"|ls®1)veddP) = —H ' (I3 ® Z") veq(dP)
=-H'(Z"®Il3)veddP") = —H™ ' (Z" @ 13) dp

from which the covariance matrix
Spp =H ' (ZTR13) Zpp(Z@ 13)H T

follows.
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