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ABSTRACT

In this paper we report on a system to extract 3D information from oriented digital facade images using various feature
extraction/matching methods. We emphasize on 2D feature extraction from digital images including contour chains, line
segments and vanishing points. The extraction of 3D primitives is based on line matching over multiple oriented views
and 3D plane detection by a line grouping process. TheMetropoGISsystem is designed for the automatic extraction of
3D data from facade images.

1 INTRODUCTION

This paper describes a work flow for the extraction of 2D
features from digital photographic images of building fa-
cades and a method for 3D reconstruction using features
originating from multiple views.
The process of feature extraction is one of the most impor-
tant tasks of a modern computer vision system. It reduces
the amount of data to be processed, and also increases the
robustness and accuracy of measurements in digital im-
ages. Most geometric features are detected by extracted
edge information, thus they rely heavily on the results of
the previous edge extraction methods. In order to correctly
group edgels, the images must be free of lens distortion. To
achieve this, image distortion is corrected in a preprocess-
ing step by resampling all images with the parameters of a
previous offline camera calibration. The paper deals with
two types of geometric features: low level image features
and derived high level image features and 3D primitives.
The low level image features are:

• edgels,

• contour chains, and

• line segments.

High level image features and 3D primitives are:

• vanishing points

• 3D lines, and

• 3D planes.

This ordering also reflects the complexity of the geometric
primitives. In our work we concentrate on 2D lines since
lines are the most prominent features detected in facade
images. The process of line extraction is done in several
steps and with several different approaches. Methods used
in this context are line fitting to contour chains, advanced

line extraction using the information of previously detected
vanishing points and merging of the results from different
methods. In order to estimate the 3D coordinates of the 2D
line sets we apply a method proposed by Schmid and Zis-
serman [11] which allows a reliable matching of 2D line
sets from multiple, oriented views of a 3D scene. The 3D
lines together with a dense point set obtained from an im-
age matching algorithm are then used to detect planar ob-
ject regions.

2 RELATED WORK

Our work can be related to similar approaches that also
cover the whole data acquisition process, from the raw dig-
ital facade images to a piecewise planar description of the
depicted objects. The feature based methods are compara-
ble to the ones described by Zisserman et al. [17], Schmid
and Zisserman [12] and Schaffalitzky and Zisserman [10]
where an emphasis is put on the automatic extraction of
planes from architectural images. The detection of vanish-
ing points using previously extracted lines is similar to the
approach of van den Heuvel [14] where the location of the
detected vanishing point is also used to adjust the orienta-
tion of the line segments.

3 OVERVIEW OF OUR WORK FLOW

The work flow of our proposed system can be split into
three sections:

1. Image Preprocessing: In this step a resampling is
done to compensate for any lens distortion. The lens
distortion and intrinsic parameters are determined of-
fline with an automatic calibration process described
by Heikkil”a [3].

2. 2D Feature Extraction: This step includes edge and
contour extraction, 2D line fitting on the extracted
contours, detection of vanishing points using the pre-
viously extracted 2D lines, advanced line extraction
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Figure 1: Sketch of the work flow: On the left side the feature extraction work flow is visualized, on the right side the 3D
modeling pipeline is depicted. The grey shaded areas are discussed in this paper.

using the vanishing points, and a final merging of all
extracted line segments.

3. 3D Reconstruction: In this process we match the 2D
line segments from multiple views to 3D line seg-
ments, apply a dense matching algorithm to recon-
struct an unstructured 3D point set and fit planes to
the points and lines.

Figure 1 shows the proposed work flow: the feature extrac-
tion process is depicted on the left side, the 3D modeling
work flow on the right side. The input data are digital fa-
cade images, which have been corrected for lens distortion,
and the orientations of all images.

The following section gives a detailed description of the
different steps of the work flow.

3.1 Line Extraction

The extraction of 2D line segments is based on a RANSAC
approach followed by a least-squares fitting. The input
data for the primitive extraction are contour chains extracted
with the method described by Rothwell [8]. This algorithm
yields contour chains at sub-pixel accuracy.

For all contour chains collinear sections are searched with
a RANSAC approach by Fischler and Bolles [2]: Pairs of
points on the contour are picked at random and each dis-
tinctive pair forms a hypothetical 2D line. The number of
inliers, i.e. points that support the hypothetical line up to
a small perpendicular threshold, is counted for all point
pairs. The point pair with the highest number of inliers is
considered the best hypothesis for a line segment and the
inliers are used for a least-squares fitting in order to opti-
mize the line parameters.

The lines extracted by this approach are then fed into a
global merge process in order to link collinear lines origi-
nating from different contour chains.

3.2 Vanishing Point Detection

Figure 2: Lines converging to three vanishing points for a
typical facade image.

If lines which are parallel in 3D object space are projected
with a perspective camera, they form a vanishing point
(VP). The VPs are points in the (infinite) image plane where
the projected lines intersect, for an illustration see Figure 2.



The location of the VPs depends only on the relative rota-
tion between the camera and the direction of the 3D lines.
The location of vanishing points in image sequences can be
used to compute the relative rotation between image pairs
adapting a photogrammetric standard method described by
Kraus [6].

α
M

i

l
s

I

image plane

s
s

I,2

s
I,1

Figure 3: Orientation of a line segments vs. the direc-
tion towards the potential vanishing pointI (the intersec-
tion point of the segmentssI,1 andsI,2). The angular dif-
ferenceα and the lengthl determine the contribution of
the line segments to the weight of the potential vanishing
point I.

VPs are detected using either edgels or previously extracted
2D lines. Among the various methods proposed for detect-
ing VPs the Hough transform approaches by Tuytelaars et
al. [13] and Rother [7], a statistical approach described by
van den Heuvel [14] and a RANSAC approach described
by Schaffalitzky and Zissermann [10] have been investi-
gated.

In our system we use Rothers method because of its sim-
plicity and robustness. The VPs are detected by applying
an algorithm similar to the Hough transform [4], where the
image plane is directly used as accumulator space. The
input data for the algorithm are line segments that are ex-
tracted in a preprocessing step. For all extracted line seg-
ments in the image, the mutual intersection points are com-
puted. These points are then used as accumulator cells.
Each intersection is treated as apotential vanishing point
and the votes for each cell are determined by testing against
all other line segments. Figure 3 shows a line segments of
lengthls with the midpointMi. The supportw(s) of s for
the intersection pointI of the line segmentssI,1 andsI,2 is
calculated as follows:

w(s) = k1

(
1− αs

αmax

)
+ k2

ls
lmax

(1)

whereαmax is the threshold for the enclosed angle be-
tweens and the directionMiI. If a line segment exceeds
this maximal angle it does not vote for the respective inter-
section.lmax is the length of the longest line segment and
k1 andk2 are set to0.3 and0.7, respectively (following
Rothers suggestion). The total vote for intersection pointI

in a setS of line segments is given by:

W (i) =
∑

∀s∈S: αs≤αmax

w(s) (2)

This voting process is applied to all intersections, the in-
tersection point with the highest weight is selected and
the inliers w.r.t. this point are determined. In practice the
extracted lines are split up into an approximately vertical
and an approximately horizontal line-set in order to speed
up the computation. We assume that in typical architec-
tural scenes one VP for vertical segments and one or two
VPs for horizontal lines exist. Figure 2 shows a facade
image where the extracted lines are elongated to illustrate
the clustering of intersections in the vicinity of vanishing
points.

3.3 Advanced Line Extraction

The location of the VPs can be used to extract more line
segments pointing to them.

The approach for our advanced line extraction is based on
four steps:

1. edge extraction with coarse edge selection

2. line segment detection by sweeping over the edgels
(using the known VPs)

3. elimination of redundant line segments by grouping

4. least-squares estimation of line parameters

In the first step an edge extraction is performed using a low
gradient threshold in order to detect weaker edgels, too.
The usually huge amount of extracted edgels is reduced
by taking advantage of the restriction of the search space:
only the subset oriented towards one of the VPs is kept for
the advanced line extraction approach.

In the following grouping step sets of collinear edgels are
detected by a sweeping process. A sweep line is formed
by the VP and a sweep point. The sweep point is moving
along the image borders in order to cover the whole edgel
set. The sweep-range is therefore determined by the outer-
most edgels in the image plane, as seen from the VP. All
edgels are sorted according to their polar angle w.r.t. the
VP. This allows to easily determine the a set of candidate
edgels for a discrete sweep line: if the sweep line has the
polar angleαl, only the edgels with a polar angle ofαl± ε
have to be tested.

All edgels within a perpendicular threshold from the sweep
line form the set of inliers and dense subsets are connected
to chains and stored as potential line segments.

Figure 4 shows the scenario: all edgels within the search
range (light gray area) are tested for their perpendicular
distanced to the sweep line. Edgels within the distance
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Figure 4: Illustration of line sweeping around the sweep
line (line from vanishing point to the sweep point). A tri-
angular search space (light gray area) containing the edgels
roughly oriented towards the VP is intersected with a rect-
angular region (dark gray), which satisfies the perpendicu-
lar distance criterion.

threshold (dark gray area) are considered inliers and used
for the line detection process.

The discrete step angle of the sweep line is determined
from the distance threshold for inliers (see also Figure 4).

All valid edgels are sorted according to their distance from
the VP and line segments are formed from those subsets,
which contain a minimum number of collinear points and
also fulfill a density criterion. The density criterion sim-
ply enforces that only small gaps are allowed between the
edgels forming a line segment. During the sweeping pro-
cess many line segments are detected, but most of them
are redundant. We thus take the strongest lines, i.e. those
with the highest inlier count, and assign edgels of neigh-
boring and overlapping segments to them, resulting in new
endpoints for the segment (see illustration in Fig. 5). The
remaining segments are refined by a least-squares fitting to
the new set of inliers.

reference line
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Figure 5: Illustration of the grouping process: all line seg-
ments inside the valid region (light gray area) are projected
onto the reference line segment (black) and result in new
endpoints for the reference segment.

The performance of the algorithm depends on the num-
ber of vanishing points that are detected in the images. If
two or three vanishing points are available, the number of
extracted lines proved to be significantly higher than the
one delivered by a standard algorithm. In the presented
example the advanced line extraction method yielded 145
percent more lines than the standard approach described
in 3.1. Figure 6 shows the result of the advanced line ex-
traction process.

Figure 6: Detected line segments by the advanced extrac-
tion approach.

3.4 Line Matching

The set of line segments per image together with the known
orientation of the image sequence are the input for line
matching. Our approach closely follows the one described
by Schmid and Zisserman [11]. The result of the line match-
ing process is a set of 3D lines in object space.

Basically the algorithm works as follows: For a reference
line segment in one image of the sequence potential line
matches in the other images are found by taking all lines
that intersect with the epipolar lines induced by the end-
points of the reference line segment. Also lines lying com-
pletely within the beam formed by the two epipolar lines
are taken into account.

Each of these potentially corresponding line pairs gives a
3D line segment (except for those, which are parallel to the
epipolar line, since in this case no intersection between the
epipolar line and the image line can be computed).

The potential 3D lines are then projected into all remaining
images. If image lines are found which are close to the re-
projection, the candidate is confirmed, else it is discarded.
Finally a correlation based similarity criterion is applied
to select the correct line. The method yields a set of ro-
bust 3D lines. Figure 7 shows two views of the extracted
3D line set. Obviously, due to the small vertical baseline
the geometric accuracy of the horizontal line segments is
limited.

3.5 Plane Detection

Once a set of 3D lines has been reconstructed, the previ-
ously detected line segments can be used to detect object
planes. Two strategies are being used and will be discussed
in this section. Note that in both cases we test support
by lines rather than points, because our experiments show
that the accuracy of the reconstructed lines is about 3 times
higher than the accuracy of the points.
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Figure 7: Two views of the extracted 3D line set of the
facade in Figure 6. (a) front view (b) top view

3.5.1 Feature-based Plane SweepingThe principal di-
rection of a building are known from vanishing point de-
tection. We can thus construct a plane orthogonal to each
direction and sweep it along the its normal vector. Plane
positions which get high support by the object lines are
candidates for object planes. The support function for a
planeP is defined as

Sp =
∑

∀ li: di≤dmax

(
1− di

dmax

)
(3)

wheredi is the deviation of lineli from the plane anddmax
is a threshold which separates inliers w.r.t. the plane from
outliers.

The plane parameters for the detected planes are then com-
puted with a least-squares fit to the line segments’ end-
points.

3.5.2 3D Hough Transform Obviously the sweeping
method will miss any plane, which is not normal to a prin-
cipal building direction. For such cases a more general
plane-detection algorithm is needed. The 3D Hough trans-
form has been proposed for similar applications, e.g. by
Bian and Yang [1] and Vosselman [15]. We have extended

this method to mapping lines to a 3D parameter space:
each straight line in 3D-space is mapped to a line in a 3D
parameter space. The intersection point of several such
lines then gives the parameters of the common plane.

The plane parameters which are given by the Hough trans-
form are not yet very accurate due to the discretization of
the parameter space. Therefore we have to search for the
supporting line segments of each plane. This has to be
done with a larger threshold than in section 3.5.1 in or-
der to be sure to find all inliers in spite of the inaccurate
plane position. The final plane parameters are then com-
puted with a robust least-squares fit to the line segments’
endpoints.

3.5.3 Plane Verification The planar patches are ver-
ified and their borders constructed using a dense set of
matched object points. Many algorithms for dense im-
age matching are available to achieve such an unstructured
point-set, e.g. Koch [5], Sara [9], Zach et al.[16]. We use
the approach of Zach et al. A distance threshold is ap-
plied to the point-set to find the points belonging to each
plane and only planes with a minimum number of support-
ing points are accepted. Up to now we prefer not to repeat
the least-squares fitting with the points, because of their
lower accuracy. Jointly fitting the planes to points, lines
and arcs with different weights for each class of primitive
may be the best solution. Further research is needed to
clarify this.

Using the dense set of matches for plane verification im-
plicitly exploits the gray-value correlation between the im-
ages which have been matched to reconstruct the object
points. In this sense the procedure is related to the plane-
sweeping approach proposed by Zisserman et al. in [17].
However their strategy is entirely based on gray-value in-
formation whereas we explicitly compute low-level fea-
tures in object space from the gray values and use their
coordinates for further computations.

To detect the boundaries of the planar patches the point are
projected onto the plane. The plane is then sampled to a
binary image which is1 for pixels containing points and0
for pixels not containing points. After applying an itera-
tive median filter to remove sampling artefacts the binary
image is segmented and the borders of regions containing
points are mapped back to object space. An example is
given in Figure 8.

4 CONCLUSIONS AND FUTURE WORK

We have presented a framework for robust feature extrac-
tion from facade images and used 2D line sets from multi-
ple views for 3D reconstruction of facades. The line seg-
ment extraction from contour chains and the advanced line
segment extraction using previously extracted vanishing
points result in dense line sets for each image in the se-
quence. The new line segments can also be used to adjust
the position of the vanishing point, especially if the van-
ishing points are used to determine the relative orientation
between two images.



(a)

(b)

Figure 8: Piecewise planar reconstruction of the ’Land-
haus’ court in the historic center of Graz. (a) image from
the recording sequence. (b) detected planar patches.
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