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Abstract 

The paper presents a method for integrating neural networks, GIS and Cellular 
Automata (CA) that can be used in land use planning for simulating alternative 
development patterns according to different planning objectives. Neural 
networks are used to simplify model structures and facilitate the determination 
of parameter values. Unlike traditional CA models, the proposed model does 
not require users to provide transition rules, which may vary for different 
applications. Historical remote sensing data are used as the training data to 
calibrate the neural network. The training is robust because it is based on the 
well-defined back-propagation algorithm. Moreover, original training data are 
assessed and modified according to planning objectives to generate alternative 
development patterns. 
Keywords: neural networks, cellular automata, GIS, urban simulation, urban 
planning 

1 Introduction 

Urban Cellular Automata (CA) have been developing rapidly for the 
simulation of complex urban systems since the late 80s. A number of 
interesting investigations  have been documented (Batty and Xie, 1994; White 
and Engelen, 1993; Clarke and Gaydos, 1998). Urban systems involve spatial 
and sectoral interactions, which cannot be easily adapted to the functionality of 
current GIS software (Batty et al., 1999). CA-based approaches have  
applications in the study of urban and regional spatial structure and evolution. 
Modelling cities with Cellular Automata is a relatively new approach although 
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it has its roots in geography and relates to  the work of Hägerstrand (1965) and 
Tobler (1979) (Clarke and Gaydos, 1998). 

Three main types of urban CA models can be  considered. The first type 
uses CA models to generate  results that can be explained by urban theories. 
These models are used to test ideas and assumptions for hypothetical cities. 
For example, Webster and Wu (1999) present an interesting CA model to 
implement urban theories concerning developers’ profit seeking and 
communities’ welfare-seeking behaviours.  In so doing, they explore the 
mediating effects of alternative systems of land-use rights. The second type is 
to apply CA models for the simulation of real cities. Clarke and Gaydos (1998) 
apply CA models to simulate and predict urban development in the San 
Francisco Bay region in California and the Washington/Baltimore corridor in 
the Eastern United States. White et al. (1997) provides a realistic simulation of 
the land-use pattern of Cincinnati, Ohio. A constrained CA model is developed 
to simulate urban expansion and agricultural land use loss of Dongguan in the 
Pearl River Delta, a rapidly growing area in southern China (Li and Yeh, 
2000). The third type is to use CA to develop normative planning models to 
simulate different urban forms based on planning objectives. Yeh and Li 
(2001) use CA to generate different urban forms, ranging from monocentric to 
polycentric urban development.  These urban forms can be assessed to meet 
selected criteria for sustainable development through minimising agricultural 
land use in an effort to achieve compact development. Ward et al. (2000) also 
develop a constrained CA model which has been applied to an area in the Gold 
Coast, a rapidly urbanising region of  eastern Australia. They demonstrate that 
CA models can simulate planned development as well as realistic development 
by incorporating sustainable criteria in the simulation.   

In the simulation of real cities, model calibration is needed to find suitable 
values of simulation parameters that can best fit actual development. 
Unfortunately, there is no universally applicable method of calibration due to 
the complexity of nature. Another reason is that appropriate methods have not 
been well developed. There are only very limited studies in addressing the 
calibration issues in CA simulation. Wu and Webster (1998) use multi-criteria 
evaluation (MCE) to heuristically define the values of parameters for CA 
simulation. Clarke et al. (1997) consider that visual tests are useful to establish 
parameter ranges and to make rough estimates of parameter settings.  The 
impact of each parameter is assessed by changing its value while holding other 
parameters constant. Clarke and Gaydos (1998) suggest that calibration can be 
done by statistically testing the observed criteria against the expected. These 
methods are very time-consuming because they  need to compare all possible 
combinations of parameters. Another problem is that the combinations are 
infinite and a sound search procedure is difficult  to design.  

This paper presents a CA model using neural networks to simulate potential 
or alternative urban development patterns based on different planning 
objectives. The simulation of the conversion of non-urban land use to urban 
land use should be very useful to urban planning. The structure of neural 
networks is simple and the calibration is easy. Neural network can be used to 



replace the transition rules used by conventional CA models in a simple and 
effective way. The following sections will discuss how to develop neural 
networks to simulate different urban forms based on different planning 
objectives.  

2 Neural Networks for Urban CA Simulation 

Neural networks have the capacity  to recognise and classify patterns through 
training or learning processes. They have been used in urban studies, such as 
journal-to-work flows and airline and telecommunication traffic (Fischer and 
Gopal, 1994; Openshaw, 1993). These studies indicate that neural networks 
provide superior levels of performance to those of conventional statistical 
models because they can well handle the uncertainties of spatial data. 

The proposed model consists of two separate parts – training and simulation 
(Fig. 1). Training is based on the back-propagation procedure, which can 
generate optimal weights from a set of training data. In this study, remote 
sensing and GIS are used to provide the historical empirical data to reveal the 
relationships between site attributes and urban development. There are two 
ways in using the empirical data for training. The original data can be directly 
used to generate realistic simulation, which assumes that urban growth 
proceeds according to historical trends. However, the original data can also be 
modified according to some criteria, which are related to planning objectives.  

In creating new sets of training data, some criteria should be provided to 
evaluate the past development ‘points’ in the original data set. It is assumed 
that some better and worse development ‘points’ can be identified according to 
their costs and benefits, which are measured by the criteria. A simple way is to 
remove some ‘bad points’ based on the evaluation. The modified data set can 
allow the training to ignore ‘false’ information. This is important for the model 
to generate ideal or optimal simulation results. A number of modified data sets 
can be obtained by using different sets of criteria, which correspond to 
planning objectives.  

The new sets of modified training data can lead the training procedure to 
obtain new sets of parameter values. These new sets of parameter values will 
then be used by the neural network to generative alternative or ideal urban 
patterns. This can help to correct the historical  land use problems and search 
for more appropriate  urban growth in the future. The whole procedure is 
simple and robust because the parameter values are not arbitrarily defined. 

Site attributes determine development probability. It is very convenient to 
obtain site attributes when GIS analysis functions are employed. The site 
attributes for CA simulation usually includes the development level in the 
neighbourhood, as well as various types of proximity attractiveness (Batty and 
Xie, 1994; Wu and Webster, 1998). Common GIS analysis functions, such as 
buffer and overlay, can be carried out to obtain these spatial variables. 



The CA simulation is based on the algorithm of neural networks. At each 
iteration, the neural networks will determine the development probability, 
which is subject to the input of site attributes and weights. A cell may have n 
site attributes (variables): 

(S1, S2, S3, S4, S5, S6, …, Sn) (1) 

 

 
Fig. 1. Simulation of urban forms using the neural-network-based CA model 

 
A neural network can be designed to estimate development probability at 

each iteration of the CA simulation. The neural network has three layers, one 
input layer, one hidden layer and one output layer. The input layer has n 
neurons with regard to these site attributes. The hidden layer may also have n 
neurons. The output layer has only one neuron, which calculates the 
development probability. The site attributes of a cell will be input into the first 
layer and the neural network will determine its development probability at the 
output layer at each iteration. 

The original data are usually scaled into the range of [0, 1] before they are 
input to neural networks (Gong, 1996). Scaling each variable treats them as 
equally important inputs to neural networks and makes them compatible with a 
sigmoid activation function that produces a value between 0.0 and 1.0. The 
following linear transformation is used: 
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Si
’= (Si – minimum) / (maximum – minimum) (2) 

The algorithm for the CA model is based on a simple three-layer network. 
In the neural network, the signal received by neuron j of the hidden layer from 
the first input layer for cell x is calculated by: 
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where x is a cell, netj(x,t) is the signal received for neuron j of cell x at time 
t, Wi,j is the weight of the input from neuron i to neuron j and S’

i(x,t) is the site 
attributes for variable (neuron) i. 

The activation of the hidden layer for the signal is: 
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The development probability (Pd) for cell x is then calculated by:  
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This simulation is loop-based. Development probability is calculated 
according to site attributes using the neural network at each iteration. The 
development probability decides whether a cell is converted or not for 
development. A stochastic disturbance term can be added to represent 
unknown errors during the simulation. This can allow the generated patterns to 
be more close to reality. The error term (RA) is given by (White and Engelen, 
1993): 

RA = 1+(-ln �)� (6) 

where � is a uniform random variable within the range {0, 1}, and � is a 
parameter to control the size of the stochastic perturbation. In this case, � can 
be used as a dispersion factor in the simulation. The development probability is 
revised as: 
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(7) 

A cell with a high value of development probability will be likely urbanised 
during the simulation. A predefined threshold value should be used to decide 
whether a cell is developed or not at each iteration. If a cell has a probability 
greater than the threshold value, it will be converted for development. The 
number of cells in the neighbourhood is recalculated and the site attributes are 
updated at the end of each iteration. The simulation will continue until the total 
number of converted cells is equal to the required land consumption. 



3 Applications 

3.1 Study Area and Site Attributes 

A real city, Dongguan, was selected for the experiment to demonstrate the 
advantages of the neural-network-based CA model. The model was used to 
simulate the conversion from non-urban land use to urban land use. Located in 
the Pearl River Delta region, China, it has a total land area of 2,465 km2. It is a 
fast growing region with a tremendous amount of land use changes and urban 
sprawl in recent years (Yeh and Li, 1997; Yeh and Li, 1999). In this study, 
seven spatial variables are defined to represent the site attributes of each cell 
for the simulation of urban development. These variables include: 

1. Distance to the major (city proper) urban areas S1; 
2. Distances to sub-urban (town) areas S2; 
3. Distance to the nearest road S3; 
4. Distance to the nearest expressway S4; 
5. Distance to the nearest railways S5; 
6. Neighbourhood development level (the window of 7 × 7 cells) S6; 
7. Agricultural suitability S7. 

 
The reason to choose these variables is that they are important factors to 

decide development probability (Wu and Webster, 1998). These site attributes 
were obtained by employing GIS analyses and remote sensing classification. 
The distance variables were calculated using the Eucdistance function of 
ARC/INFO GRID. These distance variables were dynamically updated during 
the simulation. The neighbourhood development level was measured based on 
the number of developed cells in the 7 × 7 cells adjacent to the central cell. It 
was calculated using the Focal function of ARC/INFO GRID. This variable 
was also dynamically updated during the simulation. The initial 
neighbourhood development level was calculated from the 1988 binary image. 

3.2 Training 

Training data for urban growth were obtained by the classification of satellite 
TM images of 1988 and 1993 (Fig. 2). The classification results were imported 
to ARC/INFO GRID in the grid format. These grids were used as the empirical 
data for the calibration of the CA model. Although the original TM images had 
a ground resolution of 30 × 30 m, the cell size was reduced to 50 × 50 m by re-
sampling for faster simulation. Binary values were used to represent developed 
and non-developed areas in 1988 and 1993. The value of 1 represents 
developed (converted) cells and 0 represents non-developed ones. The urban 
areas of 1988 were used as the starting point of the simulation. The urban areas 
of 1993 were also obtained for testing the simulation by comparing the actual 
development with the result of the simulated development. The CA 



simulations were carried out from 1988 to 1993 so that different urban forms 
generated by the model can be compared and evaluated against the actual 
development in 1993.    

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Urban areas of Dongguan in 1988 and 1993 classified from satellite TM images 

 Training was carried out by using a neural network package referred to as 
THINKS PRO1 . An essential task is to design the network structure for the CA 
simulation. The design of the network structure is  relaxed since  the numbers 
of layers and neurons in each layer can be subjectively determined. There are, 
however, some principles that can be used to guide the determination of the 
network structure. The increase of the numbers of layers and neurons will 
drastically increase the computation time for the loop-based CA model. It is 
practical to use the numbers of layers and neurons as few as possible without 
severely compromising the model accuracy. Kolmogorov’s theorem suggests 
that any continuous function �: Xn 

� Rc can be implemented by a three-layer 
neural network which has n neurons in the input layer, (2n+1) neurons in the 
single hidden layer, and c nodes in the output layer (Wang, 1994).  De Villiers 
et al. (1992) also suggest that a neural network with one hidden layer may be 
more preferable than one with two hidden layers in terms of learning speed and 
performance. A three-layer network is  most suitable for CA models, which are 
based on  many iterations. Practically, (2n+1) neurons in the single hidden 
layer may seem to be too much for actual applications. Experiments also 
indicate that a network of (2n / 3) neurons in the hidden layer can generate 
results of almost the same accuracy level but requires much less time to train 
than that of (2n + 1) neurons (Wang 1994). 

Therefore, it is appropriate to use three layers of the neural network for 
urban simulation. The input layer has seven neurons corresponding to the 
seven variables of the site attributes. The hidden layer also has seven neurons. 
The output layer has only one neuron to output the development probability. 
There are 7 � 7 = 49 weights to be determined for the links between the input 
layer and the hidden layer, and 7 weights between the hidden layer and the 
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output layer. A total of 56 parameters were used for the neural-network-based 
CA model.  

Original training data were obtained by the overlay of historical urban 
growth (1988-93) from remote sensing and site attributes from GIS. The 
training data can be used to calibrate the network to produce the realistic 
simulation of the study area. It is inappropriate to use the whole data set for 
training because the size is too large and the data may have spatial correlation. 
A random sampling procedure was carried out to reduce the data volume and 
data redundancy.  

The random stratified sampling points were generated by the ERDAS 
IMAGINE1 package. Their co-ordinates were then imported to ARC/INFO 
GRID for the retrieval of the site attributes that were associated with these 
sampling points using the Sample function. 1,000 random sampling points 
were obtained and used to train the neural network. 

3.3 Simulation Results  

The simulation was totally based on the neural network. After appropriate 
weights had been obtained by the training, they were imported into the neural-
network-based CA model for the simulation. The model was implemented in a 
GIS platform by the integration of neural network and GIS. GIS facilitates 
access to spatial data, which are used as site attributes for the simulation. The 
model was developed in ARC/INFO2 GRID using the Arc Macro Language 
(AML). The GIS package also provides powerful spatial handling functions 
that are useful for CA simulation.  

The output neuron of the network generated the development probability for 
each cell at each iteration. The cells with development probability greater than 
the threshold of 0.85 were converted into developed cells.  The neighbourhood 
development level was then recalculated again to update the site attributes. The 
parameter � of the random disturbance was set to 1 so that only a small 
amount of uncertainty was presented in the simulation. The simulation time 
was automatically determined to ensure that the amount of land conversion 
was finally equal to that of actual development in 1993. 

The model can be conveniently used to predict urban development based on 
past trends. However, an import task of our CA simulation is to generate 
alternative development patterns based on different pre-defined planning 
objectives. A way to generate alternative development patterns is to integrate 
MCE with CA models (Wu and Webster, 1998). Parameter values can be 
adjusted corresponding to various planning objectives. However, there are 
uncertainties about the method because the determination of parameter values 
is quite relaxed.  

                                                           
1 ERDAS IMAGINE is a trademark of ERDAS, Inc. 
2 ARC/INFO is a trademark of Environmental Systems Research Institute, Inc.   



A way to remove the uncertainties is to obtain the parameter values based 
on training. A number of different training data sets can be defined based on 
quantitative evaluation. The sample points from the original data sets were 
evaluated according to some criteria related to a planning objective. Unsuitable 
development cells were identified according to these criteria. For example, the 
sites with the distance greater than 30 km from town centres are considered as 
unsuitable for development of the objective of town-centre-based 
development.  If a development point in the original sampling data set has a 
distance greater than the threshold, its desired value (development or not) will 
be adjusted from 1 to 0. For the objective of agricultural-conservation, all 
development points with the suitability score greater than 0.8 will be 
considered as unsuitable for development. Their desired values will be 
changed to 0 accordingly so that the neural network can be trained to avoid the 
encroachment on good agricultural land in the simulation of urban growth. 

The modification of the training data set can help the neural network to 
remember the ‘failure’ and prevent the problem in the simulation. It is easy to 
create a couple of alternative training data sets from the original data set based 
on the evaluation of past development. The modification is related to planning 
objectives. We only use four typical planning objectives for urban growth 
because other options can be easily defined by the same method (Table 1). 

Table 1. Rules for creating alternative training data sets 

Planning Objectives Modification Rules 

1. Continuation of past 
development trend 

Use original data without  
any modification 

2. Promotion of mono-centric 
development  

Change the desired values to 0 for all 
the development sites with S1 > 200 

3. Promotion of  poly-centric 
development 

Change the desired value to 0 for all 
the development sites with S2 > 30  

4. Promotion of agricultural-
conservation development 

Change the desired value to 0 for all 
the development sites with S7 > 0.8  

 
After these training data sets had been created based on the above 

modification rules, the THINK PRO package was used to obtain the 
corresponding sets of parameters or weights by the training procedure. Four 
different sets of weights were obtained for the simulation of different urban 
forms. Normal weights were obtained using the original data (planning 
objective 1), but adjusted weights were obtained using the modified data 
(planning objectives 2, 3 and 4). Different sets of weights were then input to 
the CA model to generate different development patterns. The model provides 
a useful tool making it possible to directly link the training network to the 
formation of distinct urban development patterns.  

 



 
Fig. 3. Simulation of development in 1988-1993 using normal weights (planning 
objective 1 - continuation of past development trend) 

Fig. 4. Simulation of mono-centric development (planning objective 2) using adjusted 
weights 
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Fig. 5. Simulation of poly-centric development (planning objective 3) using adjusted 
weights 

 

Fig. 6. Simulation of urban development with strict protection of agricultural land  
(planning objective 4) using adjusted weights 

Fig. 3 shows the simulation output by using the normal weights obtained 
from the original training data set which is based on the past growth trend 
without any modification. As a result, the simulation is quite similar to the 
actual development (Fig. 2). Alternative urban forms can be  derived by proper 
training of the network and through using different planning objectives as 

      10 20 km

      10 20 km



shown in Table 1. Fig. 4 shows the effects of promoting mono-centric 
development around the existing city proper by using the adjusted weights 
obtained from planning objective 2. Fig. 5 shows  the simulation of promoting 
poly-centric development around the existing 29 town centres.  In this case the 
adjusted weights obtained from planning objective 3 are used. Finally, the 
strict control on the conversion of the best agricultural land can be 
implemented by applying the fourth set of adjusted weights according to 
planning objective 4 (Fig. 6). It can be found that land development is well 
controlled in the alluvial plain in the northwestern part of the region. 

4 Conclusion 

It is very tedious to define model structure, transition rules and parameter 
values for conventional CA models. The proposed CA model can simplify 
these jobs considerably. Although multi-criteria evaluation (MCE) techniques 
can be used to define various parameter values, the method substantially relies 
on expert knowledge and experiences. There are also uncertainties because 
parameter values are usually defined in a relaxed way. The neural network-
based model can significantly reduce the requirements for explicit knowledge 
for identifying relevant criteria, for assigning scores, and for determining 
criteria preferences. The model can effectively map the non-linear features of 
urban systems because it uses neural networks.  

In this model, the original training data set can be evaluated to identify the 
‘good’ or ‘bad’ performance of developed cells according to some criteria, 
which are related to planning objectives. New training data sets can be formed 
to train the network to accommodate interventions in the simulation process. 
The model can be used in two situations: simulation of urban development 
based on the existing development trend, and generation of alternative 
development patterns based on different planning objectives. Distinctive 
development patterns can be easily simulated based on the training of neural 
networks using different adjusted weights to reflect different planning 
objectives. Remote sensing and GIS data can be used to prepare the training 
data sets for a simulation that is more realistic. Based on planning objectives 
and development evaluation, original training data sets can be modified to 
obtain different sets of adjusted weights through the training procedure of 
neural networks. These adjusted weights can be applied to the CA model in 
generating  preferable patterns.  

The neural-network-based model is simple and convenient to use, but it can 
generate very complex features of urban systems. However, an inherent 
problem with neural network models is that they are black box in nature. The 
meanings of the parameter values are difficult to explain because the 
relationships among neurons are quite complex. Moreover, the determination 
of the network structure is also subject to user’s preferences. It seems that 
there is no way to determine what is the best network structure. 



The simulation also assumes that transport systems (railways and roads) 
would not change during the simulation period. It is assumed  they were just 
upgraded and should therefore remain stable for the short period of time  
during which the simulation takes place. Future studies should accommodate 
the possible changes in the transport system for testing in the model. There are 
substantial uncertainties  in simulating  future changes of road systems since 
they are subject to relatively frequent changes and are often affected by urban 
transportation policies. It is more reasonable to tackle this issue by considering 
future transport development as an exogenous factor, which can be addressed 
by GIS for subsequent input to CA models. 
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