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Abstract 

This paper explores a methodology for quantifying the uncertainty of DEMs 
created by digitising topographic maps. The origins of uncertainty in DEM 
production were identified and examined. The uncertainty of DEM data was 
quantified by computing a vector total of Root Mean Square Error (RMSE) from 
the source map, sampling and measurement errors, and the interpolation process. 
Distributional measures including accuracy surfaces, spatial autocorrelation 
indices, and variograms were also employed to quantify the magnitude and spatial 
pattern of the uncertainty. The test for this methodology utilises a portion of a 1:24 
000 topographic map centred on Stone Mountain in northeastern Georgia, USA. 
Five DEMs, constructed with different interpolation algorithms, are found to have 
the total RMSE ranging from 4.39 to 9.82 meters, and a highly concentrated 
pattern of uncertainty in rugged terrain. This study suggests that the RMSE 
provides only a general indicator of DEM uncertainty. Detailed studies should use 
distributional measures to understand how the uncertainty varies over a surface.  
Keywords: DEM, uncertainty, origins; distributional measures 

1 Introduction 

Two methods are frequently employed for obtaining digital elevation model 
(DEM) data: cartographic digitising and photogrammetric (analytical or digital) 
methods. The cartographic digitising method is widely used since topographic 
maps are usually available. The basic procedure involves the transformation of 
contour lines on existing maps into digital coordinate data using manual or 
automatic digitizers. A surface is then fitted to these point observations in 
interpolation of the elevation at every grid point. Alternatively, an automatic raster 
scanner is used with the vectorization technique. This method is straightforward, 
and the coverage can be very large. However, the general quality of the derived 
DEM is poor unless great efforts are made to extract terrain characteristic features 
and break lines as well (Ackermann, 1994). 
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The quality of a DEM is dependent upon a number of interrelated factors, 
including the methods of data acquisition, the nature of the input data, and the 
methods employed in generating the DEMs (Shearer, 1990). Of all these factors, 
data acquisition is the most critical one. Previous studies on DEM data acquisition 
have focused either on examination of generation method(s), or on case studies of 
accuracy testing (Ackermann, 1978; Ebner and Reiss, 1984; Torlegard et al. 
1987). These studies are not adequate, however, for the purpose of understanding 
uncertainty (an indicator used to approximate the discrepancy between geographic 
data and the geographic reality that these data intend to represent) associated with 
DEM data and the propagation of this uncertainty through GIS based analyses. 
The development of strategies for identifying, quantifying, tracking, reducing, 
visualising, and reporting uncertainty in DEM data are called for by the GIS 
community (Zhu, 1997; Fisher, 1999; Heuvelink, 1999; Veregin, 1999). 

The objectives of this study are: (1) to understand the sources and reasons for 
uncertainty in DEMs produced by cartographic digitising; and (2) to develop 
methods for quantifying the uncertainty of DEMs using distributional measures.  

2 Measurement of DEM Uncertainty 

Measurement of errors in DEMs is often impossible because the true value for 
every geographic feature or phenomenon represented in a geographic data set is 
rarely determinable (Goodchild et al. 1994; Hunter et al. 1995). Uncertainty, 
instead of error, should be used to describe the quality of a DEM. Quantifying 
uncertainty in DEMs requires comparison of the original elevations (e.g., 
elevations read from topographic maps) with the elevations in a DEM surface. 
Such a comparison results in height differences (or residuals) at the tested points. 
To analyse the pattern of deviation between two sets of elevation data, 
conventional ways are to yield statistical expressions of the accuracy, such as the 
root mean square error, standard deviation, and mean. In fact, all statistical 
measures that are effective for describing a frequency distribution, including 
central tendency and dispersion measures, may be used, as long as various 
assumptions for specific methods are satisfied.  

The most widely used measure is the Root Mean Square Error (RMSE). It 
measures the dispersion of the frequency distribution of deviations between the 
original elevation data and the DEM data, mathematically expressed as:  
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Where: Zdi is the ith elevation value measured on the DEM surface; 
            Zri is the corresponding original elevation; 
            n is the number of elevation points checked. 



 

 
The larger the value of the RMSE, the greater the discrepancy between the two 

data sets. When the true values such as ground truth are used as the reference data, 
the “uncertainty” becomes “error”. Accuracy is the reverse measurement of error. 
The accuracy of a DEM can be defined as the average vertical error of all potential 
points interpolated within the DEM grid (Ackermann, 1996). In other words, it is 
the vertical root-mean-square accuracy of all points (infinitely many) interpolated 
in the DEM grid. 

The main attraction of the RMSE lies in its easy computation and 
straightforward concept. However, this index is essentially a single global measure 
of deviations, thus incapable of accounting for spatial variation of errors over the 
interpolated surface (Wood, 1996). This index fails, besides, to reveal any 
information about the mean deviation between the two measures of elevation, 
neither the form of frequency distribution such as balance between small and large 
deviations and skewness of the distribution (Wood, 1996). Most interpretations of 
the RMSE value assume a zero mean deviation, which is often invalid (Li, 1993a; 
Li, 1993b; Monckton, 1994). Moreover, the magnitude of the RMSE value 
depends on the variance of a true elevation distribution, and is subject to the 
influence of relative relief and scale of measurements (Wood, 1996). To correctly 
report and compare the RMSE values for areas with different relative relief values 
a composite index such as RMSE-to-contour density ratio should be developed 
and utilised in order to minimise the influence of this “natural” variance (Gao, 
1997). 

3 Uncertainty from Elevation Measurements for 
Topographic Maps 

The vertical accuracy of topographic maps with which terrain elevations are 
photogrammetrically measured depends on the base-height ratio, the relationship 
of the ground distance between successive exposures of photographs to the flying 
height. The larger the ratio, the higher the heighten accuracy. For a particular 
flying height, camera focal length and angular coverage are the two factors 
determining the base-height ratio. Therefore, theoretically speaking, super-wide-
angle photography is better than wide- and narrow-angle photography for height 
measurements. In practice, however, wide-angle photography is most frequently 
used, since a compromise must be made between heighten accuracy and the 
requirements for good scale and resolution (Petrie, 1990). 

If a particular base-height ratio is set, the accuracy of height measurements is 
then largely limited by flying height. Petrie (1990) reports that the expected 
accuracy of spot heights using wide-angle photography will be between 1/5,000 
and 1/15,000 of the flying height, depending on the type of stereo-plotter used. For 
example, from flying heights in the range of 1 to 15 km, the heighten accuracy 
will range from 0.1 to 3.0 meters (RMSE).  



 
 

 

There are four data sampling patterns generally employed in obtaining 
elevation measurements: systematic, random, composite sampling, and 
contouring. Systematic sampling is a grid-based measurement of spot heights in a 
regular geometric pattern, square, rectangular, or triangular. In contrast, random 
sampling measures heights at significant points selected by the photogrammetrist, 
e.g., on hilltops, along break lines and streams. Composite sampling combines 
elements of both of the above approaches. The final method is contouring, which 
systematically measures contours over the whole area of the stereo model 
supplemented occasionally by the measurement of spot heights along terrain break 
lines. This mode of measurement consistently yields significantly lower accuracy 
than the first three methods (Petrie, 1990; Shearer, 1990). The minimum possible 
contour interval will lie between 1/1,000 and 1/2,000 of the flying height. The 
expected or specified accuracy of such measurements is that 90 percent of all the 
points shall be within half of the contour interval. This photogrammetric criterion 
has been applied to the United States National Map Accuracy Standards. Thus, if 
the error in the vertical dimension is assumed to be a normal distribution, then the 
vertical RMSE can be computed as follows: 

1.645RMSE = contour interval / 2 (2) 

Solving for the RMSE, then: 

RMSE = 0.304 * contour interval  (3) 

Table 1 summarises the relationship between flying height, minimum possible 
contour interval and the heighten accuracy within one standard deviation (assume 
that the mean is the true value). If we assume that the camera used to take the 
source aerial photos has a focal length of 15 cm (wide-angle, most commonly 
used), then the relationships between photo scale, contour interval, and vertical 
accuracy can be established.  

Table 1. Flying height, minimum possible contour interval, and heighting accuracy 

Flying height  (m.) Minimum possible contour interval (m.) RMSE (90%) 
1 000 0.5~1.0 0.25~0.5 
5 000 2.5~5.0 1.25~2.5 
10 000 5.0~10.0 2.50~5.0 
15 000 7.5~15.0 3.75~7.5 
Source: Petrie, 1990. Compiled by the Author. 

4 Uncertainty from Spatial Interpolation 

4.1 Methods for Assessing the Uncertainty 

It has been demonstrated that DEM accuracy can vary to a certain degree with 
different interpolation algorithms and interpolation parameters (Eklundh and 
Martensson, 1995; Weng, 1998). Five commonly used spatial interpolation 



 

algorithms are examined and compared in this study.  They include inverse 
distance squared (Davis, 1986), minimum curvature (Briggs, 1974), modified 
Shepard’s method (Shepard, 1968; Wang, 1990), radial basis function (Hardy, 
1990), and triangulation with linear interpolation (Wang, 1990). These 
interpolators convert randomly spaced data points into regularly gridded data 
points, which can then be used to generate DEM surfaces. These interpolators can 
be classified as either an exact or approximate algorithm, if the original data points 
are preserved on the interpolated surface (Wren, 1975; Lam, 1983).  

The test site is selected from a 7.5-minute (1:24,000) USGS topographic map 
that has a contour interval of 20 feet. It is located in Stone Mountain, Georgia, a 
hill of moderate relief composed of granite bedrock, and covers a rectangular area 
of 13,000 by 16,000 feet (Fig. 1). The maximum and minimum elevation of this 
site is 1683 and 800 feet respectively, resulting in a relative relief of 883 feet. The 
mean elevation is 976.79 feet, with the standard deviation of 205.93 feet. These 
statistical indicators should be compared when a new study area is selected, 
because the accuracy of interpolation is, to a certain degree, subject to the 
influence of terrain complexity (Ackermann, 1996; Gao, 1997).  

 
Fig. 1. Test site: Stone Mountain of the northeastern Georgia 

The data capture process involves using the CAPTURE (R-WEL, Inc.) and 



 
 

 

entering point elevations into the database by keyboard. The rule for the selection 
of points is to distribute them evenly throughout the area examined. Ideally, the 
points should be those with exact locations identified, such as benchmarks, spot 
heights, or road intersections. Alternatively, the points where a geographic feature 
intersects with a contour line are used. The initial data set includes a total of 50 
points. With an increment of 50 randomly distributed points overtime, each 
subsequent data set is generated. At the end, eight data sets with the density of 50, 
100, 150, 200, 250, 300, 350, and 400 points become ready for gridding.  

The interpolation package used in this study is SURFER. The following three 
questions are taken into account in evaluating the accuracy of interpolation of 
elevation data: (1) Among the interpolation algorithms examined, which will 
produce the most accurate result, statistically and spatially? (2) How does grid 
resolution influence the accuracy of interpolation? (3) Does data point density 
have an impact on interpolation uncertainty? If so, what is the relationship 
between data point density and interpolation uncertainty? To answer these 
questions, the RMSE of the residuals is computed to reveal the closeness of an 
interpolated surface to the reality. Check points were picked up along the contour 
lines of the topographic map and compared with the corresponding elevations on 
an interpolated surface.  

4.2 Test Results 

In assessing the accuracy of various interpolation algorithms, the same grid 
resolution, i.e., 50 meters, is used. Table 2 shows the result of the interpolation. 
Among the interpolators, the radial basis function (RMSE=6.6628) generates 
nearly identical result. Triangulation with linear interpolation algorithm provides 
the worst interpolation, producing the largest total deviation (RMSE=9.5403). The 
contour map created has distinct triangular faces, indicating that too few data 
points have been used for the interpolation. The inverse distance squared 
algorithm generates a reasonably high statistical accuracy (RMSE=6.8404), 
comparable to kriging and radial basis function. If the RMSE is the only concern, 
then the modified Shepard’s method is the best interpolator (RMSE=3.9448). 
However, both the modified Shepard’s method and the inverse distance algorithm 
tend to produce a “bull’s eye” pattern. Minimum curvature produces acceptable 
smooth interpolated surfaces, but its statistical accuracy is low (RMSE=8.6937). 
The selection of parameters for interpolation is listed in Table 3. It should be 
noted that the changes in interpolation parameters might improve or worsen the 
statistical performance of an interpolator (Weng, 2001). 

 
 
 
 
 
 
 



 

 

Table 2. Effect of different input densities on the quality of interpolation 

Input 
data 
points 

RMSE (meters) 

 Inverse 
distance 
squared 

Minimum 
curvature 

Modified 
Shepard’s 
method 

Radial 
basis 
function 

Triangula
-tion  

50 7.4302 8.5602 3.6579 7.8448 7.7563 
100 6.8536 8.4038 3.5165 7.2330 7.6556 
150 6.7879 8.3581 3.2428 6.7818 7.4228 
200 6.7663 8.2080 2.7764 6.7567 7.2442 
250 6.6793 8.1543 2.1534 6.0605 7.1802 
300 6.3638 8.0112 2.1210 5.7965 7.0263 
350 5.8988 7.9794 2.7277 6.1366 8.4747 
400 6.8404 8.6937 3.9448 6.6632 9.5403 

Table 3. Interpolation parameters used 

Algorithms Interpolation parameters 
Kriging with linear variogram C = 292; A = 5.7 

Nugget effect: Error variance = 0;  
                        Micro variance = 0 
Drift type: No Drift 

Inverse distance squared ß = 3; � = 0 
Minimum curvature Max residual = 0.08;  

Max iteration = 10,000 
Shepard’s method Smoothing = 0 
Radial basis functions R2 = 0.01 
Triangulation with linear 
interpolation 

N.A. 

 

5 Spatial Distribution of DEM Uncertainty 

5.1 Measurement of Spatial Uncertainty of DEMs 

It is necessary to note that DEM uncertainty reported by the RMSE assumes a 
uniform error value for an entire DEM surface. This assumption is often not true. 
Many authors have suggested that the distribution of errors in DEMs will show 
some forms of spatial pattern (Guth, 1992; Li, 1993a; Wood and Fisher, 1993; 



 
 

 

Monckton, 1994). The best way to observe and analyze the spatial pattern of 
uncertainty is to have a graphical representation - creating an accuracy surface. 
This representation has the advantage of clearly indicating where serious, and 
perhaps anomalous errors occur. Comparison of such a surface, for example, with 
a plot of the original input contours, can be extremely informative with respect to 
the occurrence and magnitude of errors in relation to such factors as the terrain 
slopes and distribution of input data (Shearer, 1990).  

Furthermore, a spatial autocorrelation index can be computed to measure the 
extent of error clustering. When interval/ratio data are of concern, then either the 
Moran’s I or the Geary’s C can be used to measure spatial autocorrelation. The 
former is more commonly used in mapping accuracy. Both are inversely related, 
and often imply the same results (Griffith and Amrhein, 1991). Moran’s I statistic 
is computed as follows: 
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Where: dzu is the deviation between the two models for each cell;  
             dzv is the deviation between the two models for some neighbouring cells;  
             wuv is the weighting given to neighboring cells; and 

            dz  is the average deviation between the two models.  
 
The value of this statistic usually ranges from -1 to 1, with the value 1 

indicating similar value clustering, 0 random pattern, and -1 dissimilar value 
clustering.  

An accuracy surface was created to show the spatial pattern of uncertainty 
resulted from the interpolation (Fig. 2), in which the magnitude of uncertainty is 
represented by means of contours. It is clear from these maps that uncertainty 
tends to cluster in rugged areas of the test site where elevation changes rapidly, 
especially around the crest of the mountain. All surfaces have a value of the 
Moran’s index larger than 0.8, indicating a reasonably high degree of clustering. 
However, a close look at these diagrams reveals that some interpolators do a better 
job than others in terms of revealing the systematic errors that result from under-
representation of rugged areas. The modified Shepard’s method produces the least 
degree of clustering. The minimum curvature algorithm, on the other hand, 
generates a great deal of clusters around the Stone Mountain. In between them are 
kriging, radial basis function, inverse distance, and triangulation with linear 
interpolation. A correlation between the RMSE and the Moran’s index gives a 
coefficient of 0.87, indicating that statistically better-interpolated surfaces may 
result in less error clustering.     
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(a) Inverse Distance (I = 0.8870) (b) Minimum Curvature (I = 0.8923)

(c) Modified Shepard's (I = 0.8435) (d) Radial Basis Function (I = 0.8935)

(e) Triangulation (I = 0.9043)  
Fig. 2. Accuracy surfaces of the DEMs of Stone Mountain 



 
 

 

5.2 Variogram Modelling Spatial Variability of the Residuals 

The apparent pattern of clustering in the elevation residuals suggests that there 
exists an underlying spatial trend in the residual values in each accuracy surface. 
A common tool to investigate this spatial trend is the empirical variogram 
(Houlding, 1994). Variogram modelling allows for describing and measuring how 
difference in residual value changes with distance and direction. The classical 
variogram function is essentially a measure of dissimilarity between two 
observations at a separation distance (the lag) h apart, and can be defined as (Carr, 
1995): 
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where zi and zi+h are the values of residual at locations i and i+h, and n is the 
number of pairs considered. Applying this equation to the residual data, six 
empirical variograms are constructed (of which five are shown in Fig. 3).  These 
variograms show the spatial variance of the residual values at every 200 feet. In 
order to evaluate the spatial variance at any separation distance, a continuous 
function (curve) must be fitted to these point observations. Table 4 shows the 
results of model fitting and parameters estimated. 

The exponential model gives us the best quality of fit for the accuracy surfaces 
of kriging, modified Shepard’s method, and radial basis function; while the 
spherical model gives the best fit for the accuracy surfaces of inverse distance 
squared, minimum curvature, and triangulation with linear interpolation. The 
estimated range for the models, over which the influence of spatial dependency of 
the residual values is in effect, differ from 320 to 1300 feet. This is equivalent to 
0.16 to 0.65 inch in the map. The highest range goes to triangulation with linear 
interpolation (range = 1300 ft), because this algorithm basically does not account 
for the underlying trend in the data. The remaining five interpolation algorithms 
have an average range of 508 feet (i.e., a quarter inch in the map). Beyond these 
ranges, the increase in separation distance will no longer cause a corresponding 
systematic increase in the average squared difference between pairs of residual 
values. This parameter relates closely to the terrain complexity that a variogram 
model attempts to represent. The information listed in Table 4 therefore provides 
also a guide for determining input data sampling interval and density. 

The estimated nugget takes into account both sampling and measurement error 
and microscale variation (the spatial variation occurring at distance closer than the 
sample spacing). This study finds that microscale variation in all of the models 
equals to zero. Since the minimum separation distance in all the six models is 
small (Fig. 3), it is safe to conclude that sampling and measurement error are 
primarily related to the nugget effect, which has a range of 3.43 to 23 feet. Based 
on the value of nugget effect, the standard deviation of the sampling and 
measurement error (RMSE) can be calculated. It is estimated to be from 1.85 to 
4.79 feet, or from 0.56 to 1.46 meters.        



 

Table 4. Estimated variogram models for the interpolation residuals 

Interpolators Estimated variogram model Anisotropy 
(ratio; angle) 

Kriging with 
linear 
variogram 
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Triangulation 
with linear 
interpolation 
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6 Discussion  

The uncertainty of digital elevation models resulting from  cartographic digitising  
is related to three aspects: the elevation measurements for the topographic map, 
sampling and measurement error, and the interpolation process. Assuming the 
uncertainty from each source is an independent vector, the total DEM uncertainty 
can be computed as follows: 

� �222 )()()( ismtotal RMSERMSERMSERMSE ���  (6) 

where RMSEm, RMSEs, and RMSEi are the uncertainty from the source map, from 
the sampling and measurement error, and from the interpolation process 
respectively. With the Eq. 6, the overall quality of the DEMs for the Stone 
Mountain with different spatial interpolation algorithms can be assessed. More 



 
 

 

generally, an error budget table can be created to give an estimate of the 
uncertainty from various sources (Table 5). This table provides the reader with 
some guidelines for creating DEMs with the cartographic digitising method. 
However, this table and the findings of this paper should be applied with caution 
before the following points have been fully considered: 

(1) Correlation of uncertainty. The uncertainty in the source map and the 
uncertainty caused by the interpolation are often correlated. High 
uncertainty tends to concentrate in rugged terrain areas in both sources. 
The Eq. 6 needs to be adjusted to account for this correlation in any future 
research effort.  

(2) Point density and distribution. The accuracy of spatial interpolation of 
elevations is subject to input data point density and distribution, among 
many other factors. The analysis should be extended into the impact of 
different data collection patterns (e.g., random vs. systematic; significant 
points vs. contouring). Equally important is the problem of how to take the 
complexity of terrain into account to determine point density and 
distribution. Comparative studies may be conducted by using different 
input data density for different degrees of roughness in a surface or by 
taking break lines.  

(3) Scale. Scale issue comes into terrain analysis in many ways. The scale of a 
source map has a direct impact on the quality of DEM generated. The 
accuracy of terrain parameters and features derived from DEMs exhibits 
scale dependencies (Hutchinson and Gallant, 1999). Moreover, the degree 
of clustering of DEM uncertainty may vary at different scales (Monckton, 
1994). There are also problems of how the terrain characteristics of a 
multi-scale can be mathematically described. The analysis should be 
extended into more complicated types of terrain in different 
geomorphologic settings at different scales. 

(4) Variation in interpolation parameters. The variation in interpolation 
parameters may significantly improve or worsen the DEM accuracy. Some 
exemplary questions of further investigation include: How does the RMSE 
of residual values change as the smoothing parameter of the radial basis 
function becomes larger, and how will it change with a larger smoothing 
parameter in the modified Shepard’s method, and how will it decrease as 
the weighting power of inverse distance algorithm becomes larger? Are 
these effects related to terrain complexity and scale? 
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Fig. 3. Exponential/spherical fit to variograms on interpolation residuals 



 
 

 

7 Conclusions 

Table 5. Error budget for the DEMs based on 1:24 000 topographic maps 

Error sources Range of RMSE (meters) 

Source map 1.85 

Interpolation 
 -Variation in interpolation algorithm 3.9448 ~ 9.5403 

 -Variation in input data density  
   (50 ~ 400 points) 

5.7960 ~ 7.8322 

 -Variation in grid resolution 
   (10 ~100 meters) 

2.2675 ~ 9.8154 

Sampling and measurement 0.5645 ~ 1.4618 
Total 4.3935 ~ 9.8226 

 
This paper has addressed issues related to the uncertainty of DEMs based on 

the cartographic digitising method. It is suggested that the uncertainty of a DEM 
may be quantified by calculating a vector total of the RMSE from the source map, 
from the sampling and measurement error, and from the interpolation.  

The RMSE of the source map may be computed as RMSE = 0.304 * contour 
interval, assuming a 90 percent rule for 1/2 contour interval errors. Both the 
positional and heighten accuracy of a topographic map are specified based on 
photogrammetric and surveying criteria, and they, in turn, define the contour 
interval of the map.  

The determination of the uncertainty from the interpolation requires computing 
the value of residuals between the interpolated and the original elevations at tested 
points. The magnitude of uncertainty from the spatial interpolation is subject to 
many factors, but primarily to interpolation algorithm parameters and input data 
point density and distribution at a given grid resolution.  

The RMSE alone is not sufficient for quantifying DEM uncertainty, because 
this measure rarely addresses the issue of distributional accuracy. To fully 
understand and quantify the DEM uncertainty, spatial accuracy measures, such as 
accuracy surfaces, indices for spatial autocorrelation, and variograms,  should be 
used. The uncertainty is found concentrated in rugged terrain areas, although the 
five interpolators produce various spatial patterns of clustering. The degree of 
clustering is substantially high in all surfaces, as indicated by the Moran’s index. 
Variogram modelling allows for quantitatively assessing the spatial variability of 
the residual data, and for calculating the RMSE that resulted from the sampling 
and measurement errors.  
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