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Abstract 

Spatio-temporal databases are a topic of growing research interest but there is still 
little work reported on spatio-temporal query languages in line with the Object 
Database Management Group (ODMG) standard. This paper presents the design 
of such a language, called STOQL, by adding spatial and temporal dimensions to 
OQL. This language is based upon a data model that extends the ODMG Object 
Model with basic spatial and temporal types as well as a parameterised type, 
Temporal<T>, which lifts spatial types into spatio-temporal types to support the 
representation of the history of an object. We show that STOQL can support the 
formulation of various spatio-temporal queries in relation to historical states of 
spatial objects as well as spatial changes including spatial type substitution. 
Key words: spatio-temporal database, ODMG, object model, OQL, STOQL  

1 Introduction 

Spatial and temporal databases have long been studied on parallel, but relatively 
separate tracks. As natural and man-made objects are often associated with both 
space and time, there has been a growing interest in the integration of spatial and 
temporal components (Langran 1992, Worboys 1994, Claramunt and Thériault 
1995, Peuquet and Duan 1995), leading to the emerging research field of spatio-
temporal databases (Güting et al. 2000, Spery et al. 2001).  

Compared with considerable research on temporal relational databases (e.g. 
Tansel et al. 1993, Snodgrass 1995a), a smaller amount of work has been reported 
in the context of temporal object databases (Snodgrass 1995b). This has similarly 
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occurred in spatio-temporal object databases. One of the important reasons has 
been the lack of an agreement for a common object model and query language 
(Huang et al. 2000). However, a consensus is now emerging, with the Object Data 
Management Group (ODMG) effort on standardising Object-Oriented Database 
(OODB) and a recent release of ODMG 3.0 (Cattell and Barry 2000). The 
proposed ODMG standard encompasses an object model (ODMG object model), 
an object definition language (ODL) and an object query language (OQL). This 
paper addresses the spatio-temporal data model and an associated query language. 
We propose the modelling of spatial and temporal data types using a novel 
parameterised temporal type Temporal<T> that lifts spatial types into spatio-
temporal types to support the representation of the history of an object. The 
potential of this data type is illustrated by the application of spatio-temporal 
queries on a simplified case study. 

Object-oriented databases (OODBs) provide powerful data abstractions and 
modelling facilities. The challenge is, however, to augment an object data model 
to capture the history of objects and to augment an object query language to 
permit queries over this history. The history could be represented at the object or 
attribute level (Fegaras and Elmasri 1998). As the attributes of an object may 
change asynchronously, attribute level time-stamping is preferred in this study. To 
represent the history of an attribute, we extend the ODMG Object Model with a 
parameterised type (a type generator just like List<T>), named Temporal <T>, 
which lifts a type T into a temporal type that contains the history of all states of T. 
The parameter type T can be any spatial type such as Point, LineString, Polygon, 
Points, LineStrings and Polygons, and so spatial types can be promoted to spatio-
temporal types. Corresponding operations within the Temporal class are defined 
for traversing the history of objects. Thus, the implementation of temporal types is 
actually the implementation of the parameterised Temporal type, which, in turn, 
can meet the requirement of spatio-temporal data modelling and queries.  

In this paper, we discuss the design of a spatio-temporal object query language, 
called STOQL, by extending OQL with some syntactic constructs to uniformly 
manipulate historical information of both spatial and non-spatial objects. The 
underlying model of STOQL establishes a parameterised type to support the 
definition of spatio-temporal types, facilitating the representation of the history of 
spatial objects and spatial changes including spatial type substitution. The 
reminder of this paper is organised as follows. Section 2 briefly summarises the 
principles of the underlying ODMG model and introduces the spatial, temporal 
and parameterised types.  Section 3 describes how these data types can be 
manipulated at the query language level and illustrates the potential of our model 
using a simplified case study. Section 4 presents some related work. Finally 
Section 5 draws some conclusions. 



 

2 Data Model 

ODMG provides neither spatial types nor temporal types except Temporal 
Structured_literals (e.g., Date, Time and Timestamp). The objective of this paper 
is to extend the ODMG Object Model with spatial, temporal and parameterised 
types and to illustrate the interest of these extensions at the query language level. 
The ODMG standard provides an object definition language, ODL, for defining 
the object types that conform to the ODMG Object Model. STODL extends ODL 
with a number of class definitions and syntactical constructs that accommodate 
spatio-temporal information. STODL is hereafter used in class definitions. 

2.1 Basic Spatial and Temporal Data Types 

Spatial data types and operations have been defined in (OGC 1999). We primarily 
use the following geometric types: Geometry, Point, LineString, Polygon, 
GeometryCollection, Points, LineStrings and Polygons. Geometry is the root 
class of all these types, and is an abstract (non-instantiable) class. It includes 
operations that access properties of objects (e.g. envelope), determine topological 
relationship (e.g. overlaps, meets, and disjoint), and support spatial queries (e.g. 
distance, buffer, intersection, and union) (Figure 1). There are also other 
methods defined in the instantiable classes like length for the data type 
LineString and area for the data type Polygon; see (OGC 1999) for more details. 

 
 Class Geometry { 

//dimension 0-Point, Points 
//1-LineString, LineStrings 
//2-Polygon, Polygons 
attribute Unsigned Short dimension;  
 
//accessing spatial properties  
Struct MBR (Double minx; Double miny; 
Double maxx; Double maxy;); 
MBR envelope(in Geometry g); 
 
//test topological relationship 
Boolean disjoint (in Geometry g); 
Boolean intersects (in Geometry g); 
Boolean crosses (in Geometry g); 
Boolean contains (in Geometry g); 
Boolean overlaps (in Geometry g); 
… 
//create new spatial objects 
… 
Geometry intersection (in Geometry g); 
Geometry difference (in Geometry g); 

} 

Class TimeInterval { 
Attribute Timestamp start; 
Attribute Timestamp end; 
 
Unsigned Long duration(); 
 
TimeInterval intersection (in 
TimeInterval tv); 
TimeInterval union (in TimeInterval tv); 
 
Boolean equals (in TimeInterval tv); 
Boolean contains (in TimeInterval tv); 
Boolean meets (in TimeInterval tv); 
Boolean overlaps (in TimeInterval tv); 
Boolean before (in TimeInterval tv); 
Boolean starts (in TimeInterval tv); 
Boolean finishes (in TimeInterval tv); 

} 
 

Fig. 1. The Geometry and the TimeInterval classes 



 

In the context of temporal databases, two time dimensions, i.e., valid-time and 
transaction-time, are commonly represented (Jensen et al. 1992). Currently 
STODL only supports valid time although it can be easily extended to transaction 
time (valid-time is the time of a real-world event while a transaction-time gives 
the time of a database event). Based on the period definition in TSQL2 (Snodgrass 
1995a) rather than the time interval definition in Allen (1983), the TimeInterval 
class is defined using STODL in Fig. 1. 

The class TimeInterval has two attributes start and end, both of ODMG type 
Timestamp. Let TI be a variable of type TimeInterval. TI is constructed as 
[TI.start, TI.end], which represents all the time points between and including 
TI.start and TI.end. If TI.start equals TI.end, TI contains just one time point, 
simply represented as [TI.start]. [TI.start] is treated as an equivalent of a time 
interval, i.e. [TI.start, TI.start]. This class defines a number of elementary 
temporal operations for comparing two time intervals such as equals, contains 
and before, as well as those for the intersection and union of two time intervals.  

 For a spatio-temporal data model, the critical types should include the 
integration of spatial and temporal types into spatio-temporal types. These are 
tackled by a parameterised type, or a type generator as described below.  

2.2 The Temporal<T> Type 

The ODMG Object Model includes type generators, collection types, and 
collection instances.  

The collections supported by the ODMG Object Model include Set<T>, 
Bag<T>, List<T>, Array<T> and Dictionary<T, V>. Each of these is a type 
generator, parameterised by the type T. All the elements of a collection object are 
of the same type T. Note that collection type generators are represented as 
Template classes in the C++ binding of the ODMG standard. 

In the class definition of these types (see Cattell and Barry, 2000 for more 
details), the ODL type Object has been chosen to represent type parameters. As a 
time-varying object can contain a list of historical states, and the value of this 
object can be of any type, a parameterised type (type generator), Temporal<T>, is 
needed to promote any type to a temporal type so that the history of this object can  

 
Struct State {Object val; TimeInterval vt;}; 
 
interface TemporalFactory: ListFactory{ 
 Temporal new_of_size(in long size);   
} 
 



 

class Temporal: List { 
 attribute temporal<t> value; 
 
 //get entire history of the attribute 
 List<State> getHistory(); 
 
 get state index number 
 Unsigned Long getStateIndex(in Object val); 
             raises (no_such_Tvalue)  
} 

Fig. 2. The Temporal<T> type 

be represented and manipulated. The Temporal type, an extension of the List 
type, is specified and illustrated in Fig. 2.  

In the ODMG Object Model, objects are created by invoking creation 
operations on factory interfaces provided on factory objects supplied to the 
programmer by the language binding implementation. The new_of_size operation 
in the TemporalFactory interface creates a collection with the given amount of 
initial storage allocated, where the given size is the number of elements for which 
storage is to be reserved. 

 
A Temporal object is a temporally ordered collection of val-vt pairs: 

{(val1, vt1), (val2, vt2), …, (valn, vtn)} 
where val1, …, valn are legal values of type T, vt1, … vtn are time intervals such 
that vti � vtj = �, i � j and 1 � i, j � n, and each pair, i.e., (vali, vti), is an instance 
of the State structure (Fig. 2). An attribute of the Temporal <T> type is called a 
historical attribute.  

The parameter type T can be any ODMG type, and so a ODMG type is lifted 
into a temporal type. T can also be any spatial type, which lifts a spatial type (e.g., 
Polygon) into a spatio-temporal type (e.g., Temporal <Polygon>).   

All the operations defined in the List are valid for Temporal types when a 
State is specified as the argument. In addition, the Temporal class defines two 
additional operations. The getHistory operation retrieves the entire history of a 
historical attribute, and the getStateIndex operation retrieves an index number 
associated with a state. 

After accessing the entire history of a historical attribute, the value (.val), 
validtime (.vt) and index number of each state can be obtained. Operations on the 
value of a particular type, e.g., Geometry, can then be carried out according to 
application purposes. 

2.3 Type Substitution 

A spatial change implies a change of an object’s spatial attribute value during a 
given time interval. Spatial objects may change their location, orientation, shape, 
and size over time, and so their topological relationships with other objects may 
also change.  



 

Attributes, particularly spatial attributes, can change not only their values, but 
also their types within a supertype. For example, a fire projected on the 2D plane 
may be modelled as a point at time t1, but as a polygon at time t2, and finally as a 
polygons at time t3. To tackle such a problem, an alternative is to use the 
supertype of relevant types, e.g. Geometry in this case. This benefits from the rich 
modelling capabilities of object-orientation. When instantiating the air pollution 
class, different geometric types such as Point, Polygon and Polygons are used 
such that the shape attribute of the air pollution is represented by  

 
{(pointObj, vt1), (polygonObj, vt2), …, (polygonsObj, vtn)} 

 
in which, pointObj, polygonObj, …, polygonsObj are instances of the Geometry 
type, and vt1, vt2, …, vtn are time intervals of type TimeInterval.  

In general, the key to handling type substitution lies in the definition of 
operations in a supertype that should be able to deal with different subtypes. In the 
above case, the operations defined in the Geometry type can be applied to these 
instances. 

3 Query Language 

Although there is no consensus for the taxonomy of temporal queries, some 
common requirements have been identified (Snodgrass 1995a) such as temporal 
selection, join and aggregation, as well as valid-time projection. Besides these, as 
spatio-temporal databases also target spatial changes over time, the spatio-
temporal join (Güting et al. 2000) is incorporated in STOQL as well. 

3.1 Syntactical Constructs in STOQL 

In order to illustrate the expressiveness of the STOQL language, we introduce an 
example database that has been used in previous works to evaluate some 
geographical data models and query languages (Claramunt 1999, Spery et al. 
2001). This example describes a land use database, relationships between some 
parcels and buildings, protected areas (whose areas have been extended over time) 
and a fire. The STODL specification of these classes is defined in Fig. 3. 

In the following classes, the geometry of either a parcel, a building or a 
protected area may change over time. However, type substitution does not occur to 
these three classes. It might occur to the class fire under the Geometry type. Type 
substitution refers to the change of geometric type, in the context of our example a 
fire is first located by a point that approximates its location and then by a polygon 
that varies in time and eventually disappears. 

 
class parcel 
  (extent parcels 
   key identifier) 

class building 
  (extent buildings 
    key identifier) 



 

{ 
  attribute String identifier; 
  attribute Temporal<String> landuse; 
  attribute set Temporal<String> 
                                             owners;  
  attribute Temporal<Polygon> geo; 
 } 
 

{ 
 attribute String identifier; 
 attribute Temporal<String> building- 
                                             use; 
 attribute Temporal<Polygon>  geo; 
} 
 

Class protected-area 
  (extent protected-areas 
    key name) 
{ 
  attribute String name; 
  attribute String level; 
  attribute Temporal <Polygon> geo; 
} 
 

class fire 
  (extent fires 
    key name) 
{ 
  attribute String name; 
  attribute Temporal<Geometry> 
                                                   geo; 
} 

Fig. 3. Example database 

STOQL extends OQL facilities to retrieve spatial temporal information. The 
states in histories are extracted through iteration in the OQL from-clause. 
Constraints in the where-clause can then be applied to the value, timestamp and 
index number of a state through corresponding operations that have been defined 
in the above model part. Finally the result is obtained through the projection 
operation in the select-clause. Clearly if the value is of a spatial type (i.e. Point, 
LineString, Polygon, Points, LineStrings and Polygons), then spatial operations 
will be employed.  

Given the above principle, STOQL provides some syntactical extensions to 
OQL to traverse a history that is of type Temporal<T>. In Table 1, time1 and 
time2 are expressions of type Timestamp, e is an expression of type 
Temporal<T>, and es is an expression denoting a state within a history. These 
constructs facilitate the access to each state in a history. 

 
Table 1. Syntactical constructs in STOQL 

STOQL OQL  Type 
 [time1, time2]  Struct(start: time1, end: time2)  TimeInterval 
 e!  e.getHistory()  List 
 es.val  es.val  T (any ODMG type and basic  

      spatial types) 
 es.vt  es.vt  TimeInterval 
 es.index  e.getStateIndex(ev) (es in e)  Unsigned Long 

 
Consider an example of class parcel. Let parcel1 be an object of the class 

parcel. Let parcelgeo_3 be the fourth state in parcel1.geo’s history. parcel1.geo! 
refers to the entire history of parcel1.geo, which is, in fact, the whole list of 
parcel1.geo’s states. parcelgeo_3.index retrieves the index number of the state 
parcelgeo_3, i.e., 4 in this case. parcelgeo_3.val retrieves the geometric value of 
parcelgeo_3, and parcelgeo_3.vt the valid-time associated with parcelgeo_3.val. 



 

The default value of parcel1.geo is the value of parcel1.geo at the current time 
(denoted as [now]), if no time value is given.  

3.2 Query examples 

The following examples illustrate different types of spatio-temporal queries such 
as temporal selection, index-based information retrieval, temporal and spatio-
temporal joins, valid-time projection and type substitution. These queries are 
applied to self-explanatory classes. We assume that the granularity for all time-
varying attributes in classes parcel, building and protected-area is the year, 
while the granularity for the geometrical attribute of the class fire is the day. 

 Query 1 (Temporal selection). Display graphically all the parcels of land use 
‘agricultural’ that existed over the year 1980.  

Select  p-geo.val 
From   parcels As parcel, parcel.geo! As p-geo, parcel.landuse! As p-landuse      
Where p-landuse.vt.contains([1980]) and 
            p-geo.vt.contains([1980]) and      
            p-landuse.val = ‘agricultural’  

 In the above query, parcel.geo! returns the entire geometric history of parcel, 
and parcel.landuse! the entire landuse type history. Variables p-geo and p-
landuse are states ranging over these two histories, respectively. The value of 
state p-geo can be viewed as a pair of a Polygon and TimeInterval. Similarly, the 
value of state p-landuse can be regarded as a pair of a String and TimeInterval. 
Time constraints on p-geo and p-landuse are respectively specified in the Where 
clause. 

The next example illustrates how to retrieve the ith state of an object, and how 
to synchronize events in STOQL (also called temporal join).  

Query 2 (Index-based information retrieval and temporal join). Display 
graphically the first land use type of the parcel identified ‘L1’ from 1980 to 1990, 
and at that time where was the protected area of the river ‘River1’. 

Select  p-landuse.val, p-areageo.val 
From   parcels As parcel, parcel.landuse! As p-landuse, 
            protected-areas As p-area, p-area.geo! As p-areageo             
Where parcel.identifier = ‘L1’ and  
             p-landuse.index <=  
                 All (Select ap-landuse.index 
                        From parcel.landuse! ap-landuse 
                        Where ap-landuse.vt.overlaps([1980, 1990]))  and            
             p-areageo.vt.overlaps(p-landuse.vt) and 
             p-area.name = ‘River1’     

The first land use type of the parcel identified as ‘L1’ during a period may not 
simply be represented by ‘p-landuse.index = 0’. Instead it is the minimal index 
number during that period. Thus a subquery in the Where clause is employed. p-



 

areageo.vt.overlaps(p-landuse.vt) explicitly synchronizes events in relation to p-
landuse and p-areageo. The valid-time of p-areageo is not necessarily [1980, 
1990], but possibly a subset of this period, e.g. [1980, 1982]. 

 
As shown in the next example, spatial changes reflected in spatial properties 

and topological relationships of objects can be expressed by using two variables of 
the same class extent as well as different operations. This example also involves 
qualification over both space and time, and a join between different classes of 
objects. 

Query 3 (Spatio-temporal join). Who were the owners of the parcels, which 
intersected the protected area of the river ‘River1’ over the year 1990, while they 
were away from that protected area over the year 1980.  

Select   parcel.owners 
From    parcels As parcel, parcel.geo! As parcelgeo1 parcelgeo2,          
             protected-areas As p-area, p-area.geo! As p-areageo1 p-areageo2 
Where p-area.name = ‘River1’ and  
             p-areageo1.vt.contains([1980]) and parcelgeo1.vt.contains([1980]) and 
             p-areageo1.val.disjoint(parcelgeo1.val)  and 
             p-areageo2.vt.contains([1990]) and parcelgeo2.vt.contains([1990]) and 
           p-areageo2.val.intersects(parcelgeo2.val) 

As each state of an historical attribute can be accessed, spatial operations in the 
Geometry class such as disjoint and intersects, and temporal operations such as 
contains and intersects are employed naturally. In this sense, spatial and temporal 
operations are harmonised in the language. 

Let us introduce a fourth query example that retrieves the time associated with 
a spatial change: 

Query 4 (Validtime projection). When did the protected area of the river 
‘River1’ first touched the parcel identified ‘L1’ ? 

element 
(Select   (p-areageo.vt.intersection(p-geo.vt)).start 
 From    protected-areas As protected-area,  
               protected-area.geo! As p-areageo,       
               parcels As parcel, parcel.geo! As p-geo      
 Where  protected-area.name = ‘River1’ and parcel.name = ‘L1’ and 
               p-areageo.val.touches(p-geo.val) 
).requires[0] 

As both the protected area and the parcel may spatially change, the intersection 
of the two relevant time intervals is used. The use of element…requires[0] 
obtains the first time that satisfies the conditions. 

Temporal aggregation in STOQL is achieved using the standard OQL 
aggregators. The following query also uses the method duration to retrieve 
duration of a time interval before an aggregation: 

 Query 5 (Duration). For how long was the parcel identified ‘L1’ separated 
from the protected area of the river ‘River1’? 



 

Sum 
(Select   p-geo.vt.duration() 
  From    parcels As parcel, parcel.geo! As p-geo,       
                protected-areas As p-area, p-area.geo! As p-areageo      
  Where  parcel.identifier = ‘L1’ and p-area.name = ‘River1’ and 
                p-geo.val.disjoint(p-areageo.val) 
) 
 
STOQL can also deal with queries involving spatial type substitution. A type 

casting might be used if necessary. 
Query 6 (Type substitution). What is the total area of buildings that were 

affected by the area of the fire named ‘Fire1’ on May 25, 1992?  

Sum  
(Select  (Polygon)(f-geo.val).intersection(b-geo.val).area()  
 From   buildings As building, building.geo! As b-geo,   
             fires As fire, fire.geo! As f-geo   
 Where f-area.name = ‘Fire1’ and 
             f-geo.vt.overlaps([25/5/1992]) and 
             b-geo.vt.start = f-geo.vt.start.year() and  
             b-geo.vt.end  = f-geo.vt.end.year() and 
             b-geo.val.overlaps(f-geo.val) 
) 

This query returns the intersection area of the buildings with the fire identified 
‘Fire1’ for a given time interval. The b-geo.val.overlaps(f-geo.val) expression in 
the Where clause evaluates if two objects overlap. If this relationship holds, the 
spatial intersection operation is performed, otherwise not. The year() operation 
assigns the valid-time of f-geo with the granularity of one year. 

The use of Polygon casting before f-geo.val indicates that the compile-time 
type checker is told via the downcast that the intersection result must be of the 
Polygon type and the query is accepted as type correct. Note that at runtime, each 
occurrence of the intersection geometry in the select clause will be checked for its 
type.  

4 Related Work 

Previous work relevant to this paper is primarily associated with the 
Temporal<T> type and spatio-temporal object query languages. The notion of the 
Temporal<T> type was introduced in (Bertino et al. 1997), but there was no 
ODL-like definition for this type or a query language. Fegaras and Elmasri (1998) 
specified the definition of a similar type, which was, however, taken as a 
parametric class that is not supported by the current version of the ODMG 
standard (see also Alagic, 2001). Furthermore, since we apply this type in a 



 

different query language, operations defined in this type are distinguished from 
theirs. 

 Güting et al. (2001) explored the representation and querying of moving 
objects by defining a set of Abstract Data Types (ADT), and ensuring consistency 
and closure of data types. They defined temporal types such as mreal, mpoint, 
mpoints and mregion. These types obtained through the moving type constructor 
are functions, or sets of pairs (instant, value). While these types are similar to type 
Temporal <T>, the former are instant based, and each temporal type like mreal, 
mpoint, mpoints and mregion requires a class definition, or code rewriting. In 
addition, this data model does not touch the representation and handling of spatial 
type substitution. 

STOQL is motivated by the temporal object language proposed by Fegaras and 
Elmasri (1998), but differs greatly from the latter in the expression of time and 
temporal projections. In STOQL, such expressions are specified as time 
constraints in the Where clause, similar to the treatment of other constraints in 
OQL. STOQL also employs fewer syntactical constructs to make the language 
easier to understand especially for a novice user. More importantly, STOQL has 
attempted to express spatio-temporal queries and temporal queries in a uniform 
way. Spatio-temporal queries involve spatial properties, as well as spatial changes.  

Cheng and Gadia (1993) have also proposed an object-oriented spatio-temporal 
structured query language (OOSTSQL), an extension of SQL, which supports both 
spatial and temporal data. OOSTSQL employs a proprietary clause, Restricted to, 
and temporal expressions to handle different constraints, and it focuses on 
temporal aspects rather than spatial aspects. Thus it does not address a rich set of 
spatial data types together with spatial operations. 

Let us also mention the recent release of SQL-99 (formerly known as SQL 3). 
While OQL is an attempt to bring the best of SQL into the object-oriented world, 
SQL-99 can be characterised as bringing the best of object-orientation into the 
relational world (cf. Ullman and Widom 1997). Since we adopt an object database 
approach instead of object-relational, the ODMG standard is preferred in this 
study. There are also a number of standardisation efforts in the area of geographic 
and spatial information such as OGC (Open GIS Consortium), ISO TC211 and 
SQL/MM Spatial (Kottman 1998). Our extensions to the ODMG standard with 
respect to spatial and temporal operations have been addressed to comply with the 
core of these proposed standards.           

5 Conclusion 

This paper has presented an extension to the ODMG Object Model that 
incorporates spatial and temporal dimensions into database objects. The temporal 
extension is achieved by a parameterised type that is an orthogonal property of 
data types. On top of the model, we have also presented the design of a query 
language, STOQL, designed as a minimal extension to OQL. This supports an 
homogeneous manipulation of historical information for spatial and non-spatial 



 

attributes. Benefited from the object-oriented paradigm, type substitution can also 
be represented and queried in STOQL.  

In contrast to other related work, the distinct features of STOQL rely on that it 
builds upon existing standards (e.g. ODMG and OGC) and provides a flexible 
mechanism to deal with synchronous and asynchronous changes of spatial and 
aspatial properties. STOQL has been implemented on top of the commercial GIS 
package ArcView through an object-oriented scripting language. Further work 
concerns the support of transaction time and the integration of multiple time 
granularities.  
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