
STOQL: An ODMG-Based Spatio-Temporal Object
Model and Query Language

Bo Huang1 and Christophe Claramunt2

Department of Civil Engineering, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Tel: (65) 874-2158 Fax: (65)779-1635,
cvehb@nus.edu.sg1
Naval Academy Research Institute, Lanveoc-Poulmic, BP 600, 29240 Brest
Naval, France, Tel: 33 2 98 234206 Fax: 33 2 98 233857,
claramunt@ecole-navale.fr2

Abstract

Spatio-temporal databases are a topic of growing research interest but there is still
little work reported on spatio-temporal query languages in line with the Object
Database Management Group (ODMG) standard. This paper presents the design
of such a language, called STOQL, by adding spatial and temporal dimensions to
OQL. This language is based upon a data model that extends the ODMG Object
Model with basic spatial and temporal types as well as a parameterised type,
Temporal<T>, which lifts spatial types into spatio-temporal types to support the
representation of the history of an object. We show that STOQL can support the
formulation of various spatio-temporal queries in relation to historical states of
spatial objects as well as spatial changes including spatial type substitution.
Key words: spatio-temporal database, ODMG, object model, OQL, STOQL

1 Introduction

Spatial and temporal databases have long been studied on parallel, but relatively
separate tracks. As natural and man-made objects are often associated with both
space and time, there has been a growing interest in the integration of spatial and
temporal components (Langran 1992, Worboys 1994, Claramunt and Thériault
1995, Peuquet and Duan 1995), leading to the emerging research field of spatio-
temporal databases (Güting et al. 2000, Spery et al. 2001).

Compared with considerable research on temporal relational databases (e.g.
Tansel et al. 1993, Snodgrass 1995a), a smaller amount of work has been reported
in the context of temporal object databases (Snodgrass 1995b). This has similarly

�����
����

���
���

���
	���

���������	�
��
��
�����������������

���������
��
�
�������������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

occurred in spatio-temporal object databases. One of the important reasons has
been the lack of an agreement for a common object model and query language
(Huang et al. 2000). However, a consensus is now emerging, with the Object Data
Management Group (ODMG) effort on standardising Object-Oriented Database
(OODB) and a recent release of ODMG 3.0 (Cattell and Barry 2000). The
proposed ODMG standard encompasses an object model (ODMG object model),
an object definition language (ODL) and an object query language (OQL). This
paper addresses the spatio-temporal data model and an associated query language.
We propose the modelling of spatial and temporal data types using a novel
parameterised temporal type Temporal<T> that lifts spatial types into spatio-
temporal types to support the representation of the history of an object. The
potential of this data type is illustrated by the application of spatio-temporal
queries on a simplified case study.

Object-oriented databases (OODBs) provide powerful data abstractions and
modelling facilities. The challenge is, however, to augment an object data model
to capture the history of objects and to augment an object query language to
permit queries over this history. The history could be represented at the object or
attribute level (Fegaras and Elmasri 1998). As the attributes of an object may
change asynchronously, attribute level time-stamping is preferred in this study. To
represent the history of an attribute, we extend the ODMG Object Model with a
parameterised type (a type generator just like List<T>), named Temporal <T>,
which lifts a type T into a temporal type that contains the history of all states of T.
The parameter type T can be any spatial type such as Point, LineString, Polygon,
Points, LineStrings and Polygons, and so spatial types can be promoted to spatio-
temporal types. Corresponding operations within the Temporal class are defined
for traversing the history of objects. Thus, the implementation of temporal types is
actually the implementation of the parameterised Temporal type, which, in turn,
can meet the requirement of spatio-temporal data modelling and queries.

In this paper, we discuss the design of a spatio-temporal object query language,
called STOQL, by extending OQL with some syntactic constructs to uniformly
manipulate historical information of both spatial and non-spatial objects. The
underlying model of STOQL establishes a parameterised type to support the
definition of spatio-temporal types, facilitating the representation of the history of
spatial objects and spatial changes including spatial type substitution. The
reminder of this paper is organised as follows. Section 2 briefly summarises the
principles of the underlying ODMG model and introduces the spatial, temporal
and parameterised types. Section 3 describes how these data types can be
manipulated at the query language level and illustrates the potential of our model
using a simplified case study. Section 4 presents some related work. Finally
Section 5 draws some conclusions.

2 Data Model

ODMG provides neither spatial types nor temporal types except Temporal
Structured_literals (e.g., Date, Time and Timestamp). The objective of this paper
is to extend the ODMG Object Model with spatial, temporal and parameterised
types and to illustrate the interest of these extensions at the query language level.
The ODMG standard provides an object definition language, ODL, for defining
the object types that conform to the ODMG Object Model. STODL extends ODL
with a number of class definitions and syntactical constructs that accommodate
spatio-temporal information. STODL is hereafter used in class definitions.

2.1 Basic Spatial and Temporal Data Types

Spatial data types and operations have been defined in (OGC 1999). We primarily
use the following geometric types: Geometry, Point, LineString, Polygon,
GeometryCollection, Points, LineStrings and Polygons. Geometry is the root
class of all these types, and is an abstract (non-instantiable) class. It includes
operations that access properties of objects (e.g. envelope), determine topological
relationship (e.g. overlaps, meets, and disjoint), and support spatial queries (e.g.
distance, buffer, intersection, and union) (Figure 1). There are also other
methods defined in the instantiable classes like length for the data type
LineString and area for the data type Polygon; see (OGC 1999) for more details.

 Class Geometry {

//dimension 0-Point, Points
//1-LineString, LineStrings
//2-Polygon, Polygons
attribute Unsigned Short dimension;

//accessing spatial properties
Struct MBR (Double minx; Double miny;
Double maxx; Double maxy;);
MBR envelope(in Geometry g);

//test topological relationship
Boolean disjoint (in Geometry g);
Boolean intersects (in Geometry g);
Boolean crosses (in Geometry g);
Boolean contains (in Geometry g);
Boolean overlaps (in Geometry g);
…
//create new spatial objects
…
Geometry intersection (in Geometry g);
Geometry difference (in Geometry g);

}

Class TimeInterval {
Attribute Timestamp start;
Attribute Timestamp end;

Unsigned Long duration();

TimeInterval intersection (in
TimeInterval tv);
TimeInterval union (in TimeInterval tv);

Boolean equals (in TimeInterval tv);
Boolean contains (in TimeInterval tv);
Boolean meets (in TimeInterval tv);
Boolean overlaps (in TimeInterval tv);
Boolean before (in TimeInterval tv);
Boolean starts (in TimeInterval tv);
Boolean finishes (in TimeInterval tv);

}

Fig. 1. The Geometry and the TimeInterval classes

In the context of temporal databases, two time dimensions, i.e., valid-time and
transaction-time, are commonly represented (Jensen et al. 1992). Currently
STODL only supports valid time although it can be easily extended to transaction
time (valid-time is the time of a real-world event while a transaction-time gives
the time of a database event). Based on the period definition in TSQL2 (Snodgrass
1995a) rather than the time interval definition in Allen (1983), the TimeInterval
class is defined using STODL in Fig. 1.

The class TimeInterval has two attributes start and end, both of ODMG type
Timestamp. Let TI be a variable of type TimeInterval. TI is constructed as
[TI.start, TI.end], which represents all the time points between and including
TI.start and TI.end. If TI.start equals TI.end, TI contains just one time point,
simply represented as [TI.start]. [TI.start] is treated as an equivalent of a time
interval, i.e. [TI.start, TI.start]. This class defines a number of elementary
temporal operations for comparing two time intervals such as equals, contains
and before, as well as those for the intersection and union of two time intervals.

 For a spatio-temporal data model, the critical types should include the
integration of spatial and temporal types into spatio-temporal types. These are
tackled by a parameterised type, or a type generator as described below.

2.2 The Temporal<T> Type

The ODMG Object Model includes type generators, collection types, and
collection instances.

The collections supported by the ODMG Object Model include Set<T>,
Bag<T>, List<T>, Array<T> and Dictionary<T, V>. Each of these is a type
generator, parameterised by the type T. All the elements of a collection object are
of the same type T. Note that collection type generators are represented as
Template classes in the C++ binding of the ODMG standard.

In the class definition of these types (see Cattell and Barry, 2000 for more
details), the ODL type Object has been chosen to represent type parameters. As a
time-varying object can contain a list of historical states, and the value of this
object can be of any type, a parameterised type (type generator), Temporal<T>, is
needed to promote any type to a temporal type so that the history of this object can

Struct State {Object val; TimeInterval vt;};

interface TemporalFactory: ListFactory{
 Temporal new_of_size(in long size);
}

class Temporal: List {
 attribute temporal<t> value;

 //get entire history of the attribute
 List<State> getHistory();

 get state index number
 Unsigned Long getStateIndex(in Object val);
 raises (no_such_Tvalue)
}

Fig. 2. The Temporal<T> type

be represented and manipulated. The Temporal type, an extension of the List
type, is specified and illustrated in Fig. 2.

In the ODMG Object Model, objects are created by invoking creation
operations on factory interfaces provided on factory objects supplied to the
programmer by the language binding implementation. The new_of_size operation
in the TemporalFactory interface creates a collection with the given amount of
initial storage allocated, where the given size is the number of elements for which
storage is to be reserved.

A Temporal object is a temporally ordered collection of val-vt pairs:

{(val1, vt1), (val2, vt2), …, (valn, vtn)}
where val1, …, valn are legal values of type T, vt1, … vtn are time intervals such
that vti � vtj = �, i � j and 1 � i, j � n, and each pair, i.e., (vali, vti), is an instance
of the State structure (Fig. 2). An attribute of the Temporal <T> type is called a
historical attribute.

The parameter type T can be any ODMG type, and so a ODMG type is lifted
into a temporal type. T can also be any spatial type, which lifts a spatial type (e.g.,
Polygon) into a spatio-temporal type (e.g., Temporal <Polygon>).

All the operations defined in the List are valid for Temporal types when a
State is specified as the argument. In addition, the Temporal class defines two
additional operations. The getHistory operation retrieves the entire history of a
historical attribute, and the getStateIndex operation retrieves an index number
associated with a state.

After accessing the entire history of a historical attribute, the value (.val),
validtime (.vt) and index number of each state can be obtained. Operations on the
value of a particular type, e.g., Geometry, can then be carried out according to
application purposes.

2.3 Type Substitution

A spatial change implies a change of an object’s spatial attribute value during a
given time interval. Spatial objects may change their location, orientation, shape,
and size over time, and so their topological relationships with other objects may
also change.

Attributes, particularly spatial attributes, can change not only their values, but
also their types within a supertype. For example, a fire projected on the 2D plane
may be modelled as a point at time t1, but as a polygon at time t2, and finally as a
polygons at time t3. To tackle such a problem, an alternative is to use the
supertype of relevant types, e.g. Geometry in this case. This benefits from the rich
modelling capabilities of object-orientation. When instantiating the air pollution
class, different geometric types such as Point, Polygon and Polygons are used
such that the shape attribute of the air pollution is represented by

{(pointObj, vt1), (polygonObj, vt2), …, (polygonsObj, vtn)}

in which, pointObj, polygonObj, …, polygonsObj are instances of the Geometry
type, and vt1, vt2, …, vtn are time intervals of type TimeInterval.

In general, the key to handling type substitution lies in the definition of
operations in a supertype that should be able to deal with different subtypes. In the
above case, the operations defined in the Geometry type can be applied to these
instances.

3 Query Language

Although there is no consensus for the taxonomy of temporal queries, some
common requirements have been identified (Snodgrass 1995a) such as temporal
selection, join and aggregation, as well as valid-time projection. Besides these, as
spatio-temporal databases also target spatial changes over time, the spatio-
temporal join (Güting et al. 2000) is incorporated in STOQL as well.

3.1 Syntactical Constructs in STOQL

In order to illustrate the expressiveness of the STOQL language, we introduce an
example database that has been used in previous works to evaluate some
geographical data models and query languages (Claramunt 1999, Spery et al.
2001). This example describes a land use database, relationships between some
parcels and buildings, protected areas (whose areas have been extended over time)
and a fire. The STODL specification of these classes is defined in Fig. 3.

In the following classes, the geometry of either a parcel, a building or a
protected area may change over time. However, type substitution does not occur to
these three classes. It might occur to the class fire under the Geometry type. Type
substitution refers to the change of geometric type, in the context of our example a
fire is first located by a point that approximates its location and then by a polygon
that varies in time and eventually disappears.

class parcel
 (extent parcels
 key identifier)

class building
 (extent buildings
 key identifier)

{
 attribute String identifier;
 attribute Temporal<String> landuse;
 attribute set Temporal<String>
 owners;
 attribute Temporal<Polygon> geo;
 }

{
 attribute String identifier;
 attribute Temporal<String> building-
 use;
 attribute Temporal<Polygon> geo;
}

Class protected-area
 (extent protected-areas
 key name)
{
 attribute String name;
 attribute String level;
 attribute Temporal <Polygon> geo;
}

class fire
 (extent fires
 key name)
{
 attribute String name;
 attribute Temporal<Geometry>
 geo;
}

Fig. 3. Example database

STOQL extends OQL facilities to retrieve spatial temporal information. The
states in histories are extracted through iteration in the OQL from-clause.
Constraints in the where-clause can then be applied to the value, timestamp and
index number of a state through corresponding operations that have been defined
in the above model part. Finally the result is obtained through the projection
operation in the select-clause. Clearly if the value is of a spatial type (i.e. Point,
LineString, Polygon, Points, LineStrings and Polygons), then spatial operations
will be employed.

Given the above principle, STOQL provides some syntactical extensions to
OQL to traverse a history that is of type Temporal<T>. In Table 1, time1 and
time2 are expressions of type Timestamp, e is an expression of type
Temporal<T>, and es is an expression denoting a state within a history. These
constructs facilitate the access to each state in a history.

Table 1. Syntactical constructs in STOQL

STOQL OQL Type
 [time1, time2] Struct(start: time1, end: time2) TimeInterval
 e! e.getHistory() List
 es.val es.val T (any ODMG type and basic

 spatial types)
 es.vt es.vt TimeInterval
 es.index e.getStateIndex(ev) (es in e) Unsigned Long

Consider an example of class parcel. Let parcel1 be an object of the class

parcel. Let parcelgeo_3 be the fourth state in parcel1.geo’s history. parcel1.geo!
refers to the entire history of parcel1.geo, which is, in fact, the whole list of
parcel1.geo’s states. parcelgeo_3.index retrieves the index number of the state
parcelgeo_3, i.e., 4 in this case. parcelgeo_3.val retrieves the geometric value of
parcelgeo_3, and parcelgeo_3.vt the valid-time associated with parcelgeo_3.val.

The default value of parcel1.geo is the value of parcel1.geo at the current time
(denoted as [now]), if no time value is given.

3.2 Query examples

The following examples illustrate different types of spatio-temporal queries such
as temporal selection, index-based information retrieval, temporal and spatio-
temporal joins, valid-time projection and type substitution. These queries are
applied to self-explanatory classes. We assume that the granularity for all time-
varying attributes in classes parcel, building and protected-area is the year,
while the granularity for the geometrical attribute of the class fire is the day.

 Query 1 (Temporal selection). Display graphically all the parcels of land use
‘agricultural’ that existed over the year 1980.

Select p-geo.val
From parcels As parcel, parcel.geo! As p-geo, parcel.landuse! As p-landuse
Where p-landuse.vt.contains([1980]) and
 p-geo.vt.contains([1980]) and
 p-landuse.val = ‘agricultural’

 In the above query, parcel.geo! returns the entire geometric history of parcel,
and parcel.landuse! the entire landuse type history. Variables p-geo and p-
landuse are states ranging over these two histories, respectively. The value of
state p-geo can be viewed as a pair of a Polygon and TimeInterval. Similarly, the
value of state p-landuse can be regarded as a pair of a String and TimeInterval.
Time constraints on p-geo and p-landuse are respectively specified in the Where
clause.

The next example illustrates how to retrieve the ith state of an object, and how
to synchronize events in STOQL (also called temporal join).

Query 2 (Index-based information retrieval and temporal join). Display
graphically the first land use type of the parcel identified ‘L1’ from 1980 to 1990,
and at that time where was the protected area of the river ‘River1’.

Select p-landuse.val, p-areageo.val
From parcels As parcel, parcel.landuse! As p-landuse,
 protected-areas As p-area, p-area.geo! As p-areageo
Where parcel.identifier = ‘L1’ and
 p-landuse.index <=
 All (Select ap-landuse.index
 From parcel.landuse! ap-landuse
 Where ap-landuse.vt.overlaps([1980, 1990])) and
 p-areageo.vt.overlaps(p-landuse.vt) and
 p-area.name = ‘River1’

The first land use type of the parcel identified as ‘L1’ during a period may not
simply be represented by ‘p-landuse.index = 0’. Instead it is the minimal index
number during that period. Thus a subquery in the Where clause is employed. p-

areageo.vt.overlaps(p-landuse.vt) explicitly synchronizes events in relation to p-
landuse and p-areageo. The valid-time of p-areageo is not necessarily [1980,
1990], but possibly a subset of this period, e.g. [1980, 1982].

As shown in the next example, spatial changes reflected in spatial properties

and topological relationships of objects can be expressed by using two variables of
the same class extent as well as different operations. This example also involves
qualification over both space and time, and a join between different classes of
objects.

Query 3 (Spatio-temporal join). Who were the owners of the parcels, which
intersected the protected area of the river ‘River1’ over the year 1990, while they
were away from that protected area over the year 1980.

Select parcel.owners
From parcels As parcel, parcel.geo! As parcelgeo1 parcelgeo2,
 protected-areas As p-area, p-area.geo! As p-areageo1 p-areageo2
Where p-area.name = ‘River1’ and
 p-areageo1.vt.contains([1980]) and parcelgeo1.vt.contains([1980]) and
 p-areageo1.val.disjoint(parcelgeo1.val) and
 p-areageo2.vt.contains([1990]) and parcelgeo2.vt.contains([1990]) and
 p-areageo2.val.intersects(parcelgeo2.val)

As each state of an historical attribute can be accessed, spatial operations in the
Geometry class such as disjoint and intersects, and temporal operations such as
contains and intersects are employed naturally. In this sense, spatial and temporal
operations are harmonised in the language.

Let us introduce a fourth query example that retrieves the time associated with
a spatial change:

Query 4 (Validtime projection). When did the protected area of the river
‘River1’ first touched the parcel identified ‘L1’ ?

element
(Select (p-areageo.vt.intersection(p-geo.vt)).start
 From protected-areas As protected-area,
 protected-area.geo! As p-areageo,
 parcels As parcel, parcel.geo! As p-geo
 Where protected-area.name = ‘River1’ and parcel.name = ‘L1’ and
 p-areageo.val.touches(p-geo.val)
).requires[0]

As both the protected area and the parcel may spatially change, the intersection
of the two relevant time intervals is used. The use of element…requires[0]
obtains the first time that satisfies the conditions.

Temporal aggregation in STOQL is achieved using the standard OQL
aggregators. The following query also uses the method duration to retrieve
duration of a time interval before an aggregation:

 Query 5 (Duration). For how long was the parcel identified ‘L1’ separated
from the protected area of the river ‘River1’?

Sum
(Select p-geo.vt.duration()
 From parcels As parcel, parcel.geo! As p-geo,
 protected-areas As p-area, p-area.geo! As p-areageo
 Where parcel.identifier = ‘L1’ and p-area.name = ‘River1’ and
 p-geo.val.disjoint(p-areageo.val)
)

STOQL can also deal with queries involving spatial type substitution. A type

casting might be used if necessary.
Query 6 (Type substitution). What is the total area of buildings that were

affected by the area of the fire named ‘Fire1’ on May 25, 1992?

Sum
(Select (Polygon)(f-geo.val).intersection(b-geo.val).area()
 From buildings As building, building.geo! As b-geo,
 fires As fire, fire.geo! As f-geo
 Where f-area.name = ‘Fire1’ and
 f-geo.vt.overlaps([25/5/1992]) and
 b-geo.vt.start = f-geo.vt.start.year() and
 b-geo.vt.end = f-geo.vt.end.year() and
 b-geo.val.overlaps(f-geo.val)
)

This query returns the intersection area of the buildings with the fire identified
‘Fire1’ for a given time interval. The b-geo.val.overlaps(f-geo.val) expression in
the Where clause evaluates if two objects overlap. If this relationship holds, the
spatial intersection operation is performed, otherwise not. The year() operation
assigns the valid-time of f-geo with the granularity of one year.

The use of Polygon casting before f-geo.val indicates that the compile-time
type checker is told via the downcast that the intersection result must be of the
Polygon type and the query is accepted as type correct. Note that at runtime, each
occurrence of the intersection geometry in the select clause will be checked for its
type.

4 Related Work

Previous work relevant to this paper is primarily associated with the
Temporal<T> type and spatio-temporal object query languages. The notion of the
Temporal<T> type was introduced in (Bertino et al. 1997), but there was no
ODL-like definition for this type or a query language. Fegaras and Elmasri (1998)
specified the definition of a similar type, which was, however, taken as a
parametric class that is not supported by the current version of the ODMG
standard (see also Alagic, 2001). Furthermore, since we apply this type in a

different query language, operations defined in this type are distinguished from
theirs.

 Güting et al. (2001) explored the representation and querying of moving
objects by defining a set of Abstract Data Types (ADT), and ensuring consistency
and closure of data types. They defined temporal types such as mreal, mpoint,
mpoints and mregion. These types obtained through the moving type constructor
are functions, or sets of pairs (instant, value). While these types are similar to type
Temporal <T>, the former are instant based, and each temporal type like mreal,
mpoint, mpoints and mregion requires a class definition, or code rewriting. In
addition, this data model does not touch the representation and handling of spatial
type substitution.

STOQL is motivated by the temporal object language proposed by Fegaras and
Elmasri (1998), but differs greatly from the latter in the expression of time and
temporal projections. In STOQL, such expressions are specified as time
constraints in the Where clause, similar to the treatment of other constraints in
OQL. STOQL also employs fewer syntactical constructs to make the language
easier to understand especially for a novice user. More importantly, STOQL has
attempted to express spatio-temporal queries and temporal queries in a uniform
way. Spatio-temporal queries involve spatial properties, as well as spatial changes.

Cheng and Gadia (1993) have also proposed an object-oriented spatio-temporal
structured query language (OOSTSQL), an extension of SQL, which supports both
spatial and temporal data. OOSTSQL employs a proprietary clause, Restricted to,
and temporal expressions to handle different constraints, and it focuses on
temporal aspects rather than spatial aspects. Thus it does not address a rich set of
spatial data types together with spatial operations.

Let us also mention the recent release of SQL-99 (formerly known as SQL 3).
While OQL is an attempt to bring the best of SQL into the object-oriented world,
SQL-99 can be characterised as bringing the best of object-orientation into the
relational world (cf. Ullman and Widom 1997). Since we adopt an object database
approach instead of object-relational, the ODMG standard is preferred in this
study. There are also a number of standardisation efforts in the area of geographic
and spatial information such as OGC (Open GIS Consortium), ISO TC211 and
SQL/MM Spatial (Kottman 1998). Our extensions to the ODMG standard with
respect to spatial and temporal operations have been addressed to comply with the
core of these proposed standards.

5 Conclusion

This paper has presented an extension to the ODMG Object Model that
incorporates spatial and temporal dimensions into database objects. The temporal
extension is achieved by a parameterised type that is an orthogonal property of
data types. On top of the model, we have also presented the design of a query
language, STOQL, designed as a minimal extension to OQL. This supports an
homogeneous manipulation of historical information for spatial and non-spatial

attributes. Benefited from the object-oriented paradigm, type substitution can also
be represented and queried in STOQL.

In contrast to other related work, the distinct features of STOQL rely on that it
builds upon existing standards (e.g. ODMG and OGC) and provides a flexible
mechanism to deal with synchronous and asynchronous changes of spatial and
aspatial properties. STOQL has been implemented on top of the commercial GIS
package ArcView through an object-oriented scripting language. Further work
concerns the support of transaction time and the integration of multiple time
granularities.

Acknowledgements

Part of the work in this paper was done when the first author was working for the
joint TRIPOD project between Keele University and Manchester University, UK.
Discussions with Mike Worboys, Keith Mason, Chris Johnson, John Stell,
Norman Paton, Alvaro Fernandes and Tony Griffiths were helpful in shaping the
contribution of this paper. Part of the second author’s work was carried out while
he was working at the Nottingham Trent University.

References

Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of the
ACM 26: 832-843

Alagic S (1999) Type checking OQL queries in the ODMG type systems. ACM
Transactions on Database Systems 24: 319-360

Bertino E, Ferrari E, Guerrini, G (1997) T_Chimera: a temporal object data model. Theory
and Practice of Object Systems 3: 103-125

Cattell R, Barry D (eds) (2000) The Object Data Standard: ODMG 3.0. San Francisco,
Morgan Kaufmann Publishers Inc.

Cheng TS, Gadia SK (1993) An object-oriented model for temporal databases. In:
Snodgrass RT (ed) Proceedings of the International Workshop on an Infrastructure for
Temporal Databases. Arlington, TX, June

Claramunt C, Thériault M (1995) Managing time in GIS: an event-oriented approach. In:
Clifford J, Tuzhilin A (eds) Recent Advances in Temporal Databases. Springer-Verlag

Claramunt C, Parent C, Spaccapietra S, Thériault M (1999) Database modelling for
environmental and land Use changes. In: Geertman S, Openshaw S, Stillwell J (eds)
Geographical Information and Planning: European Perspectives. Springer-Verlag

Fegaras L, Elmasri R (1998) A temporal object query language. In: Fifth International
Workshop on Temporal Representation and Reasoning (TIME-98), May 1998, Sanibel
Island, Florida

Griffiths T, Fernandes A, Paton N, Mason K, Huang B, Worboys M, Johnson C and Stell J
(2001) Tripod: a comprehensive system for the management of spatial and aspatial
historical objects. ACM GIS 2001

Gueting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis
M (2000) A foundation for representing and querying moving objects. ACM
Transactions on Database Systems 25: 1-42

Hornsby K, Egenhofer M (2000) Identity-based change: a foundation for spatio-temporal
knowledge representation. International Journal of GIS 14: 207 – 224

Huang B, Worboys M, Johnson C, Stell J, Mason K (2000) A spatio-temporal object model
and query language (extended abstract). In: GIScience 2000: First International
Conference on Geographic Information Science. 28-31 Octover, Savannah, Georgia,
USA

Jensen CS, Clifford J, Gadia SK, Segev A, Snodgrass RT (1992) A glossary of temporal
database concepts. SIGMOD Record 21: 35-43

Kottman C (1998) Geoprocessing standards connections: OGC and TC/211, TC/204,
SQL/MM, CORBAgis, W3C [online]. Availalbe from:
http://www. opengis.org/info/newsletter/ 9810/16.htm.

Langran G (1992) Time in Geographic Information Systems. Taylor & Francis, London
Open GIS Consortium Inc. (OGC) (1999) OpenGIS Simple Features Specification for SQL,

(Revision 1.1) [online]. Available from:
http://www.opengis.org/techno /specs/99-049.pdf.

Peuquet D, Duan N (1995) An event-based spatio-temporal data model (ESTDM) for
temporal analysis of geographical data. International Journal of GIS 9: 7-24

Snodgrass R (ed) (1995a) The TSQL2 Temporal Query Language. Kluwer Academic
Publishers

Snodgrass R (1995b) Temporal object-oriented databases: a critical comparison. In Kim W
(ed) Modern Database Systems: The Object Model, Interoperability, and Beyond.
Addison-Wesley, pp 386-408

Spery L, Claramunt C, Libourel T (2001) A spatio-temporal model for lineage metadata.
Geoinformatica 5:51-70

Tansel U, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass R (eds) (1993) Temporal
Databases: Theory, Design, and Implementation. The Benjamin/Cummings Publishing
Company

Ullman JD, Widom J (1997) A First Course in Database Systems. Prentice Hall Inc.
Worboys M (1994) A unified model for spatial and temporal information. The Computer

Journal 37: 26-34

