

Map Image Compression for Real-Time
Applications

Pasi Fränti, Eugene Ageenko, Pavel Kopylov, Sami Gröhn and Florian Berger

Department of Computer Science, University of Joensuu, Box 111, FIN-80101
Joensuu, FINLAND, Email: franti@cs.joensuu.fi

Abstract

Digital maps can be stored and distributed electronically using compressed raster
image formats. We introduce a storage system for the map images that supports
compact storage size, decompression of partial image, and smooth transitions
between various scales. The main objective of the proposed storage system is to
provide map images for real-time applications that use portable devices with low
memory and computing resources. Compact storage size is achieved by dividing
the maps into binary layers, which are compressed using context-based statistical
modeling and arithmetic coding. Partial image decompression is supported by
tiling the image into blocks and implementing direct access to the compressed
blocks. In this paper, we give overview of the system architecture, describe the
compression technique, and discuss implementation aspects. Experimental results
are given both in terms of compression ratios and image retrieval timings.
Keywords: image compression, map images, real-time applications, personal
navigation, spatial access

1 Introduction

Real-time cartography imaging application provides user with the view of
geographic map for the area surrounding the user’s location (Kraak 1996, 2000).
The system may use global positioning service (GPS) (Kaplan 1996) or mobile
positioning service (MPS) (Dye 1999) for obtaining the coordinates of the current
location. The location can be updated in real-time (about once or twice in every

�����
����

���
���

���
	���

���������	�
��
��
������
�����������

���������

��
�

���
����������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

second). The system must also support real-time panning (spatial movement) and
zooming (change of resolution) on the map. By panning, we mean scrolling the
map; and by zooming, we mean the change of the view on the display in a closer or
wider perspective.

Digital map are usually obtained from spatial databases where the maps are
stored in vector formats. The visual outlook of maps representing the same region
varies depending on the type of the map (topographic or road map), and on the
desired scale (local and regional maps). Individual map images are reproduced for
each scale separately and stored as separate raster images augmented with the
location information of the map. A typical map image needs only a few color tones
but high spatial resolution for representing the details such as roads, infrastructure
and names of the places.

In on-line map imaging applications, the images are usually stored in an
inefficient, uncompressed raster form. The storage size of a map image is huge.
For example, electronic library of Finnish road maps of the resolution 1:250 000
takes an entire CD (over 600 Mb) in uncompressed form (GeoData, 1999). In
comparison, the portable viewing device, such as pocket computers, have usually
about 32 Mb of the storage space, which can be expanded at present by about 96
Mb through using compact flash memory cards (Gellersen and Thomas, 2000).
The storage requirements of the maps can therefore be a bottleneck, especially in
the case of portable devices, in which the maps share the limited memory
resources with the operating system, application and other data.

A better approach is to provide the user with the images in compressed form
(Arps and Truong 1994, Murray, vanRyper and Russell, 1996). For example, an
uncompressed black-and-white topographic image of 5000�5000 pixels takes
about 3 megabytes in uncompressed form. The latest compression standards
(Haskell et al, 1998), however, can compress typical map images by a factor of
about 20:1, which corresponds to the file size of 150 kilobytes. A drawback of the
existing compression techniques is that the entire image must be decompressed in
memory before the image can be viewed. This can be a problem if the device does
not have sufficient computing resources for real time image decompression.

We propose Map Image Storage System (further denoted as MISS), in which
we present reasonable solutions both to the storage problem and to the real-time
requirements of the system. The MISS images are composed of semantic binary
layers, which are compressed using a context-based statistical modeling and
arithmetic coding. The method is basically the same as in the latest international
compression standards, JBIG (Joint Bi-level Image Group) and JBIG2 (ISO/IEC
1993, 1999) with a few differences described later.

To meet the real-time requirements, we provide direct access to the compressed
image file. Our solution is to divide the image into b�b non-overlapping
rectangular blocks, which are compressed separately. The compressed blocks are
stored in the same file, and an index table is stored in the header of the file to
locate the starting points of the code blocks. In this way, direct access can be
provided with the accuracy of the block size. This kind of file organization is

supported by the JBIG2 standard although there are some limitations as shown by
Fränti et al (2002).

2 Map Image Storage System

Digital maps are usually stored as vector graphics in a database for retrieving the
data using the spatial location as the search key. Vector representation is
convenient for zooming as the maps can be displayed in any resolution defined by
the user. Panning of the map can be performed by retrieving the elements needed
for updating the changes in the view. The use of database, however, can be
impractical in mobile environment, as the devices may not have enough resources
to store the complete map database and the database engine.

The storage problem could be solved by generating spatial views (map sheets)
from the database and store the maps in a vector format. The storage size can be
reduced further by compressing the vector maps (by a factor of about 2:1), or by
simplifying the vector representation. This approach, however, does not support
real-time panning as separate data structures must be built for this purpose.

The biggest problem of the vector format is that maps are not always available
in vector format. Moreover, the maps are stored in various formats and
incompatibility between different systems can restrict the use of the maps. To sum
up, vector format is a good approach if the user has sufficient hardware and
software resources, and if the maps are widely available in a compatible vector
format. Otherwise, raster image format is the only choice.

We introduce next a map image storage system (denoted as MISS) based on
compressed raster format. The system support the following properties of the
maps:

1. Compact storage size
2. Multi-scale representation (zooming)
3. Fast scrolling ability (panning)

The idea is that the maps are stored in a server-side database. Spatial views are
generated for the client-side application in compressed raster image format
organized so that it supports the zooming and panning requirements. In this way,
raster format is suitable in applications, where the maps are needed for viewing
purposes only.

Furthermore, the system does not depend on any database or vector format as
digitized raster maps can be easily generated and reproduced from any source
format, including paper maps. Another advantage of the system is that it requires
only a modest memory and computing resources in order to be operational in real-
time environment.

2.1 Multi-Scale Representation

The visual outlook of the maps varies depending on the scale. It is therefore not
convenient to use multi-resolution image representation. Instead, several different
map images should be reproduced for each desired scale. In addition to this,
intermediate scales can also be provided by zooming the raster image. For
example, Fig. 1 includes two different scales of a map (1:20 000 and 1:100 000) of
the same location. The intermediate scale 1:40 000 has been generated from the
detailed map (1:20 000) in order to provide the user with smoother zooming. The
image has the same level of details but the size and quality of the features suffer
because of the change in resolution.

The organization of the data is illustrated in Fig. 2. In this example, the large
rectangles represent the map images of four different scales. The size of the
rectangles corresponds to the size of the individual images in pixels. The images
have usually the same size when printed on paper or shown on display. The thin
grid lines drawn across the rectangles correspond to the spatial territories shown in
the maps that have same size in reality but different resolution.

Map of scale 1:100 000 Map of scale 1:40 000 Map of scale 1:20 000

Fig. 1. Example of a map shown in three different scales. The highest and smallest scales
have different representation of the content, but the intermediate scale (1:40 000) has been
generated from the map of lowest scale (1:20 000)

These maps have different scales
and different levels of details.

They are stored in separate files.

1:250 000

These maps are of different resolution but share the same level of detail.
They are generated from 1:100 000 map on the fly.

1:50 000
1:100 000

1:25 000

Here: grid-lines represent
the territorial spatial division

Fig. 2. Representation of the maps as separate map images (1:250 000 and 1:50 000), and
as intermediate scales that are obtained by zooming

2.2 Image Compression

A compressed raster image format provides a reasonable solution in the form of
compact storage size and compatible map format. Typical map images have high
spatial resolution for representing fine details such as text and graphics objects but
not so much color tones as photographic images, see Fig. 1. The most suitable
compression methods can thus be found among the lossless graphics compression
methods such as GIF and PNG (Miano 1999, Roelofs 1999). It is also possible to
divide the maps into separate color layers and to apply the lossless binary image
compression standards such as ITU-T Group 4 (Arps and Truong, 1994), or the
latest standard JBIG2 (ISO/IEC, 1999, Howard et al 1998). However, lossy
compression methods, such as the JPEG (Pennebaker and Mitchell, 1993), do not
apply well for map images.

We take the JBIG1 and JBIG2 as the starting point of our map image storage
system. They use context-based statistical modeling and arithmetic coding in the
manner as originally proposed by Langdon and Rissanen (1981). The image is
processed pixel-by-pixel in raster-scan order. The probability of each pixel is
estimated on the basis of previous occurrences in similar context. The context is
defined as the combination of already processed neighboring pixels defined by
a template. Each context is assigned with its own statistical model that is
adaptively updated during the compression process. Decompression is
synchronous process with compression.

Here we apply the JBIG2 file format but use only the generic mode, which is
basically the same as JBIG1. JBIG2 also segments the image into regions of
different types, in particular, textual, halftone and generic (other), and utilize the
repetitive nature of the textual and halftone images. However, the encoding of the
data other than text or halftones remains similar to JBIG with the difference that

a newer version of the arithmetic coder (MQ-coder) is used. The pre-ancestor,
Q-coder, has similar working principles (Pennebaker et al, 1998).

2.3 Decomposition to Binary Layers

In order to utilize the context-based compression, the map must be divided into
binary layers. Each layer is then compressed separately, and the compressed layers
are stored into the same file. There are three ways to perform the decomposition:

1. Semantic decomposition
2. Color separation
3. Bit-level separation

Semantic decomposition is possible if the maps are obtained from a map
database in vector format. The map is output into a set of binary layers each
containing different semantic meaning. We consider maps that consist of five
layers: basic (topographic data and contours), elevation lines, fields, water and
property (administrative borders), see Fig. 3. The user application can reproduce
the map by plotting each layer by its own color overlapping each other in a given
order. Color information can be added into the file. The image can be
reconstructed as a gray scale image, or using any color set given by the user
application. The benefits of the semantic separation are better compression
performance, and that the layers to be shown can be selected at the time of
viewing.

The second approach, color separation, can be used when we have only raster
color image as the original map, and it contains only a limited number of colors
(Tompkins and Kossentini, 1999). The image is divided into binary layers so that
each layer represents one color in the original image. The drawback of the color
separation is that information of the original semantic separation cannot be
recovered. Furthermore, the color separation create artifacts into the binary layers,
see Fig. 3. For example, overlapping text elements break the continuation of the
fields and lakes. This does not decrease the quality of the image but it increases the
complexity of the image, and thus, the compressed file size.

The third approach, bit-level separation, must be applied when we have the
original map only as a raster image, and the number of different colors is too high
for efficient color separation. For example, the image might have been digitized
from a paper copy and stored using lossy compression method, such as JPEG
(Pennebaker and Mitchell, 1993). In the bit-level separation, the number of colors
are first reduced by quantizing the image into a limited-color representation of
a 256 colors or gray-scales. The resulting pixel values are then separated into bit
planes using Gray coding (Weinberger, Rissanen and Arps, 1996), and the image
is represented as a sequence of binary images.

Topography &
contours

Administrative
borders

Elevation lines Water Fields

Color 1 Color 2 Color 3 Color 4 Color 5

Fig. 3. Example of the image decomposed into binary layers by semantic separation
(above), color separation (below)

2.4 Block Decomposition for Direct Access

The binary layers are divided into b�b non-overlapping rectangular blocks before
the compression, and each block is compressed separately from others as proposed
by Ageenko and Fränti (1998). The compressed blocks are stored in the same file,
and an index table is stored in the header of the file to locate the starting points of
the code blocks, see Fig. 4. When the compressed image is accessed, a block index
table is constructed. This provides direct access to the compressed image file and
enables efficient decompression of smaller fragments of the image.

The block decomposition has the effect that there are fewer pixels to be coded
in the same run. It means that the model has less time to adapt to the statistics of
the image. Another problem is the compression inefficiency near block boundaries.
This is because the pixels located outside the block cannot be used in the context
template. Previous studies indicate that the compression inefficiency remains
tolerable if the block size is 256�256 pixels or higher (Ageenko and Fränti, 1998).

Somewhat better compression performance can be obtained using the following
two modifications. First idea is to apply a forward-adaptive variant of the
statistical modeling based on the ideas presented by Ageenko and Fränti (2000a).
The forward-adaptive variant uses a pre-calculated initial model, which is
constructed using the statistics collected from the entire image layer. This requires
an additional pass over the image but it does not affect the speed of the
decompression. The second idea is to use variable-size context modeling technique
as described by Ageenko and Fränti (2000b). This technique reduces the size of
the model, and it allows using larger context templates. These modifications can
provide about 20% improvement in the compression performance.

1 2 43

5 6 ...

... BB-1

MQ-coder1

2

B

...
Encoded

data

Headerpixel

update

Image Blocks Encoder Compressed
blocks

Compressed
file

Sequential buffer

Index
1

2

B

...

Model

context

B...31 2

B...321

Fig. 4. Diagram of the block decomposition

2.5 Compression phase

The compression of a single map image is performed using the following steps:

1. Layer decomposition
2. Block decomposition
3. Compression

In the first step, the image is decomposed into the binary layers (unless the
semantic decomposition already exists). The color space is enumerated and the
number of required bit planes are generated. The resulting color palette is stored in
the compressed file. If the palette is not stored, the image will be reconstructed as
a gray scale.

In the second step, the layers are partitioned into blocks. If the forward-adaptive
modeling variant is applied, non-empty blocks of the entire layer are analyzed and
the statistical model is built and stored in the compressed file. The emptiness of a
block is determined by checking whether all pixel values in the block are of the
default color value.

In the third step, the series of the bit planes are compressed. Each non-empty
block is compressed using context-based modeling and the MQ-coding algorithm.
The context is determined by the standard 10-pixel template but we also permit the
use of customized multi-level context-templates, e.g. such as described by
Kopylov and Fränti (2002). The MQ-coder is reinitialized every time when the
compression of a new block starts. The initialization resets the models either to the
default model (50-50 probabilities), or to the optimized model (optional).

2.6 Use in the Client Device

A typical use scenario of the map image storage system (MISS) is to show the area
surrounding the object whose position is tracked. The scale can be set by the user
or it can be automatically determined on the basis of the speed, or other parameters
defined in the application. The maps for the particular region are stored in the
client’s viewing device (flash memory, hard disk, CD), or the images can be

located in a remote server and accessed via communication network (Internet,
GSM, GRPS)

The system uses the following steps to show the current view on the map. First,
the file possessing the map of the desired location is accessed and its header part is
retrieved in memory. From the header, the type and structure of the image are
determined, and the block index table is built. The table indicates the size and
location of each block in the compressed file. All supplementary data required for
image decoding (such as initial model and possible context tree) are also retrieved
and kept in memory until this particular map image is no longer used.

Next, depending on the requested location, the system calculates the image
fragment needed to be displayed. The blocks covering this fragment are retrieved
and decoded. If the map image is accessed remotely, the retrieved blocks are also
stored (in compressed form) in the local storage space for further use. When the
position of the object changes, the view is updated by decoding new image blocks
in the direction of movement, see Fig. 5.

To speed-up the access to the image, the system may use cache for temporary
storage of the decompressed image blocks, see Fig. 6. The size of the cache can be
fixed, or it can be determined by the amount of free memory. The performance
may be further improved by exploiting an idle time for decoding neighboring
blocks further in the direction of movement, before the blocks are actually
requested. In practice, it is convenient to buffer the data according to the block
boundaries.

Fig. 5. Image decoding in real-time system. Nine blocks are first decompressed and stored
in the cache (left). Change of location is then registered (middle), and new image blocks are
then decompressed and the view updated (right)

Block index:

Video buffer

Display
CacheOriginal image

an active view

1 2 3

3635

8

13

30

7

HEADERSCompressed image file: 1 2 3 20 21 22... ...

1 2 3 ... 20 ...2321 22

9 10

161514

20 21 22

8

Fig. 6. Illustration of the cache operation

3 Experimental Results

We study next the compression performance and the retrieval times of the
proposed storage system. The following methods are considered in the
comparisons: MISS (the proposed method), JBIG2 (ISO/IEC, 1999), TIFF G4
(Arps and Truong, 1994), GIF (Miano, 1999), PNG (Roelofs, 1999) and RAW
(uncompressed).

We use four images taken from the topographic database by National Land
Survey of Finland (1999). The images consists of five layers, each of the size
5000�5000 pixels, and the scale 1:20 000. This corresponds to resolution of two
meters per pixel. We use two versions of the images. The Set #1 (semantic
decomposition) includes the images when separated into the five semantic layers.
The Set #2 (color separation) contains the same set of images but after the
following processing. Color image is first constructed from the original semantic
layers, and color separation is then performed to estimate the original division, see
Fig. 3. This represents the situation, in which only the color image is available as
the original.

3.1 Compression Performance

The compression results have been summarized in Table1. The average
compression performance of MISS is about 0.20 bits per pixel but the result
depends on the complexity of the image. The MISS files take about 5-15% more
space than that the JBIG2 files, on average, but 50-65 % less than the comparative
methods (TIFF-G4, GIF, PNG). The MISS, on the other hand, is the only method
that supports direct access to the compressed file. The results in Fig. 7 shows that
most of the bits (about 54 %) originates from the basic information, whereas the

water and fields are rather easy to compress. The compression results between the
Set #1 and Set #2 are not significant.

The effect of the block size is illustrated in Fig. 8. The optimal block size is
around 350�350 to 500�500 in terms of compression performance. With the
chosen 100�100, the files sizes are slightly bigger but this block size allows more
dense tiling, and hence, more accurate buffering with less memory resources, and
smaller transmission and decompression delays.

Table 1. Compression results (kilobytes) for the Set #1 (semantic decomposition)

 MISS JBIG2 TIFF G4 GIF PNG RAW
Image 1 247 197 372 727 602 15259
Image 2 1109 969 2382 2866 2608 15259
Image 3 395 327 604 1142 1100 15259
Image 4 840 759 1540 2633 2534 15259
Total 2591 2252 4899 7367 6845 61035
Bpp 0.21 0.18 0.40 0.60 0.56 5.00

0

200

400

600

800

1000

1200

1400

Kb

Image 1 Image 2 Image 3 Image 4

Fields
Water
Property
Elevation
Basic

#1
#2

#1

#1

#2

#2

#1
#2

Fig. 7. The proportion of the layers in the compressed MISS files for
the Set #1 (left columns), and Set #2 (right columns).

2000

2200

2400

2600

2800

3000

10 100 1000 10000

Block dimension, pixels

C
od

es
iz

e,
 K

by
te

s

Fig. 8. The effect of the block size on the code size for the Set #1

3.2 Retrieval Timings

We consider next the retrieval performance of the proposed system by measuring
time required to transmit and decompress a desired part of the map. We assume
that the client device buffers the image data according to the nearest block
boundaries.

The decompression times are summarized in Table 2 when decompressing the
complete 5000�5000 images. The results show that the better compression
performance of the MISS has been obtained at the cost of 10-20 times slower
decoding speed in comparison to GIF and PNG. The decoding speed of MISS
corresponds to 973,710 pixels per seconds for the images in the Set #1, on
average. Using this result, we calculated sample retrieval timings for several screen
sizes with varying computing power and transmission speeds.

Table 2. Decompression times (s) for the Set #1 using a processor of 1000 MIPS

 Method:
Image: MISS GIF PNG

Image 1 25.9 2.1 1.2
Image 2 31.4 2.5 1.4
Image 3 18.4 2.2 1.1
Image 4 27 2.2 1.3

Total 102.7 9.0 5.0

We consider the following three transmission networks: (1) GSM capable of 9600
bits per second; (2) high speed GSM capable of 14400 bits per second; (3) GRPS
network, capable of 48 kilobits per second. Typical hand-held devices have

relatively low computing power; we consider three speeds (10, 50, 100 MIPS) that
roughly correspond to the computing power of the current low-cost compact
devices. The retrieval timings are calculated as:

 Transmission time = compressed data size / channel bandwidth

 Decompression time = uncompressed image size / decoding speed

The results are summarized in Table 3 for retrieving a full screen. It is shown that
the data for a reasonable size screen can be transmitted and decompressed in real-
time using existing networks and relatively low-speed devices. For example,
screen size of 150�150 equals to 22,500 pixels, and 0.21�22,500 = 4,725 bits.

Table 3. Transmission and decompression times for retrieving full screen

 Transmission times (s): Decompression times (s):

Screen
size:

9600 bps
(GSM)

14400
bps

(hs-GSM)

48 kbps
(GRPS)

10 MIPS 50 MIPS 100 MIPS

100�100 0.22 0.15 0.04 1.03 0.21 0.10
150�150 0.49 0.33 0.10 2.31 0.46 0.23
200�200 0.88 0.58 0.17 4.11 0.82 0.41
250�250 1.37 0.91 0.27 6.42 1.28 0.64

4 Conclusions

We have proposed a map image storage system (MISS) for real-time applications
that use low performance portable devices. The system architecture is designed to
minimize storage size, transmission time, and memory requirements. Compact size
is achieved by context-based statistical compression. Direct access to the
compressed image file is supported and it allows to transmit/decompress partial
images. This minimizes the transmission time and memory requirement in the user
device. These properties together enable the real-time use of large map images.

Acknowledgments

The work was supported by the National Technology Agency of Finland (TEKES)
as the projects Real-time cartography imaging and Dynamic use of maps in mobile
environment.

References

Ageenko E and Fränti P (1998), "Enhanced JBIG-based compression for satisfying
objectives of engineering document management system", Optical Engineering, 37:
1530-1538.

Ageenko E and Fränti P (2000a) "Forward-adaptive method for compressing large binary
images," Software Practice & Experience, 29: 943-952.

Ageenko E and Fränti P (2000b) "Compression of large binary images in digital spatial
libraries", Computer & Graphics, 24: 91-98.

Arps RB, Truong TK (1994) "Comparison of international standards for lossless still
image compression, Proceedings of the IEEE 82: 889-899.

Dye S, Buckingham S (1999) Mobile Positioning, Mobile Lifestreams.
Gellersen HW, Thomas PJ (eds.) (2000) Proc. 2nd International Symposium on Handheld

and Ubiquitous Computing (HUC’2000), Bristol, UK, Springer Verlag, September.
GeoData (1999) CD-tiekartasto Suomi 1:250 000 (CD Roadmap Catalog Finland), WSOY,

Helsinki. (in Finnish)
Fränti P, Ageenko E, Kopylov P and Gröhn S (2002), "Compressing multi-component

digital maps using JBIG2", Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, (ICASSP’02), Orlando, Florida.

Haskell BG et al (1998) "Image and video coding – emerging standards and beyond," IEEE
Trans. Circuits and Systems for Video Technology, 8: 814-837.

Howard PG, Kossentini F, Martins B, Forchammer S and Rucklidge WJ, (1998) "The
emerging JBIG2 standard," IEEE Trans. Circuits and Systems for Video Technology,
8: 838-848.

ISO/IEC (1993) Progressive Bi-level Image Compression, 11544, ITU-T Recommendation
T.82.

ISO/IEC (1999) Final Committee Draft for ISO/IEC International Standard 14492.
(http://www.jpeg.org/public/jbigpt2.htm)

Kaplan ED, (ed.) (1996) Understanding GPS: Principles and Applications, Artech House
Telecommunications Library.

Kopylov P and Fränti P (2002), "Context tree compression of multi-component map
images", IEEE Data Compression Conference (DCC’02), Snowbird, Utah, April 2002.

Kraak M-J, et al, (1996) Cartography : Visualization of Spatial Data, Addison-Wesley.
Kraak M-J, Brown A (2000) Web Cartography, Taylor & Francis.
Langdon GG, Rissanen J (1981) "Compression of black-white images with arithmetic

coding", IEEE Trans. Communications 29: 858-867.
Miano J (1999) Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP, (ACM

Press), Addison-Wesley , Boston.
Murray JD, vanRyper W, Russell D (eds.) (1996) Encyclopedia of Graphics File Formats,

2-nd ed, O’Reilly Associates Inc.
National Land Survey of Finland, Opastinsilta 12 C, P.O.Box 84, 00521 Helsinki, Finland.

(http://www.nls.fi/index_e.html)
Pennebaker WB, Mitchell JL (1993) JPEG Still Image Data Compression Standard. Van

Nostrand Reinhold, New York.
Pennebaker WB, Mitchell JL, Langdon GG, Arps RB (1988) “An overview of the basic

principles of the Q-coder adaptive binary arithmetic coder,” IBM Journal of Research
and Development, 32: 717-726.

Roelofs G (1999) PNG: The Definitive Guide, O'Reilly & Associates, Cambirdge, MA.
Tompkins D, Kossentini F (1999) "Additional Extension Segments for JBIG2," ISO/IEC

JTC 1/SC 29/WG1 (ITU-T SG8), Document No 1318.
Weinberger MJ, Rissanen J, Arps R (1996) "Application of universal context modeling to

lossless compression of gray-scale images," IEEE Trans. Image Processing, 5:
575-586.

