
Representation of Map Objects with Semi-
Structured Data Models

Emmanuel Stefanakis

Department of Geography, Harokopio University, 70 El. Venizelou Ave., 17671
Athens, Greece, e-mail: estef@hua.gr

Abstract

Mapping agencies world-wide produce a range of different types of maps, in
efforts to meet different user requirements. These maps are usually designed in a
digital environment and some of them are distributed through the World Wide
Web. One important issue for those agents is the appropriate modelling and
handling of map objects from which the digital maps are composed. , This paper
focuses on this aspect and as such addresses two aspects. First, the semi-structured
nature of data composing a map is discussed. Second, the Object Exchange Model
(OEM), a popular model for semi-structured data, is adopted to represent a map.
Several configurations regarding the representation of a map in OEM are
proposed. Finally, it is shown how useful information can be extracted from those
configurations using Lorel query language for semi-structured data.
Keywords: semi-structured data, OEM, Lorel, XML

1 Introduction

Semi-structured data has recently emerged as an important topic of study for a
number of reasons (Buneman, 1997): (a) there’s a need to handle data sources
that cannot be constrained by a schema, through the web (b) there’s a need for a
flexible format for data exchange between remote databases, and (c) there’s a
need to assist the browsing on (structured or semi-structured) data based on a self-
describing schema. The use of semi-structured data models has been investigated
in the past mostly in more traditional data, such us data for bibliographic
databases. Expressive data models for representing semi-structured data have been
proposed and efficient languages to query semi-structured data have been
developed (Abiteboul, 1997; Suciu, 1998).

This study focuses on the use of semi-structured data models for representing
map objects. Currently there’s an increased demand from mapping agencies to

�����
����

���
���

���
	���

���������	�
��
��
�����������������

���������
��
�
�������������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

produce digital products and distribute them electronically through the web (Kraak
and Brown, 2001). When applicable, map objects are modelled using proprietary
models of software systems (CAD, GIS, etc.) which are applied to generate the
digital maps. Although, some of those systems already use sophisticated models,
such as the object-oriented model, several deficiencies emerge. First, map data is
usually only semi-structured and traditional database models are not well suited to
represent it, primarily because they assume a constrained schema. Second, the
database schema is strict and when data is exchanged well described metadata
should accompany the data so that the recipient is well advised of the detail.

The scope of this paper is twofold. First, to discuss the advantages of using
semi-structured data for composing a map, and second, to show how semi-
structured data models can be adapted to model map data. Taking into account the
current developments on the web technology and the rapid spread of XML
(eXtensible Mark-up Language) (W3C, 1998) and its extensions, the reader would
expect the above specification to be adopted for modelling map objects. However,
this is not the case in this paper, and OEM (Object Exchange Model)
(Papakonstantinou et al., 1995) has been chosen instead. There are several reasons
for making this choice.

First, OEM is a pure database model for semi-structured data, in contrast to
XML, which has been built for the exchange of structured data over the web. It is
argued (Abiteboul et al., 2000) that the XML specification and its extensions,
although suitable for modelling semi-structured data, will not solve the problem of
efficiently extracting the required portion of the underlying data, in other words,
XML does not efficiently query large sets of data and extract the required
information. The solution to this problem is in part through the development of
parallel databases that have semi-structured data. It is therefore well recognised
that the combination of XML with semi-structured data models (OEM is the most
popular of them) will yield a new technology for web data (Abiteboul et al., 2000)
and generally for information exchange across agencies.

Second, considerable efforts have been given to advancing or improving the
representation of geographic information with XML, and GML (Geographical
Mark-up Language) (OpenGIS, 1999). On the other hand, the representation of
geographic information with semi-structured data models does not, as yet, appear
to have been fully investigated.

Third, it has already been shown that an OEM representation can be generally
mapped to an XML file (Suciu, 1998; Abiteboul et al., 2000). XML does not have
an associated data model, OEM on the other hand, provides a more suitable and
convenient environment to model data.

The discussion is organized as follows. Section 2 briefly presents the
application requirements, i.e., the modelling of map objects, and provides a
simplified example of a map object collection, to demonstrate the discussion.
Section 3 briefly presents the Object Exchange Model (OEM), which is the most
popular semi-structured data model found in the literature (Papakonstantinou et
al., 1995) and has been adopted in this study. Section 4 elaborates on the semi-
structured nature of data involved in a map. Section 5 shows how an individual
map can be modelled in OEM, while section 6 is focused on the operational

issues. Specifically, it shows how Lorel language, designed to query semi-
structured data (Abiteboul et al., 1997; Quass et al., 1995), can be used to extract
information from an OEM representation of a map. Finally, Section 7 concludes
the discussion by summarising the contribution of the paper and giving hints for
future research.

2 The Application Domain

A map, either on paper or in digital form, can be seen as a database. It consists of
a set of objects (or entities), the map objects, which represent real world entities,
physical (e.g., a road, a river, etc.) or conceptual (e.g., poverty, criminality, among
other aspects.), on the map. The representation of an entity on the map may take
different forms, depending on the map scale, the map content, or the map scope
(Keates, 1989).

Any map object, presented either in analogue or digital form, can be considered
as the representation instance of some real world entity. A map object has several
dimensions. First, it has a unique identifier. Second, it is assigned the identifier of
the real world entity it represents. Third, it has a specific cartographic symbol.
Fourth, it is positioned in a specific location on the medium, namely it has
geometry. Both the symbol and geometry are characterised by the symbol type,
which may be (Keates, 1989): (a) point, (b) line, (c) area, and (d) text, or
combinations of them. Each symbol, depending on its type, is described by
appropriate graphic parameters, such as form, dimension, colour, orientation,
pattern, font, etc.

Fig. 1a presents a simplified example map. This map consists of a set of map
objects, which represent real world entities on a paper medium. These objects are
assigned unique identifiers (Fig. 1b). Letters P, L, A, and T refer to the type of the
symbol, i.e., point, line, area and text, respectively. The bridge located at the
crossing between main road L2 and lake A1 (LakeA) is a point symbol, with
parameters: colour = “black”, orientation = 30deg, dimension = 8mm, form = “II-
like” (a geometric description might be given instead). Main road L2 is a line
symbol, with parameters: colour = “red”, dimension (i.e., width) = 2mm, form =
“solid line". LakeA, represented by A1, is an area symbol, with parameters: colour
= “cyan”, pattern = “plain”. Finally, annotation “LakesB”, represented by T2, is a
text symbol with parameters: colour = “black”, font = “Times bold”, dimension =
“16pt”, orientation = -45deg.

The map objects geometry, is a function of symbol type. In other words, the
map object geometry can be seen as an ordered set of primitive geometric
elements. An element is the basic building block of geometry, i.e., point, line (or
polyline) and area (or polygon). This schema, also adopted in spatial database
management systems (DBMS), such as Oracle Spatial (Oracle, 2000), is capable
of modelling simple and complex map object geometries. Text objects can be
handled as objects of type either point or line. In the former case, text centroid is

the point of reference. In the latter case, a polyline models text curvature (Keates,
1989).

LakeA

CityA
CityB

LakeA

CityA
CityB

L1

L2

L3 L4
L5

A1

A2

A3

A4 A5
A6

P1

T1 T2

T3 T4

(a) (b)

Fig. 1(a) A simplified example map, (b) with map objects labelled

Although the map in Fig. 1 contains only a few simple symbols and by no
means can be considered as a complex map representation, it is adequate to assist
the discussion on the highlights of semi-structured data necessary for composing
a map. Further, it will show how semi-structured data models can be used to
efficiently handle map objects.

3 Semi-Structured Data and the Object Exchange Model

The observation that much of today’s electronic data does not conform to
traditional relational or object oriented models, combined with the need to
integrate heterogeneous data, has led to the development of data models for
handling semi-structured data. Additionally, query languages for handling this
data have recently been proposed and investigated (Abiteboul, 1997; Buneman,
1997; Suciu 1998).

Semi-structured data is characterised by an irregular structure. Some objects
may have missing attributes, while others may have multiple occurrences of the
same attribute. Further, a single attribute may share different objects, and
semantically related information may be represented differently for various
objects.

The most popular model of semi-structured data is the Object Exchange Model
(OEM) (Papakonstantinou et al., 1995), originally introduced for the Tsimmis data
integration project (Chawathe et al., 1994). OEM is a simple, self-describing,
model, where data is represented by a collection of objects. There is no need to
define the structure of an object in advance, and there is no notion of a fixed
schema or object class. In a sense, each object contains its own schema.

Every object in the OEM data model has an identifier, a label, a type, and a
value. The identifier uniquely identifies the object among all objects in the domain
of interest. The label is a string (the tag) presumably denoting the “meaning” of
the object. Labels may be used to group objects by assigning the same label to
related objects. Labels are usually drawn from a universe of label names. The type
refers to the data type of object value. The value can be of a scalar type, such as an
integer or string, or it can be a set of (sub)objects.

Each object may be atomic or complex. The value of an atomic object is of
some base type (e.g., integer, string, image, sound, etc.). The value of a complex
object is a set of subobjects, i.e., a set of object identifiers.

OEM is a collection of tagged values and is usually represented as a graph,
where the nodes are the objects, the edges are labelled with object labels, leaf
nodes are atomic objects associated with an atomic value, and non-leaf nodes are
complex objects pointing to their subobjects. The graph also has a root, which is a
distinguished object with access to all other objects.

OEM is much simpler than object-oriented models. It supports only object
nesting and object identity, while other features such as classes, methods, and
inheritance are omitted. When dealing with semi-structured data the OEM has
several advantages as compared to relational or object-oriented models
(Abiteboul, 1997; Buneman, 1997; Suciu, 1998).

A representative general-purpose data management system for semi-structured
data, which uses OEM, is Lore (Lightweight Object Repository), which provides
Lorel query language (Quass et al., 1995). Notice that contrary to traditional data
models, in OEM it is not required to be aware of the schema in order to pose a
query. The schema can be discovered as queries are posed (Papakonstantinou et
al., 1995).

4 Map Objects are Semi-Structured in Nature

Data involved in a map forms a special category of semi-structured data. The
following paragraphs explore this issue.

The symbols used to represent real world entities on the map may have a
complex type described by many and variable parameters. Specifically, there are
four basic symbol types, i.e., point, line, area or text, which can also be combined.
Each type is described by different parameters (Keates, 1989). For instance, a
point symbol is usually described by three parameters: form, colour, and
dimension. There are, however, cases where more parameters are applied, such as
orientation for non-symmetric symbols, or additions, extensions and iconic forms
depending on the choice of the cartographer. The use of images, in place of point
symbols, is also possible. Things are more complicated when dealing with line or
area symbols, where additional parameters may be present, such as multiple lines,
or area patterns with variable orientations and densities. Text symbols, used in
annotations, are also hard to model, provided that a text is described by its colour,

type (or font), size, rotation and curvature. The whole problem of modelling
symbols becomes much more complex if the requirement calls for symbols that
combine two or more types, e.g., point and area types, or all three point, line and
area types. Hence, it is hard to generate a schema in advance that can describe
every symbol used in the map, especially in a cartographic organisation, where
symbology is a subject of continuous revision.

The granularity of space, i.e., the precision of coordinates describing geometry,
is variable and depends on source data and map scale. Hence, the geometry of a
map object is expressed with variable precision. Even further, in some cases the
coordinate reference system for geometries may not be the same for all map
objects. This situation may occur when geometric data is derived from different
sources (e.g., land surveys, photogrammetric detail, and paper map digitisation,
among others) and they are maintained in the database without being transformed
to a common reference system. The simultaneous and integrated visualisation of
this type of data can only be obtained by performing appropriate registration
procedures.

The units used to express the parameters of symbols may not be unique. For
instance, line width may be expressed in units on the map or on the ground. In
addition, the units in each case may vary between symbols. For example, the use
of mm/inches or meters as integers/meters as floats with two decimal figures,
respectively. Another example concerns the colour value, which can be expressed
as a triple in a RGB system, as another triple in a HSL system or simply as a
standard string, such as “dark red”.

All features above render objects involved in a map to form a category of semi-
structured data. It is apparent that defining a schema, that uses traditional data
models, and that will meet the future modelling requirements of the larger
mapping agencies (e.g., national cartographic organisation) is a complex and
demanding task. It seems that a more convenient configuration is the adoption of a
semi-structured database (Suciu, 1998), which does not require an a-priory
schema, and is based on a self-describing model that is readily extensible.

The following discussion is focused on how a semi-structured data model, and
specifically OEM, can be applied to model map objects.

5 Representation of a Map in OEM

Consider the map in Fig. 1. This map can be modelled in OEM. The map consists
of complex and atomic objects. An example of an atomic object is the dimension
(i.e., width) of a linear symbol, e.g., “1.5 mm”. Another example is a point
location described by a string that has two double numbers, the coordinate values
for X and Y in a reference system, separated by a comma; for example, the UTM
coordinates “515456.67, 4125113.71”.

An example of a complex object is the main road, the thick solid line,
represented by L2, in the map. This object has four sub-objects (with labels) which
are as follows:

(a) “oid”, an atomic object with a value that the user identifier assigns to the
representation instance, i.e., L2;

(b) “type”, an atomic object that accommodates the value “line” and describes
the symbol type used to represent the road;

(c) “geometry”, an atomic object with a value of type string, e.g., “12, 515356.67,
4125003.71, 515358.23, 4125110.29, …, 515528.14, 4125998.18”, where the
first integer, i.e., 12, refers to the number of vertices composing the polyline,
and the twelve pairs of numbers that follow are the UTM coordinates of
polyline vertices, separated by commas, and;

(d) “parameters”, a complex object, that points to three sub-objects, with labels
“colour”, “form” and “size”.

Objects labelled as “form” and “size” are atomic, with values “solid line” (a

string) and 2.0 (a float) respectively, while an object labelled as “colour” is a
complex object pointing to three atomic objects labelled as “hue”, saturation”, and
“lightness” with values 0, 240, and 120 respectively, representing in this case,
red.. Fig. 2 presents the graphical and textual representation of the main road in
OEM. Notice that mo stands for “map object”.

mo

&1

&5&4

geometry
parameters

"12, 515356.67, 4125003.71,

…, 515528.14, 4125998.18"

&8

size

&6

color

&7

form

0

"solid line" 2.0hue
saturation lightness

120240
&11&10&9

&3

type

"line"

&2

oid

"L2"

<&1, mo, set, {&2, &3, &4, &5}>
 <&2, oid, string, “L2”>
 <&3, type, string, “line”>
 <&4, geometry, string, “12, 515356.67,
 4125003.71,…,515528.14, 4125998.18”>
 <&5, parameters, set, {&6, &7, &8}>
 <&6, colour, set, {&9, &10, &11}>
 <&9, hue, integer, 0>
 <&10, saturation, integer, 240>
 <&11, lightness, integer, 120>
 <&7, form, string, “solid line”>
 <&8, size, float, 2.0>

Fig. 2. Example representation of a map object in OEM

It is clear, that in the above case, the OEM representation is based on some
hidden semantics. For example, the size of line symbol refers to its width and is
expressed in millimetres. If units are not the same, the label may be used to
convey this fact. For example, label “size” can be replaced by label “size-in-mm”
(Papakonstantinou, 1995), and similar aspects apply to the “form”, of the
coordinate reference system, among other aspects.

In addition, the representation of polyline geometry as a string assumes that the
parser is aware of the string syntax. An alternative way to represent this geometry
is by a set of point objects, i.e., the vertices of the polyline. At this point the
problem of ordering the vertices, in an effort to form the polyline, arises. One way

to overcome this inefficiency is to use appropriate labels on point objects, which
can depict the sequence of vertices. An alternative way is to represent each point
as a complex object with two sub-objects, which consist of the point order in
polyline and the point location. A third solution is to extend OEM, so that
complex objects accommodate ordered lists of sub-objects instead of sets. This
last solution has been already proposed for mapping an OEM to an extensible
mark-up language (XML) document (Suciu, 1998b). The latter is by definition
ordered, while the former is not. As for the point geometry representation, the
“X,Y” string can be readily replaced by two atomic objects with labels “x” and
“y”, and of type double.

In the following, geometry in 2D space is represented according to the
configuration shown in Fig. 3. Specifically, point geometry is a complex object,
which points to two atomic sub-objects, with labels “x” and “y”. These sub-
objects accommodate projection or geographic coordinates of the point location in
space. Line geometry is a complex object, which points to as many sub-objects
(with labels “vertex”) as the number of vertices composing the line. Each sub-
object is in turn a complex object, which points to three atomic sub-objects, with
labels “x”, “y” and “order”, where the first two accommodate the coordinates of a
line vertex, whereas the third is the order of this vertex in the polyline. In a similar
way, area geometry is represented. The only difference, which does not affect
OEM representation, is that area outline has one more line segment, connecting
the last vertex in the sequence with the first. Notice that this geometry
representation scheme is compatible with original OEM definition, where no
ordering of sub-objects is assumed.

point
geometry

&1

&3

y

4125003.71
&2

x

515356.67

line (area)
geometry

&1

vertex

&2

vertex

&7

y

4125003.71
&6

x

515356.67

vertex

&5

order

1

&3

&10

y

4125110.29
&9

x

515358.23
&8

order

2

vertex

&4

&13

y

4125998.18
&12

x

515528.14
&11

order

12

vertex

Fig. 3. Geometry representation in OEM

Coming back to the map in Fig. 1, it can also be seen as a complex object,
consisting of a set of sub-objects, the representation instances of cartographic
entities (i.e., the map objects). Hence, OEM can be used to model this map. In the
graphical representation of OEM, the root of the graph is the map, while the leaves
accommodate the user identifier (oid), the geometry, the symbol type and the

symbol parameters of the map objects. Fig. 4 presents a portion of the OEM
diagram used to represent the map. For simplicity, several symbol parameters are
relatively abstract, e.g., a unique string represents colour (e.g., “red”).

As mentioned previously, the object label in an OEM can, by definition, be
used to group related objects. Hence, objects may primarily be grouped based on
their type, i.e., point, line, area, and text. Further, they may be grouped based on
their properties. For example, all linear objects representing roads can be nested in
a super-object labelled as “road network”. Obviously, this configuration
approaches a cartographic database (or GIS database) organisation.

The use of symbols in representing cartographic entities is not arbitrary. It is
usually based on some standards adopted by organisations or companies
producing maps. In most cases, those standards define the symbol types and
parameters to represent a cartographic entity at a specific scale. Such a standard
forms a symbol library (Robinson et al., 1995). It is a common practice to model a
symbol library in a separate schema, where map objects point to.

map

&1

&2

mo

mo

mo mo

mo

&4

mo

mo

mo

&5

&9&8

geometry
parameters

&27

&26

&25

size-mmcolor

form

&3

&13&12

geometry parameters

&33&32&31

size-mmcolor
form

&17&16

geometry
parameters

&37&36

patterncolor

&21&20

geometry

&42&41&40

size-pt
color

type

&43

rotation-deg

"black"

"red"

"cyan" "plain"

"II"
(geometry

description)

8

&28

rotation-deg

30

"solid
line"

2
"black"

"Times" 18 0

parameters

&7

type

"point"

&11

type

"line"

&19

type

"text"

&15

type

"area"

&6

oid

"P1"

&10

oid

"L2"

&14

oid

"A1"

&18

oid

"T1"

&23

x

&24

y

&29

vertex

&30

vertex
vertex

515356.67

&45

x

&46

y

4125003.711

&44

order

&48

x

&49

y

12

&47

order

&34

vertex

&35

vertexvertex

&51

x

&52

y

1

&50

order

&54

x

&55

y

23

&53

order

&38

x

&39

y

515488.72

4125483.34

515528.14

4125998.18

515071.71

4125823.32

515052.11

4125808.81

515458.03

4125738.98

&22

text

"LakeA"

Fig. 4. A portion of the OEM diagram used to represent the map of Fig. 1

When an OEM is adopted to represent the maps of an organisation, a separate
OEM can be adopted to accommodate the common symbols used in these maps.
Fig. 5 presents a portion of an OEM diagram used to model the symbol library
adopted in the map of Fig. 1. The same figure shows an alternative version of
OEM in Fig. 4, whose map objects point to the symbol library. Geometry sub-
objects are omitted for simplicity.

This configuration is flexible, when graphic limitations or other reasons require
the representation of a cartographic entity and it’s symbol, which does not
conform to the symbol library standard or is not included in the symbol library. In
this case, the specific symbol parameter object is attached to the map object
directly as a sub-object. An example is given in Fig. 5, for the bridge map object
P1.

6 Operational Issues

The discussion so far has focused on the representation of a map in OEM. It is
argued that this is a convenient practice, due to the semi-structured nature of the
map objects involved. The rest of this discussion is focused on handling issues
such as extracting information from an OEM representation of a map. The task to
be accomplished requires the existence of a query language, able to handle semi-
structured data.

In the past, several languages have been proposed to query semi-structured data
(Abiteboul, 1997). This study adopts Lorel, the query language supported by Lore
system (Quass et al., 1995), which makes use of the OEM data model. Lorel query
language is a compatible extension to the OQL object-oriented query language
(Cattell, 1994), with new features designed specifically for querying semi-
structured data. Briefly, those features are: partially specified path expressions,
wildcards, automatic type coercion in comparisons, and a special semantics for
disjunction. Unlike OQL, Lorel does not enforce strong typing, and allows
querying and schema browsing when the object structure is unknown or partially
known. In other words, the uniqueness of Lorel includes: (a) the extensive use of
coercion, and (b) the powerful path expressions (Abiteboul et al., 1997).

The scope of this Section is to show how Lorel can be used to support some
basic queries in the application domain of handling a map, which has been
modelled using a semi-structured data model, specifically OEM. This task is
accomplished through a series of examples. For brevity, it is assumed that the
reader is familiar with Lorel query language syntax (Abiteboul et al., 1997). All
example queries refer to the database (fragment) in Fig. 6. The database refers to
the map shown in Fig. 1. The graphical OEM representation of this database is
given in Fig. 4.

The textual syntax adopted in Fig. 6 has been simplified according to Abiteboul
et al. (1997). Tabs have been used to represent the nesting of objects. Each object
has a unique object identifier (obj_id). Some objects are atomic and contain a
value from one of the disjoint basic types, e.g., integer, real, string, gif, html,

symbol library
(scale 1:K)

&101

point
entities

line
entities

area
entities

text
entities

&102

&105

&104

&103

village
height
point

road
network

railway
networkcontour

&109

main
roads

secondary
roads

&116 &117

forest
citylake

&106 &107

&108 &110

&111 &112 &113

&114 &115

city
name

lake
name

form
size

color

form
size

color

form
sizecolor

form sizecolor

patterncolor

pattern
color

type
sizecolor

type sizecolor

map

&1

&2

mo
mo

mo

mo
mo

&4

mo

mo

&5

&9&8

geometry
parameters

&27&26&25

size-mmcolor form

&3

&12

geometry

parameters

&16

geometry

parameters

&20

geometry

parameters

"black" "II"
(geometry

description)

8

28

rotation-deg

30

rotation

rotation

&120&119&118

"red" "solid
line"

2

&122&121

"cyan" "plain"

&125&124&123 &126

"Times" 18 0
"black"

&7

type

"point"

&11

type

"line"

&15

type

"area"

&19

type

"text"

&6

oid

"P1"

&10

oid

"L2"

&14

oid

"A1"

&18

oid

"T1"

&22

text

"LakeA"

pattern
color

form
sizecolor

form
sizecolor

Fig. 5. The symbol library and an alternative version of OEM in Fig. 4

audio, java, etc. All other objects are complex; their value is a set of object
references, denoted as a set of (label, obj_id) pairs. The labels are all taken from
the atomic type string.

Notice that “object identifiers” retrieved in most of the query examples that
follow and denoted by “oid” refer to the user-defined labels assigned to map
objects in Fig. 1b (e.g., P1, L3, A5) and differ from those system-generated object
identifiers (denoted by “obj_id”) described in the previous paragraph.
map &1
 mo &2
 oid &6 “P1”
 type &7 “point”
 geometry &8
 x &23 515488.72
 y &24 4125483.34
 parameters &9
 color &25 “black”
 form &26 “II”
 size-mm &27 8
 rotation-deg &28 30
 mo &3
 oid &10 “L2”
 type &11 “line”
 geometry &12
 vertex &29
 order &44 1
 x &45 515356.67
 y &46 4125003.71
 …
 vertex &30
 order &47 12
 x &45 515528.14
 y &46 4125998.18
 parameters &13
 color &31 “red”
 form &32 “solid line”
 size-mm &33 2

 mo &4
 oid &14 “A1”
 type &15 “area”
 geometry &16
 vertex &34
 order &50 1
 x &51 515071.71
 y &52 4125823.32
 …
 vertex &35
 order &53 23
 x &54 515052.11
 y &55 4125808.81
 parameters &17
 color &36 “cyan”
 pattern &37 “plain”
 mo &5
 oid &18 “T1”
 type &19 “text”
 geometry &20
 x &38 515458.03
 y &39 4125738.98
 parameters &21
 color &40 “black”
 form &41 “Times”
 size-pt &42 18
 rotation-deg &43 0
 text &22 “LakeA”

Fig. 6. A textual OEM database (graphical representation in Fig. 4)

Query 1: “Find the identifiers (oid) of all line or area objects present in the
map”
Lorel expression: Answer object:
select A.oid
from map.mo A
where A.type = “line”
or A.type = “area”

answer &101
 oid &10 “L2”
 oid &14 “A1”

This is a simple query example. It involves two conditions which are both
included in a ‘where clause’.

Query 2: “Find all black-colored map objects and list their type”
Lorel expression: Answer object:
select A, A.type
from map.mo A
where A.parameters.color = “black”

answer &102
 mo &2
 type &7 “point”
 mo &5
 type &19 “text”

With the query above, map objects can be separated based on their colour. This
operation is usually applied in the cartographic production process (Keates, 1989).

Query 3: “Find the identifiers (oid), along with coordinates, of all point objects
that fall inside the rectangular window with lower left (south-west) corner
(515000, 4125000) and upper right (north-east) corner (515500, 4125500)” (this is
the south west quadrangle of the map in Fig. 1).
Lorel expression: Answer object:
select B.oid, A.x, A.y
from map.mo{B}.geometry A
where B.type = “point”
and A.x >= 515000
and A.x <= 515500
and A.y >= 4125000
and A.y <= 4125500

answer &103
 oid &6 “P1”
 x &23 515488.72
 y &24 4125483.34

This is a simple window query example. This query is commonly applied in
map browsers and GIS software packages and is well known as a zoom-in
operation. The extension of this query to select line and area objects involves
spatial operators, which are not provided by Lorel query language. Notice that this
is one of the open issues for future research.

Query 4: “Find the identifiers (oid) of all point objects and line/area objects that
have a vertex (for line and area objects) at position (515488.72, 4125483.34) (i.e.,
the position of the bridge in Fig. 1).
Lorel expression: Answer object:
select B.oid
from map.mo{B}.geometry(.vertex)? A
where A.x = 515488.72
and A.y = 4125483.34

answer &104
 oid &6 “P1”
 oid &10 “L2”
(L2 has a vertex on the bridge)

or alternatively,
select B.oid
from map.mo{B}.geometry A
where A.#@P.x = 515488.72
and A.#@Q.y = 4125483.34
and P == Q

This is a simple point query example. This query is also commonly applied in
map browsers and GIS. Usually, the user is prompted to select an object by
clicking with the mouse on the graphical screen. The query as expressed above
restricts mouse clicks to coincide with a point object location or a line/area object

vertex location. The extension of this query to select point, line and area objects
with a tolerance of, e.g., 0.5mm (i.e., distance less than 0.5mm on the screen, from
the mouse click position), involves spatial operators, which are not provided by
the Lorel query language. The path expression given in the ‘from’ clause of the
first alternative query guarantees a path to x and y coordinates of both point
objects and line/area object vertices.

The second alternative query is a more complex expression, but highlights the
flexibility provided by Lorel language such that :

(a) it involves the use of wildcard (#), which matches to any data path of length 0
or more (here, 0 for point objects and 1 for line/area objects); and

(b) the use of path variables P and Q, which assure that x and y coordinate values
are examined each time and are assigned to the same line/area vertex.

The last condition in the ‘where’ clause eliminates from the answer object cases

where a vertex of a line/area object has the desired X value and another vertex of
the same object has the desired Y value.

Query 5: “Find identifiers (oid) of all line objects that are composed by less
than 20 vertices”.
Lorel expression: Answer object:
select A.oid
from map.mo A
where A.type = “line”
and A SATISFIES
 20 > COUNT(select B.geometry.vertex
 from map.mo B)

answer &105
 oid &10 “L2”

This query uses a sub-query as operand to the aggregation operator COUNT.
What the sub-query does is to count the number of vertices per line object. Notice
that B already has its mapping fixed by the object assignment A (Quass et al.,
1995) in the enclosing query. The latter reports line objects, which satisfy the
condition posed by the query.

Query 6: “Find the identifiers (oid) of all line objects intersecting area objects.
Also report the corresponding area object identifier”.
Lorel expression: Answer object:
select distinct A.oid, B.oid
from map.mo A, map.mo B, A.geometry AG,
 B.geometry BG
where A.type = “line”
and B.type = “area”
and AG.x = BG.x
and AG.y = BG.y

answer &106
 oid &10 “L2”
 oid &14 “A1”

This query is a simple example of join query. Notice that the key word
“distinct” eliminates duplicates from the answer object, e.g., L2 intersect twice A1,
and however the pair appears once in the answer object. This query assumes the
existence of coincident vertices on both objects at their intersections. Otherwise,

no map objects will be included in the answer object (due to the lack of spatial
operators).

7 Conclusions and Future Research

This paper argues that objects involved in a map form a category of semi-
structured data. It adopts OEM, the most popular semi-structured data model that
exists in the literature, and shows how objects of an individual map can be
represented using alternative configurations. In addition, some basic application
domain queries for handling these data are expressed in Lorel, also a popular
query language for semi-structured data.

Several issues remain open for future research. One important issue is the
integration of topological relations and constraints, which characterise
cartographic entities of the real world, in the same model. This information is of
significant value to the cartographer when performing several cartographic design
and composition processes, such as the generalisation processes (Keates, 1989).

Another direction for future research is the mapping of the OEM representation
of a map into XML variants (Suciu, 1998b) and specifically to GML (OpenGIS,
1999). Use of XML is expanding rapidly, and XML data will be exchanged freely
in the near future between applications, belonging to the same or different
organisations, in the same way HTML documents are currently exchanged. Hence,
geographic and cartographic data exchange using XML must be seriously
considered. Additionally, as already mentioned, the combination of XML with
semi-structured data models will give as result a new technology for web data
(Abiteboul et al., 2000).

An issue that requires future examination is the extension of the Lorel language
with spatial operators. This will enhance the functionality of the language and
enrich the possibilities for spatial semi-structured data handling.

References

Abiteboul S (1997) Querying semi-structured data. In: Proceedings of the Sixth
International Conference on Database Theory (ICDT’97). Delphi, Greece, pp 1-18

Abiteboul S, Quass D, McHugh J, Widom J, Wiener JL (1997) The Lorel query language
for semistructured data. International Journal on Digital Libraries 1:68-88

Abiteboul S, Buneman P, Suciu D (2000) Data on the Web: From Relations to Semi-
Structured Data and XML. Morgan-Kaufmann

Buneman P (1997) Semistructured data. In: Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’97).
Tucson, Arizona, pp 117-121

Cattell RGG (1994) The Object Database Standard ODMG-93. Morgan Kaufmann
Chawathe SS, Garcia-Molina H, Hammer J, Ireland K, Papakonstantinou Y, Ullman JD,

Widom J (1994) The TSIMMIS project: integration of heterogeneous information

sources. In: Proceedings of the Tenth Meeting of the Information Processing Society of
Japan, Tokyo, Japan, pp 7-18

Keates JS (1989) Cartographic Design and Production, 2nd Edition. Longman
Kraak MJ, Brown A (2001) Web Cartography: Developments and Prospects. Taylor &

Francis
OpenGIS (1999) Open GIS Consortium (OGC) [online]. Available from:

http://www.opengis.org/
Oracle (2000) Oracle Spatial user’s guide and reference. Oracle Corporation
Papakonstantinou Y, Garcia-Molina H, Widom J (1995) Object exchange across

heterogeneous information sources. In: Proceedings of the Eleventh International
Conference on Data Engineering (ICDE’95). Taipei, Taiwan, pp 251-260

Quass D, Rajaraman A, Sagiv Y, Ullman JD, Widom J (1995) Querying semistructured
heterogeneous information. In: Proceedings of the Fourth International Conference on
Deductive and Object-Oriented Databases. Singapore, pp 319-344

Robinson AH, Morrison JL, Muehrcke PC, Kimerling AJ, Guptill SC (1995) Elements of
Cartography, 6th Edition. Wiley

Suciu D (1998) An overview of semistructured data. ACM SIGACT News 29:28-38
Suciu D (1998b) Semistructured data and XML. In: Proceedings of the 5th International

Conference of Foundations of Data Organization (FODO'98). Kobe, Japan
W3C (1998) The World Wide Web Consortium (W3C) [online]. Available from:

http://www.w3c.org/

