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Abstract 

Mapping agencies world-wide produce a range of different types of  maps, in 
efforts to meet  different user requirements. These maps are usually designed in a 
digital environment and some of them are  distributed through the World Wide 
Web. One important issue for those agents is the appropriate modelling and 
handling of map objects from which the digital maps are composed. , This paper 
focuses on this aspect and as such addresses two aspects. First, the semi-structured 
nature of data composing a map is discussed. Second, the Object Exchange Model 
(OEM), a popular model for semi-structured data, is adopted to represent a map. 
Several configurations regarding the representation of a map in OEM are 
proposed. Finally, it is shown how useful information can be extracted from those 
configurations using Lorel query language for semi-structured data.  
Keywords: semi-structured data, OEM, Lorel, XML 

1 Introduction 

Semi-structured data has recently emerged as an important topic of study for a 
number  of reasons (Buneman, 1997): (a) there’s a need to handle data sources   
that cannot be constrained by a schema, through the web (b) there’s a need for a 
flexible format for data exchange between remote  databases, and (c) there’s a 
need to assist the browsing on (structured or semi-structured) data based on a self-
describing schema. The use of semi-structured data models has been investigated 
in the past mostly in more traditional data, such us data for bibliographic 
databases. Expressive data models for representing semi-structured data have been 
proposed and efficient languages to query semi-structured data have been 
developed (Abiteboul, 1997; Suciu, 1998).  

This study focuses on the use of semi-structured data models for representing 
map objects. Currently there’s an increased  demand from mapping agencies to 
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produce digital products and distribute them electronically through the web (Kraak 
and Brown, 2001). When applicable, map objects are modelled using proprietary 
models of software systems (CAD, GIS, etc.)   which are applied to generate the 
digital maps. Although, some of those systems already use sophisticated models, 
such as the object-oriented model, several deficiencies emerge. First, map data is 
usually only semi-structured  and traditional database models are not well suited to 
represent it, primarily because they assume a constrained schema. Second, the 
database schema is strict and when data is exchanged well described metadata 
should accompany the data so that the recipient is well advised of the detail. 

The scope of this paper is twofold. First, to discuss the advantages of using 
semi-structured data for composing a map, and second, to show how semi-
structured data models can be adapted to model map data. Taking into account the 
current developments on the web technology and the rapid spread of XML 
(eXtensible Mark-up Language) (W3C, 1998) and its extensions, the reader would 
expect the above specification to be adopted for modelling map objects. However, 
this is not the case in this paper, and OEM (Object Exchange Model) 
(Papakonstantinou et al., 1995) has been chosen instead. There are several reasons 
for making this choice.  

First, OEM is a pure database model for semi-structured data, in contrast to 
XML, which has been built for the exchange of structured data over the web. It is 
argued (Abiteboul et al., 2000) that the XML specification and its extensions, 
although suitable for modelling semi-structured data, will not solve the problem of 
efficiently extracting the required portion of the underlying data, in other words, 
XML does not efficiently query large sets of data and extract the required 
information. The solution to this problem is in part through the development of 
parallel databases  that have semi-structured data. It is therefore well recognised 
that the combination of XML with semi-structured data models (OEM is the most 
popular of them) will yield a new technology for web data (Abiteboul et al., 2000) 
and generally for information exchange across agencies. 

Second, considerable efforts have been given to advancing or improving the 
representation of geographic information with XML, and GML (Geographical 
Mark-up Language) (OpenGIS, 1999). On the other hand, the representation of 
geographic information with semi-structured data models does not, as yet, appear 
to have been fully investigated.  

Third, it has  already been shown that an OEM representation can be generally 
mapped to an XML file (Suciu, 1998; Abiteboul et al., 2000). XML does not have 
an associated data model, OEM on the other hand, provides a more suitable and 
convenient environment to model data.    

The discussion is organized as follows. Section 2 briefly presents the 
application requirements, i.e., the modelling of map objects, and provides a 
simplified example of a map object collection, to demonstrate  the discussion. 
Section 3 briefly presents the Object Exchange Model (OEM), which is the most 
popular semi-structured data model found in the literature (Papakonstantinou et 
al., 1995) and has been adopted in this study. Section 4 elaborates on the semi-
structured nature of data involved in a map. Section 5 shows how an individual 
map can be modelled in OEM, while section 6 is focused on the operational 



 

issues. Specifically, it shows how Lorel language, designed to query semi-
structured data (Abiteboul et al., 1997; Quass et al., 1995), can be used to extract 
information from an OEM representation of a map. Finally, Section 7 concludes 
the discussion by summarising the contribution of the paper and giving hints for 
future research.    

2 The Application Domain 

A map, either on paper or in digital form, can be seen as a database. It consists of 
a set of objects (or entities), the map objects, which represent real world entities, 
physical (e.g., a road, a river, etc.) or conceptual (e.g., poverty, criminality, among 
other aspects.), on the map. The representation of an entity on the map may take 
different forms, depending on the map scale, the map content, or the map scope 
(Keates, 1989).  

Any map object, presented either in analogue or digital form, can be considered 
as the representation instance of some  real world entity. A map object has several 
dimensions. First, it has a unique identifier. Second, it is assigned the identifier of 
the real world entity it represents. Third, it has a specific cartographic symbol. 
Fourth, it is positioned in a specific location on the medium, namely it has 
geometry. Both the symbol and geometry are characterised by the symbol type, 
which may be (Keates, 1989): (a) point, (b) line, (c) area, and (d) text, or 
combinations of them. Each symbol, depending on its type, is described by 
appropriate graphic parameters, such as form, dimension, colour, orientation, 
pattern, font, etc.  

Fig. 1a presents a simplified example map. This map consists of a set of map 
objects, which represent real world entities on a paper medium. These objects are 
assigned unique identifiers (Fig. 1b). Letters P, L, A, and T refer to the type of the 
symbol, i.e., point, line, area and text, respectively. The bridge located at the 
crossing between main road L2 and lake A1 (LakeA) is a point symbol, with 
parameters: colour = “black”, orientation = 30deg, dimension = 8mm, form = “II-
like” (a geometric description might be given instead). Main road L2 is a line 
symbol, with parameters: colour = “red”, dimension (i.e., width) = 2mm, form = 
“solid line". LakeA, represented by A1, is an area symbol, with parameters: colour 
= “cyan”, pattern = “plain”. Finally, annotation “LakesB”, represented by T2, is a 
text symbol with parameters: colour = “black”, font = “Times bold”, dimension = 
“16pt”, orientation = -45deg. 

The  map objects geometry,  is a function of symbol type. In other words, the 
map object geometry can be seen as an ordered set of primitive geometric 
elements. An element is the basic building block of geometry, i.e., point, line (or 
polyline) and area (or polygon). This schema, also adopted in spatial database 
management systems (DBMS), such as Oracle Spatial (Oracle, 2000), is capable 
of modelling simple and complex map object geometries. Text objects can be 
handled as objects of type either point or line. In the former case, text centroid is 



 

the point of reference. In the latter case, a polyline models text curvature (Keates, 
1989). 
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Fig. 1(a) A simplified example map, (b) with map objects labelled 

Although the map in Fig. 1 contains only a  few simple symbols and by no 
means can be considered as a complex map representation, it is adequate to assist 
the discussion  on the highlights of semi-structured data necessary for composing 
a map. Further, it will show how semi-structured data models can be used to 
efficiently handle map objects.  

3 Semi-Structured Data and the Object Exchange Model 

The observation that much of today’s electronic data does not conform to 
traditional relational or object oriented models, combined with the need to 
integrate heterogeneous data, has led to the development of data models for 
handling semi-structured data.  Additionally, query languages for handling this 
data have recently been proposed and investigated (Abiteboul, 1997; Buneman, 
1997; Suciu 1998). 

Semi-structured data is characterised by an irregular structure. Some objects 
may have missing attributes, while others may have multiple occurrences of the 
same attribute. Further, a single attribute may  share different objects, and 
semantically related information may be represented differently for various 
objects.  

The most popular model of semi-structured data is the Object Exchange Model 
(OEM) (Papakonstantinou et al., 1995), originally introduced for the Tsimmis data 
integration project (Chawathe et al., 1994). OEM is a simple, self-describing, 
model, where data is represented by a collection of objects. There is no need to 
define the structure of an object in advance, and there is no notion of a fixed 
schema or object class. In a sense, each object contains its own schema.   



 

Every object in the OEM data model has an identifier, a label, a type, and a 
value. The identifier uniquely identifies the object among all objects in the domain 
of interest. The label is a string (the tag) presumably denoting the “meaning” of 
the object. Labels may be used to group objects by assigning the same label to 
related objects. Labels are usually drawn from a universe of label names. The type 
refers to the data type of object value. The value can be of a scalar type, such as an 
integer or string, or it can be a set of (sub)objects.   

Each object may be atomic or complex. The value of an atomic object is of 
some base type (e.g., integer, string, image, sound, etc.). The value of a complex 
object is a set of subobjects, i.e., a set of object identifiers.  

OEM is a collection of tagged values and is usually represented as a graph, 
where the nodes are the objects, the edges are labelled with object labels, leaf 
nodes are atomic objects associated with an atomic value, and non-leaf nodes are 
complex objects pointing to their subobjects. The graph also has a root, which is a 
distinguished object with access to all other objects.  

OEM is much simpler than object-oriented models. It supports only object 
nesting and object identity, while other features such as classes, methods, and 
inheritance are omitted. When dealing with semi-structured data the OEM has 
several advantages as compared to relational or object-oriented models 
(Abiteboul, 1997; Buneman, 1997; Suciu, 1998).  

A representative general-purpose data management system for semi-structured 
data, which uses OEM, is Lore (Lightweight Object Repository), which provides 
Lorel query language (Quass et al., 1995). Notice that contrary to traditional data 
models, in OEM it is not required to be aware of the schema in order to pose a 
query. The schema can be discovered as queries are posed (Papakonstantinou et 
al., 1995).  

4 Map Objects are Semi-Structured in Nature  

Data involved in a map forms a special category of semi-structured data. The 
following paragraphs explore this issue. 

The symbols used to represent real world entities on the map may have a 
complex type described by many and variable parameters. Specifically, there are 
four basic symbol types, i.e., point, line, area or text, which can also be combined. 
Each type is described by different parameters (Keates, 1989). For instance, a 
point symbol is usually described by three parameters: form, colour, and 
dimension.  There are, however, cases where more parameters are applied, such as 
orientation for non-symmetric symbols, or additions, extensions and iconic forms 
depending on the choice of the cartographer. The use of images, in place of point 
symbols, is also possible. Things are more complicated when dealing with line or 
area symbols, where additional parameters may be present, such as multiple lines, 
or area patterns with variable orientations and densities. Text symbols, used in 
annotations, are also hard to model, provided that a text is described by its colour, 



 

type (or font), size, rotation and curvature. The whole problem of modelling 
symbols becomes much more complex if the requirement calls for symbols that 
combine two or more types, e.g., point and area types, or all three point, line and 
area types. Hence, it is hard to generate a schema in advance that can describe 
every symbol used in the map, especially in a cartographic organisation, where 
symbology is a subject of continuous revision. 

The granularity of space, i.e., the precision of coordinates describing geometry, 
is variable and depends on source data and map scale. Hence, the geometry of a 
map object is expressed with variable precision. Even further, in some cases the 
coordinate reference system for geometries may not be the same for all map 
objects. This situation may occur when geometric data is derived from different 
sources (e.g., land surveys, photogrammetric detail, and paper map digitisation, 
among others) and they are maintained in the database without being transformed 
to a common reference system. The simultaneous and integrated visualisation of 
this type of data can only be obtained by performing appropriate registration 
procedures.  

The units used to express the parameters of symbols may not be unique. For 
instance, line width may be expressed in units on the map or on the ground. In 
addition, the units in each case may vary between symbols. For example, the use 
of mm/inches or meters as integers/meters as floats with two decimal figures, 
respectively. Another example concerns the colour value, which can be expressed 
as a triple in a RGB system, as another triple in a HSL system or simply as a 
standard string, such as “dark red”.  

All features above render objects involved in a map to form a category of semi-
structured data. It is apparent that defining a schema, that uses  traditional data 
models, and that will meet the future modelling requirements  of the larger 
mapping agencies (e.g., national cartographic organisation) is a complex and 
demanding task. It seems that a more convenient configuration is the adoption of a 
semi-structured database (Suciu, 1998), which does not require an a-priory 
schema, and is based on a self-describing model that is readily extensible. 

The following discussion is focused on how a semi-structured data model, and 
specifically OEM, can be applied to model map objects. 

5 Representation of a Map in OEM 

Consider the map in Fig. 1. This map can be modelled in OEM. The map consists 
of complex and atomic objects. An example of an atomic object is the dimension 
(i.e., width) of a linear symbol, e.g., “1.5 mm”. Another example is a point 
location described by a string that has two double numbers, the coordinate values 
for X and Y in a reference system, separated by a comma; for example, the UTM 
coordinates “515456.67, 4125113.71”.   

An example of a complex object is the main road, the thick solid line, 
represented by L2, in the map. This object has four sub-objects (with labels) which 
are as follows:  



 

(a) “oid”, an  atomic object with a value that the user identifier assigns to the 
representation instance, i.e., L2;  

(b)  “type”, an atomic object that accommodates the value “line” and describes 
the symbol type used to represent the road;  

(c)  “geometry”, an atomic object with a value of type string, e.g., “12, 515356.67, 
4125003.71, 515358.23, 4125110.29, …, 515528.14, 4125998.18”, where the 
first integer, i.e., 12, refers to the number of vertices composing the polyline, 
and the twelve pairs of numbers that follow are the UTM coordinates of 
polyline vertices, separated by commas, and;  

(d) “parameters”, a complex object, that points to three sub-objects, with labels 
“colour”, “form” and “size”.  

 
Objects labelled as “form” and “size” are atomic, with values “solid line” (a 

string) and 2.0 (a float) respectively, while an object labelled as “colour” is a 
complex object pointing to three atomic objects labelled as “hue”, saturation”, and 
“lightness” with values 0, 240, and 120 respectively, representing in this case, 
red.. Fig. 2 presents the graphical and textual representation of the main road in 
OEM. Notice that mo stands for “map object”.  

mo

&1

&5&4

geometry
parameters

"12, 515356.67, 4125003.71,

…, 515528.14, 4125998.18"

&8

size

&6

color

&7

form

0

"solid line" 2.0hue
saturation lightness

120240
&11&10&9

&3

type

"line"

&2

oid

"L2"

<&1, mo, set, {&2, &3, &4, &5}> 
     <&2, oid, string, “L2”> 
     <&3, type, string, “line”> 
     <&4, geometry, string, “12, 515356.67,  
       4125003.71,…,515528.14, 4125998.18”> 
     <&5, parameters, set, {&6, &7, &8}> 
          <&6, colour, set, {&9, &10, &11}> 
               <&9, hue, integer, 0> 
               <&10, saturation, integer, 240> 
               <&11, lightness, integer, 120> 
          <&7, form, string, “solid line”> 
          <&8, size, float, 2.0> 

Fig. 2. Example representation of a map object in OEM 

It is clear, that in the above case, the OEM representation is based on some 
hidden semantics. For example, the size of line symbol refers to its width and is 
expressed in millimetres. If units are not the same, the label may be used to 
convey this fact. For example, label “size” can be replaced by label “size-in-mm” 
(Papakonstantinou, 1995), and  similar aspects apply to the “form”, of the 
coordinate reference system, among other aspects.  

In addition, the representation of polyline geometry as a string assumes that the 
parser is aware of the string syntax. An alternative way to represent this geometry 
is by a set of point objects, i.e., the vertices of the polyline. At this point the 
problem of ordering the vertices, in an effort to form the polyline, arises. One way 



 

to overcome this inefficiency is to use appropriate labels on point objects, which 
can depict the sequence of vertices. An alternative way is to represent each point 
as a complex object with two sub-objects, which consist of the point order in 
polyline and the point location. A third solution is to extend OEM, so that 
complex objects accommodate ordered lists of sub-objects instead of sets. This 
last solution has been already proposed for mapping an OEM to an extensible 
mark-up language (XML) document (Suciu, 1998b). The latter is by definition 
ordered, while the former is not. As for the point geometry representation, the 
“X,Y” string can be readily replaced by two atomic objects with labels “x” and 
“y”, and of type double.   

In the following, geometry in 2D space is represented according to the 
configuration shown in Fig. 3. Specifically, point geometry is a complex object, 
which points to two atomic sub-objects, with labels “x” and “y”. These sub-
objects accommodate projection or geographic coordinates of the point location in 
space. Line geometry is a complex object, which points to as many sub-objects 
(with labels “vertex”) as the number of vertices composing the line. Each sub-
object is in turn a complex object, which points to three atomic sub-objects, with 
labels “x”, “y” and “order”, where the first two accommodate the coordinates of a 
line vertex, whereas the third is the order of this vertex in the polyline. In a similar 
way, area geometry is represented. The only difference, which does not affect 
OEM representation, is that area outline has one more line segment, connecting 
the last vertex in the sequence with the first. Notice that this geometry 
representation scheme is compatible with original OEM definition, where no 
ordering of sub-objects is assumed. 

point
geometry

&1

&3

y

4125003.71
&2

x

515356.67

line (area)
geometry

&1

vertex

&2

vertex

&7

y

4125003.71
&6

x

515356.67

vertex

&5

order

1

&3

&10

y

4125110.29
&9

x

515358.23
&8

order

2

vertex

&4

&13

y

4125998.18
&12

x

515528.14
&11

order

12

vertex

 
Fig. 3. Geometry representation in OEM 

Coming back to the map in Fig. 1, it can also be seen as a complex object, 
consisting of a set of sub-objects, the representation instances of cartographic 
entities (i.e., the map objects). Hence, OEM can be used to model this map. In the 
graphical representation of OEM, the root of the graph is the map, while the leaves 
accommodate the user identifier (oid), the geometry, the symbol type and the 



 

symbol parameters of the map objects. Fig. 4 presents a portion of the OEM 
diagram used to represent the map. For simplicity, several symbol parameters are 
relatively  abstract, e.g., a unique string represents colour (e.g., “red”). 

As mentioned previously, the object label in an OEM can, by definition, be 
used to group related objects. Hence, objects may primarily be grouped based on 
their type, i.e., point, line, area, and text. Further, they may be grouped based on 
their properties. For example, all linear objects representing roads can be nested in 
a super-object labelled as “road network”. Obviously, this configuration 
approaches a cartographic database (or GIS database) organisation. 

The use of symbols in representing cartographic entities is not arbitrary. It is 
usually based on some standards adopted by organisations or companies 
producing maps. In most cases, those standards define the symbol types and 
parameters to represent a cartographic entity at a specific scale. Such a standard 
forms a symbol library (Robinson et al., 1995). It is a common practice to model a 
symbol library in a separate schema, where map objects point to.  

map
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mo
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mo mo
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&4

mo
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&9&8
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&24
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vertexvertex
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x
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order
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Fig. 4. A portion of the OEM diagram used to represent the map of Fig. 1 



 

When an OEM is adopted to represent the maps of an organisation, a separate 
OEM can be adopted to accommodate the common symbols used in these maps. 
Fig. 5 presents a portion of an OEM diagram used to model the symbol library 
adopted in the map of Fig. 1. The same figure shows an alternative version of 
OEM in Fig. 4, whose map objects point to the symbol library. Geometry sub-
objects are omitted for simplicity. 

This configuration is flexible, when graphic limitations or other reasons require 
the representation of a cartographic entity and it’s symbol, which does not 
conform to the symbol library standard or  is not included in the symbol library. In 
this case, the specific symbol parameter object is attached to the map object 
directly as a sub-object. An example is given in Fig. 5, for the bridge map object 
P1. 

6 Operational Issues 

The discussion so far has focused on the representation of a map in OEM. It is 
argued that this is a convenient practice, due to the semi-structured nature of the 
map objects involved. The rest of this discussion is focused on handling issues 
such as extracting information from an OEM representation of a map. The task to 
be accomplished requires the existence of a query language, able to handle semi-
structured data. 

In the past, several languages have been proposed to query semi-structured data 
(Abiteboul, 1997). This study adopts Lorel, the query language supported by Lore 
system (Quass et al., 1995), which makes use of the OEM data model. Lorel query 
language is a compatible extension to the OQL object-oriented query language 
(Cattell, 1994), with new features designed specifically for querying semi-
structured data. Briefly, those features are: partially specified path expressions, 
wildcards, automatic type coercion in comparisons, and a special semantics for 
disjunction. Unlike OQL, Lorel does not enforce strong typing, and allows 
querying and schema browsing when the object structure is unknown or partially 
known. In other words, the uniqueness of Lorel includes:  (a) the extensive use of 
coercion, and (b) the powerful path expressions  (Abiteboul et al., 1997). 

The scope of this Section is to show how Lorel can be used to support some 
basic queries in the application domain of handling a map, which has been 
modelled using a semi-structured data model, specifically OEM. This task is 
accomplished through a series of examples. For brevity, it is assumed that the 
reader is familiar with Lorel query language syntax (Abiteboul et al., 1997). All 
example queries refer to the database (fragment) in Fig. 6. The database refers to 
the map shown in Fig. 1. The graphical OEM representation of this database is 
given in Fig. 4.  

The textual syntax adopted in Fig. 6 has been simplified according to Abiteboul 
et al. (1997). Tabs have been used to represent the nesting of objects. Each object 
has a unique object identifier (obj_id). Some objects are atomic and contain a 
value from one of the disjoint basic types, e.g., integer, real, string, gif, html, 
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Fig. 5. The symbol library and an alternative version of OEM in Fig. 4 



 

audio, java, etc. All other objects are complex; their value is a set of object 
references, denoted as a set of (label, obj_id) pairs. The labels are all taken from 
the atomic type string. 

Notice that “object identifiers” retrieved in most of the query examples that 
follow and denoted by “oid” refer to the user-defined labels assigned to map 
objects in Fig. 1b (e.g., P1, L3, A5) and differ from those system-generated object 
identifiers (denoted by “obj_id”) described in the previous paragraph. 
map &1 
     mo &2 
          oid &6 “P1” 
          type &7 “point” 
          geometry &8  
               x &23 515488.72 
               y &24 4125483.34 
          parameters &9 
               color &25 “black” 
               form &26 “II” 
               size-mm &27 8 
               rotation-deg &28 30 
     mo &3 
          oid &10 “L2” 
          type &11 “line” 
          geometry &12  
               vertex &29 
                    order &44 1 
                    x &45 515356.67 
                    y &46 4125003.71 
               … 
               vertex &30 
                    order &47 12 
                    x &45 515528.14 
                    y &46 4125998.18 
          parameters &13 
                    color &31 “red” 
                    form &32 “solid line” 
                    size-mm &33 2           

     mo &4 
          oid &14 “A1” 
          type &15 “area” 
          geometry &16  
               vertex &34 
                    order &50 1 
                    x &51 515071.71 
                    y &52 4125823.32 
               … 
               vertex &35 
                    order &53 23 
                    x &54 515052.11 
                    y &55 4125808.81 
          parameters &17 
               color &36 “cyan” 
               pattern &37 “plain” 
     mo &5 
          oid &18 “T1” 
          type &19 “text” 
          geometry &20 
               x &38 515458.03 
               y &39 4125738.98 
          parameters &21 
                    color &40 “black” 
                    form &41 “Times” 
                    size-pt &42 18 
                    rotation-deg &43 0 
          text &22 “LakeA” 
 

Fig. 6. A textual OEM database (graphical representation in Fig. 4) 

Query 1: “Find the identifiers (oid) of all line or area objects present in the 
map”  
Lorel expression: Answer object: 
select A.oid  
from map.mo A 
where A.type = “line” 
or A.type = “area” 

answer &101 
     oid &10 “L2” 
     oid &14 “A1”    

This is a simple query example. It involves two conditions which are both 
included in a  ‘where clause’.  



 

Query 2: “Find all black-colored map objects and list their type”  
Lorel expression: Answer object: 
select A, A.type 
from map.mo A 
where A.parameters.color = “black” 

answer &102 
     mo &2 
          type &7 “point” 
     mo &5      
          type &19 “text” 

With the query above, map objects can be separated based on their colour. This 
operation is usually applied in the cartographic production process (Keates, 1989). 

Query 3: “Find the identifiers (oid), along with coordinates, of all point objects 
that fall inside the rectangular window with lower left (south-west) corner 
(515000, 4125000) and upper right (north-east) corner (515500, 4125500)” (this is 
the south west quadrangle of the map in Fig. 1). 
Lorel expression: Answer object: 
select B.oid, A.x, A.y 
from map.mo{B}.geometry A 
where B.type = “point” 
and A.x >= 515000 
and A.x <= 515500 
and A.y >= 4125000 
and A.y <= 4125500 
 

answer &103 
     oid &6 “P1” 
          x &23 515488.72 
          y &24 4125483.34    

This is a simple window query example. This query is commonly applied in 
map browsers and GIS software packages and is well known as a zoom-in 
operation. The extension of this query to select line and area objects involves 
spatial operators, which are not provided by Lorel query language. Notice that this 
is one of the open issues for future research. 

Query 4: “Find the identifiers (oid) of all point objects and line/area objects that 
have a vertex (for line and area objects) at position (515488.72, 4125483.34) (i.e., 
the position of the bridge in Fig. 1). 
Lorel expression: Answer object: 
select B.oid 
from map.mo{B}.geometry(.vertex)? A 
where A.x = 515488.72 
and A.y = 4125483.34 

answer &104 
     oid &6 “P1” 
     oid &10 “L2”   
(L2 has a vertex on the bridge)   

or alternatively, 
select B.oid 
from map.mo{B}.geometry A 
where A.#@P.x = 515488.72 
and A.#@Q.y = 4125483.34 
and P == Q 

 

This is a simple point query example. This query is also commonly applied in 
map browsers and GIS. Usually, the user is prompted to select an object by 
clicking with the mouse on the graphical screen. The query as expressed above 
restricts mouse clicks to coincide with a point object location or a line/area object 



 

vertex location. The extension of this query to select point, line and area objects 
with a tolerance of, e.g., 0.5mm (i.e., distance less than 0.5mm on the screen, from 
the mouse click position), involves spatial operators, which are not provided by 
the Lorel query language. The path expression given in the ‘from’ clause of the 
first alternative query guarantees a path to x and y coordinates of both point 
objects and line/area object vertices.  

The second alternative query is a more complex expression, but highlights the 
flexibility provided by Lorel language such that :  

(a) it involves the use of wildcard (#), which matches to any data path of length 0 
or more (here, 0 for point objects and 1 for line/area objects); and  

(b)  the use of path variables P and Q, which assure that x and y coordinate values 
are examined each time and are assigned to the same line/area vertex.  

 
The last condition in the ‘where’ clause eliminates from the answer object cases 

where a vertex of a line/area object has the desired X value and another vertex of 
the same object has the desired Y value.  

Query 5: “Find identifiers (oid) of all line objects that are composed by less 
than 20 vertices”. 
Lorel expression: Answer object: 
select A.oid 
from map.mo A  
where A.type = “line” 
and A SATISFIES  
     20 > COUNT(select B.geometry.vertex 
                            from map.mo B) 

answer &105 
     oid &10 “L2” 
      
         

This query uses a sub-query as operand to the aggregation operator COUNT. 
What the sub-query does is to count the number of vertices per line object. Notice 
that B already has its mapping fixed by the object assignment A (Quass et al., 
1995) in the enclosing query. The latter reports line objects, which satisfy the 
condition posed by the query. 

Query 6: “Find the identifiers (oid) of all line objects intersecting area objects. 
Also report the corresponding area object identifier”. 
Lorel expression: Answer object: 
select distinct A.oid, B.oid 
from map.mo A, map.mo B, A.geometry AG,   
         B.geometry BG 
where A.type = “line” 
and B.type = “area” 
and AG.x = BG.x 
and AG.y = BG.y 
 

answer &106 
     oid &10 “L2” 
     oid &14 “A1” 
      
         

This query is a simple example of join query. Notice that the key word 
“distinct” eliminates duplicates from the answer object, e.g., L2 intersect twice A1, 
and however the pair appears once in the answer object. This query assumes the 
existence of coincident vertices on both objects at their intersections. Otherwise, 



 

no map objects will be included in the answer object (due to the lack of spatial 
operators).  

7 Conclusions and Future Research 

This paper argues that objects involved in a map form a category of semi-
structured data. It adopts OEM, the most popular semi-structured data model that 
exists in the literature, and shows how objects of an individual map can be 
represented using alternative configurations. In addition, some basic application 
domain queries for handling these data are expressed in Lorel, also a popular 
query language for semi-structured data.  

Several issues remain open for future research. One important issue is the 
integration of topological relations and constraints, which characterise 
cartographic entities of the  real world, in the same model. This information is of 
significant  value to the cartographer when performing several cartographic design 
and composition processes, such as the generalisation processes (Keates, 1989).  

Another direction for future research is the mapping of the OEM representation 
of a map into XML variants (Suciu, 1998b) and specifically to GML (OpenGIS, 
1999). Use of XML is expanding  rapidly, and XML data will be exchanged freely 
in the near future between applications, belonging to the same or different 
organisations, in the same way HTML documents are currently exchanged. Hence, 
geographic and cartographic data exchange using XML must be seriously 
considered. Additionally, as already mentioned, the combination of XML with 
semi-structured data models will give as result a new technology for web data 
(Abiteboul et al., 2000). 

An issue that requires future examination is the extension of the Lorel language 
with spatial operators. This will enhance the functionality of the language and 
enrich the possibilities for spatial semi-structured data handling.  
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