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Abstract 

Line simplification is an important function in GIS and cartography and is widely 
used in commercial GIS software packages. Most  line simplification algorithms 
require the user  to supply a tolerance value, which is used to determine the extent 
to which  simplification is to be applied.. All simplification algorithms induce 
positional errors in the data set, because they produce a discrepancy between the 
original line and its simplified version. The amount of this error depends on both 
the tolerance value and the shape of the line. This is the reason that many 
researchers have focused on measuring the geometric characteristics (or 
complexity) of lines. Using one tolerance value for all lines in the data set results 
in  different positional errors for different lines. What is usually important for the 
user, is to maintain a specific level of quality, and not the tolerance value itself. 
The question is, 'how does one specify a tolerance value for each line based on the 
user specified level of accuracy'? This paper presents a solution to solve this 
problem. In this approach, the user supplies the target level for  desired accuracy 
and the simplification tolerance value is calculated accordingly.  
Keywords: line simplification, complexity of line, adaptive tolerance value, 
positional error 

1 Introduction 

Cartographic generalisation involves selecting the features to be maintained at the 
targeted scale, simplifying non-relevant characteristics, enhancing significant 
shapes, displacing without defacing global and local shapes, and finally 
harmonising the final presentation  (Plazanet, 1997). Until about a decade ago, 
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trained cartographers usually practised map generalisation, by using rules, 
examples and intuition. Traditionally, map-making agencies  applied 
generalisation using manual techniques.  Many mapping organisations, especially 
the larger national, state or provincial establishments had  their own guidelines, 
standards and procedures for manual map generalisation. Only recently has this 
situation begun to change, but it has done so dramatically and definitively, as 
maps – along with every other form of human communication – have become 
digital (Dutton, 1999). 

Recent reviews of digital generalisation procedures have identified a number of 
distinct processes. Most of the techniques focus on either the manipulation of 
vector- or raster-mode data. Much of the work on raster-mode generalisation of 
images has come from the field of remote sensing and includes such techniques as 
high- and low-frequency filtering (McMaster, 1989). High-frequency filters 
emphasise fine details and edges by passing the higher frequencies while low-
frequency filters emphasise the more generalised trends. Fourier analysis, two-
dimensional convolution, linear edge detection, non-linear edge enhancement are 
some of the common generalisation techniques for raster imagery. Since the mid-
1960s, however, most work in this area has addressed generalisation in vector-
mode. Specifically, researchers have thoroughly addressed the generalisation of 
digital lines, while leaving other aspects of generalisation as yet unresolved. For 
example, many algorithms have been developed for the simplification, smoothing, 
enhancement, displacement and merging of linear features (McMaster, 1989). 

Line simplification is an important function in cartography and GIS. In line 
simplification, source data are transformed to reduce data volume, to merge 
databases with different scales, or to maintain cartographic quality when scale is 
reduced. Line simplification involves the selective elimination of vertices along a 
cartographic line to remove unwanted information. Line simplification is only one 
component of cartographic generalisation. It is, however, the most commonly 
applied generalisation operation and is widely used in commercial GIS software 
packages (Veregin et al, 1999). 

Several approaches for the simplification of digital lines have been presented in 
the cartographic, computer science, remote sensing and mathematics literatures. 
While some of these algorithms are extremely simplistic in nature, the more 
sophisticated ones consider geometric properties of the line. McMaster’s (1987) 
classification of simplification algorithms includes: independent point routines, 
localised processing routines, constrained extended local processing routines, 
unconstrained local processing routines and global routines. Global routines focus 
on the careful selection of the critical points, or the salient geometric 
characteristics of the line (McMaster, 1989). Simplification is considered 
successful if the simplified caricature of a line closely resembles the original 
version. Most simplification algorithms need a tolerance value. All simplification 
algorithms introduce positional error. The amount of this error depends on both 
the tolerance value used for simplification and the shape of the line. The problem 
arises when the tolerance value stays the same for all lines in the data set, 
regardless of the variations in their shape.. The result is that simplification 
introduces different amounts of positional errors on different lines and the user 



usually does not have a direct understanding of these effects on data quality. In 
other words, the user specifies a tolerance value for simplification, without 
knowing how much the positional accuracy of each line is affected by this 
tolerance value. Therefore, adaptive tolerance values should be used for line 
simplification of a data set. 

This paper presents a solution to this problem. First some measures of line 
complexity will be discussed and applied to a data set to illustrate the differences 
in geometry of different linear features. Then, the paper describes a new approach 
by which the user specifies the maximum positional error instead of a tolerance 
value. The tolerance value will be specified for each individual line based on this 
maximum valid positional error. In fact, the tolerance value will be adapted to 
each line. Although applying one tolerance value for each line is not logically 
correct, if the line is not geometrically homogenous, however, the assumption here 
is that the lines are homogenous. This new approach may be extended to line 
sections if the lines are not homogenous and the result will be different tolerance 
values for different parts of a line.  

2 Complexity Measures of Lines 

Researchers have introduced a variety of mathematical measures to evaluate the 
complexity of a line. Some of these measures may be applied to a single line while 
the others are applied to compare the geometry of a line before and after 
simplification. McMaster (1986) called these categories of measures as “single 
attribute measurements” and “displacement or comparative measurements” 
respectively. Most of the research in the field of complexity measures focuses on 
four categories of measures: length, density, angularity and curvilinearity. These 
categories are discussed in the following subsections.  

2.1 Length Measures 

The length of a line is probably the simplest geometric attribute of it. The length, 
however, cannot singularly represent the complexity of the line.   Nevertheless, it 
can be used to represent the effects of the simplification.. Because much of the 
sinuosity is eliminated, a line becomes shorter, as it undergoes the simplification 
process. McMaster (1986) introduced “the percentage change in line length” as a 
length measure. This measure has been expressed as the total length of the 
simplified line divided by the length of the original line and presented as a 
percentage. This ratio is expected to decrease as the line is more simplified. 

Jasinski (1990) introduced another measure, “error variance”, which is an 
average perpendicular displacement of every point in a line to the anchor line. 
Error variance measures the deviation of the line from its straight-line 
approximation, its anchor line. Buttenfield (1984) defined the anchor line as a 
straight segment linking the first and the last point of the coordinate string. Error 



variance is expected to increase as the line is more simplified. As the mean value 
of a distribution does not say anything about dispersion of values in the data set, 
Jasinski (1990) introduced another measure called “coefficient of variation of 
error variance” which gives one the relative variability of a distribution as a ratio 
of the standard deviation to the mean.  

2.2 Density Measures 

Density of a line represents the frequency of detail that exists in it. Number of 
points of a line, as a measure of density, solely cannot represent the complexity of 
the line. It can be used, however, to represent the effect of simplification on a line 
by comparing the density of the line before and after simplification. All 
simplification algorithms, principally, reduce the number of points along a line. 
Therefore, density of the line is expected to decrease as the line is more simplified.  

McMaster (1986) introduced three coordinate measures to compare the density 
of the simplified line with the density of the original line. These measures are 
“ratio of change in the number of coordinates”, “difference in average number of 
coordinates per inch” and “ratio of change in the standard deviation of the number 
of coordinates per inch”. 

Jasinski (1990) introduced another density measure called “average segment 
length” which is the average length of all segments between the points of the line. 
The value of this measure is expected to increase as the line is more simplified 
because fewer points are retained and segments automatically get longer. Jasinski 
(1990) also introduced another density measure called “coefficient of variation of 
average segment length” because the average segment length does not give much 
information whether most of the segments are similar or whether the line consists 
of some very short and some very long ones. 

2.3 Angularity Measures 

Angularity of a line is one of its primary geometric characteristics. Angularity 
measures evaluate specifically the individual angular changes along a line. 
McMaster (1986) defined nine measures for angularity of a line to compare its 
angularity before and after simplification. The “percentage change in angularity” 
is one of these measures, which was expressed as the sum of the angles between 
consecutive vectors on the simplified line divided by this sum on the original line. 
He defined the “absolute angle of change between each pair of consecutive 
vectors” as a basic angularity measure.  Jasinski (1990) defined another formula to 
calculate the “average angularity”, which ranges from 0 (straight line) to 1 (the 
line backs on itself) and another measure, which is called “Coefficient of variation 
of average angularity”. The latter measure is expected to decrease as the line is 
more simplified.  



2.4 Curvilinearity Measures 

Curvilinearity of a line is defined by the number of inflection points in it. 
Inflection points divide the line into curvilinear segments, which are the portions 
of a line in which all angles are in the same direction, either positive or negative. 
Curvilinearity is a measure of direction of angular changes while angularity is the 
measure of magnitude of angular changes. McMaster (1986) defined four 
curvilinearity measures. These measures compare the curvilinearity of a line 
before and after simplification. McMaster (1986) defined the “ratio of the change 
in the number of curvilinear segments” as the basic curvilinearity measure, which 
is the number of curvilinear segments of the simplified line divided by the number 
of curvilinear segments of the original line. Jasinski (1990) defined the ratio of 
total curvilinearity to the number of all turns as the “curvilinearity ratio”.  

3 Discussion of Data and Measurements 

A set of four lines was selected for the project. Each of these lines is a section of a 
river in the  USA and provided by ESRI data which has come with ArcView 
software. For simplicity, the rivers have been named river1, river2, river3 and 
river4 which are parts of the rivers “Platte”, “Arkansas”, “Brazos” and “Red River 
of the North” respectively. In order for the set of lines to be representative of a 
wide range of shapes, it was decided to select the rivers with different 
irregularities. River1, which is less irregular, has 459.46 km length and includes 
19 points. The length of river2 is 714.99 km and includes 40 points. River3 is 
962.17 km and has 87 points. River4 which is 443.72 km, has almost the same 
length as river1, but has more irregularities and includes 137 points. Fig. 1 
illustrates the selected rivers.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Data set used for complexity measures 

The Douglas-Peucker’s (1973) line simplification algorithm has been selected 
in this project. There are several reasons for this selection. This algorithm is the 
most accurate at selecting critical points (White, 1983). Additionally, the 
algorithm’s selection of these critical points generates simplifications that mimic 
those generated by manual generalisation, and retains details critical for map-
reader recognition (Buttenfield, 1991).  

Visually, it is obvious that these four lines have different shapes. The difference 
can be shown mathematically using the complexity measures. For each aspect of 
line complexity, namely, length, density, angularity and curvilinearity, different 
measures have been applied on the test data set, however, only some of them will 
be discussed in this paper. The results have been plotted as graphs, with the 
measurement value against the tolerance value set for simplification. 

 “Error variance” (Jasinski, 1990) has been applied on the data set as a length 
measure. Fig. 2 illustrates the results. As could be expected, the error variance 
increases as the lines are more simplified. This is logical, since the progressive 
simplification routine by Douglas-Peucker  retains characteristic points which tend 
to have a high error variance (Jasinski, 1990).  
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Fig. 2. Error variance 

“Percentage change in number of coordinates” (McMaster, 1986) has been used 
to illustrate the density differences of four lines. Fig. 3 illustrates the result of this 
measure. As could be expected, the percentage change in number of points is 
decreasing as the lines are further simplified. Despite it’s greater irregularity, the 
decrease is faster in the case of river4, because its points are close to its anchor 
line. Therefore even with a small tolerance value, many points are removed by the 
simplification.  

Fig. 3. Percentage change in number of points 
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The third measure applied to the data set was the “percentage change in 
angularity” (McMaster, 1986). Fig. 4 illustrates the results of this measure. As 
expected, the percentage change in angularity is decreasing as the lines are further 
simplified. Again, this decreasing is faster in the case of river4, because the line is 
mostly simplified with low tolerance values. Therefore, it loses its angularity 
much faster than the other three lines.  
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Fig. 4. Percentage change in angularity 

Fig. 5 illustrates the results of the last measure, “ratio of the change in the 
number of curvilinear segments” (McMaster, 1986).  
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Fig. 5. Percentage change in curvilinearity 



 The “ratio of the change in the number of curvilinear segments” is a curvilinearity 
measure. As   expected, the percentage change in curvilinearity is decreasing with 
more simplification. Fig. 5 shows  how the simplification affects the curvilinearity 
of lines with different shapes. The straight lines in Fig. 5 means that the associated 
line is more simplified, however, the number of curvilinear segments does not 
change.  

4 Data Quality 

Line simplification algorithms simplify the lines by selective elimination of 
vertices (shape points) along the line. This process results in positional error 
because it produces a discrepancy between the location of the original line and 
that of the simplified line (Veregin et al, 1999). McMaster (1986) defined three 
groups of displacement or comparative measurements, which are used to evaluate 
differences between the base line and the simplified line. These measurements are 
“vector displacement”, “polygonal displacement” and “perimeter displacement” 
measures. The vector displacement measure has been used in this project to 
investigate the effect of simplification in inducing positional errors in the data set. 
As a result of coordinate elimination, a vector difference is produced each time 
part of the simplified line is displaced.  This distance may be measured as the 
perpendicular distance from the eliminated coordinates on the base line to the new 
vector on the simplified line. Sum of the length of all vectors between the two 
lines divided by the length of the original line is a measure of vector displacement 
(McMaster, 1986). This measure is expected to increase when the line is more 
simplified. This is logical, because the discrepancy between the location of the 
original line and that of the simplified line increases as the line is more simplified. 
Fig. 6 illustrates the results of applying vector displacement measure on the four 
lines of the data set.  
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Fig. 6. Vector displacement 

Figure 6 shows that the amount of vector displacement, which represents the 
induced positional error, is different for each line when one tolerance value is used 
for all four lines. In most parts of the graph for each specific tolerance value, there 
are four different values for vector displacement. For example, if the user specifies 
7000m as a tolerance value, the vector displacements will be 53.05, 101.25, 
181.25 and 350.59 m per km of line length for river1, river2, river3 and river4 
respectively. This results due to the difference in the complexity of the lines, as 
discussed in the previous section. When using one tolerance value for all lines in 
the data set, simplification induces more positional errors in river4 then the other 
rivers in the data set. This occurs because river4 has more density, angularity and 
curvilinearity than the others.  

5 Adaptive Tolerance Value 

Line simplification, as discussed above, can have significant effects on the data 
quality; however, the user does not have any control on these effects. When using 
a simplification algorithm, the user generally specifies  a tolerance value to control 
the degree of simplification but is unable to specify a target level of quality that 
must be attained. What is missing is a way for users to select a weed tolerance 
value that ensures  a certain level of positional accuracy is maintained (Veregin et 
al, 1999). Using one tolerance value for all lines in the data set induces different 
degrees  of positional errors for different lines. Therefore, in order to keep a 
certain level of positional accuracy for all features in the data set, the different 
tolerance values should be used for different features. The question to explore is 



how should one specify a tolerance value for each feature based on the user-
specified level of accuracy.  

This paper presents a new way to solve this problem. In the  approach 
presented, the user supplies a certain level of positional accuracy (either vector 
displacement or polygonal displacement or perimeter displacement or any other 
measure of positional accuracy depending on the user’s application) instead of 
supplying a tolerance value. As a result, the tolerance value will be specified 
automatically for each line in the data set. In order to obtain the tolerance value for 
each line, the data set has to be pre-analysed. In this pre-analysis, vector 
displacement (or any other positional displacement) measure is applied on all lines 
in the data set using a set of tolerance values for each line, which can start from 0 
to maximum tolerance value for the line. Then the proper tolerance value for each 
line is specified using the set of tolerance values and associated vector 
displacement from the pre-analysis phase. The proper tolerance value for each line 
is a value by which maximum simplification is achieved while maintaining the 
user specified positional accuracy. An example of this process is shown in Fig. 7. 
In this example the user specifies 150 m per km as the maximum vector 
displacement and the values of 14438.86 m, 11271.90 m, 6436.25 m and 1398.41 
m is calculated as tolerance values for river1, river2, river3 and river4 
respectively. Therefore, four rivers will be simplified using four different 
tolerance values and maximum vector displacement will remain under 150m per 
km for all four features.  
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Fig. 7. Adaptive tolerance values. 

This algorithm has also been tested on a larger data set.  The test data set is an 
Arcview shape file including Canadian rivers, located in UTM zone12 (NAD83) 
at the scale of 1:7.5 million (National Atlas of Canada, 1997). The size of the 
shape file is 467KB and includes 1353 lines. The first step is the pre-analysis in 
which the vector displacements are calculated for each line using different 



tolerance values. In order to specify a set of tolerance values for each line, first 
maximum possible tolerance value (Tmax) for that line (by which the line will be 
simplified to a straight line connecting the start point and end point of the line) 
was calculated. Next a set of tolerance values was selected between zero and Tmax. 
After assigning tolerance values for each line, vector displacement of the line is 
calculated for each tolerance value in the set of assigned tolerance values for that 
line. All these tolerance values and corresponding vector displacements were 
automatically recorded in a text file, along with feature identifiers indicating 
corresponding lines. The next step was simplification using adaptive tolerance 
values. For this step, the value of 100m/km was specified as maximum valid 
vector displacement for the lines of the map (as user specified level of positional 
accuracy). Then the proper tolerance value for each line was automatically 
selected using the set of tolerance values and vector displacement values stored in 
the text file in the previous step. Next, each line of the map was simplified using 
the selected tolerance value. Fig. 8 shows a section of the data set (top), together 
with the results of using constant tolerance value (1500 m) and the result of using 
adaptive tolerance value (100m/km). As  was expected, the amount of vector 
displacement induced by line simplification is completely different for different 
lines when using a constant tolerance value (Fig. 8, left). The vector displacement, 
however, has been kept under 100m/km for all lines in the simplification test using 
adaptive tolerance values (Fig. 8, right). This means the user has control on the 
positional errors induced by line simplification. The processing time for the case 
of a constant tolerance value was 0.601 s while for the adaptive case was 0.911 s 
plus 13.309 s for pre-analysis phase. The reason that more processing time is 
needed for the adaptive approach is partly because of the need to search the text 
file to find the proper tolerance value for a line. As the order of the lines in the text 
file is the same as their order in the map file, the program does not have to search 
the whole text file to find the proper tolerance value for one line but only the 
section of the file that starts with the identifier of that line. Although the time 
difference is not that much, however, some methods can be investigated to 
improve the efficiency such as a binary search tree to find the appropriate 
tolerance value. 



 

 

    
Fig. 8. A section of the test data set (top), the results of using constant tolerance value (left) 
and the result of using adaptive tolerance value (right) 

6 Conclusion 

The focus of this research has been the development of a method to calculate the 
adaptive tolerance values. In the proposed approach, the user supplies the target 
level of positional accuracy instead of a simplification tolerance value. The 
tolerance value is then calculated based on the given level of accuracy. The result 
is that each line in the data set is simplified using the calculated tolerance value 
specific for that line. In this paper, vector displacement has been used to define a 
target level of positional accuracy. However, based on a user’s application, areal 
displacement, perimeter displacement or any other measure of discrepancy 
between the original line and the simplified line can be used to define the target 
level of accuracy. It is assumed, in this paper, that the lines are homogenous. 
However, the reality is that there are many linear features that are composed of 
non-homogenous sections. Further work may focus on extending and evaluating 
the implementation of the proposed approach to segments of lines in the data set.  
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