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Abstract 

This paper examines the effects that uncertainty in digital elevation data has on 
results obtained from a spatial model.  Ongoing analysis of glacial Lake 
Algonquin in northern Michigan has used a spatial model to interpolate unknown 
shoreline locations between known shoreline positions.  Extant shoreline features 
were surveyed with global positioning technology and ancient shorelines were 
reconstructed using a DEM and a statistical model of isostatic rebound.  However, 
shoreline data contain relatively small measurement errors and relatively large 
errors are associated with the DEM.  These errors, when propagated through a 
series of GIS operations, may render uncertain results.  This research recognises 
and attempts to assess these errors in order to produce a new map of Lake 
Algonquin shorelines - one that illustrates shorelines and areas of positional 
uncertainty.  Results indicate that even small errors in input data can contribute 
uncertainty to model output.  Understanding these uncertainties can be valuable to 
further research concerning these and other ancient shorelines. 
Keywords: error propagation, spatial modelling, simulation, Lake Algonquin 

1 Introduction 

According to Heuvelink (1998, p.3), most work on spatial modelling "has been 
concentrated on the business of deriving computational models that operate on 
spatial data, on the building of large spatial databases, and on linking 
computational models with GIS".  However, some serious attention has also been 
paid to the issue of spatial data quality.  Goodchild and Gopal (1989) concluded 
that virtually all spatial data stored in a GIS are, to some extent, contaminated by 
error.  Subsequently, Heuvelink (1998) has argued that a potential danger exists in 
GIS because such errors can be propagated through GIS operations, corrupt results 
and render interpretations meaningless. 
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In work about mapping glacial shorelines, Schaetzl et al., (in press), reported 
results obtained from a spatial model.  These results contain an unknown quantity 
of uncertainty resulting from errors propagated from input data and through the 
GIS operations used.  Therefore, the purpose of this research is to re-evaluate the 
spatial model employed by Schaetzl et al., and account for the effects that input 
data errors had on results. 

1.1 Mapping Lake Algonquin 

Lake Algonquin was a prominent proglacial lake in the Great Lakes basin (Fig. 1).  
It maintained a relative high stage from approximately 11,200 to 10,400 BP and 
developed conspicuous shoreline features (Larson and Schaetzl, 2001). As glaciers 
receded from the area lower outlets were uncovered, the land surface rebounded as 
the weight of ice was lifted, and lake levels fell in stages.  Locations in northern 
Michigan have since rebounded at a faster rate than locations in southern 
Michigan (Futyma, 1981).  This crustal uplift process is called isostatic rebound; 
Fig. 2 illustrates the differential effects this process has had on the highest known 
Lake Algonquin shoreline. 

 

 
Fig. 1. Hypothesized extents of Lake Algonquin circa 11,000 BP and known extent of study 
area (after Schaetzl et al., [in press.]). Study area is approximately 175km by 250km. 



 

 
Fig. 2. Differential effects of isostatic rebound on the Algonquin shoreline in Michigan.  
Trend elevations estimated along an 85km transect from Mackinaw City to Sault Ste. 
Marie.  Elevation values are in meters above sea level. 

Much has been written about how Lake Algonquin was formed (Spencer, 1891; 
Gilbert, 1898; Goldthwait, 1908; Leverett and Taylor, 1915; and Stanley, 1936), 
but little agreement exists about the exact spatial extent of the water surface 
(Hough, 1958; Futyma, 1981; Larsen, 1987, see Fig. 1).  Little agreement exists 
because the terrain and some shoreline features have been altered over the past 
10,000 years by natural or human processes, and other evidence has been buried 
or reworked by later lake transgressions.  Uncertainty about the extent of this lake 
prompted an extensive survey by Schaetzl et al., (in press).  The field element of 
the survey employed global positioning technology to measure positions {x,y,z} 
along the highest known Lake Algonquin shoreline.  In the laboratory, a GIS was 
used to conflate and analyse the shoreline data and a digital elevation model 
(DEM) of the region in order to interpolate unknown shoreline locations and 
generate a map of results.  In sum, a GIS was used to evaluate a computational 
model - a simple representation of a complex, crustal deformation process. 

1.2 Statement of Problem 

The certainty with which one can assume a DEM represents true surface form is a 
function of the quality of the elevation data provided.  Kyriakidis et al., (1999, p. 
678 after Bolstad and Stowe, 1994) maintain, "that DEM source data and 
production methods are not perfect, and consequently mismatch errors occur 
between actual and DEM-reported elevation values."  GIS operations can 
propagate error in the DEM through processing and analysis, thereby producing 
uncertain results.  Therefore, a need exists to quantify and represent uncertainty in 
results obtained from the spatial model used to interpolate Lake Algonquin 
shorelines. 

The objectives of this research are to quantify and model errors in Schaetzl's 
shoreline data and DEM (a mosaic of USGS 3 arc second DEMs resampled to a 



 

90 meter ground resolution), re-evaluate the shoreline interpolation model, and 
represent uncertainties in a map of results.  Six related questions were posed in an 
effort to achieve the research objectives:  

1. How much elevation error is contained within the shoreline data set?  
2. How much elevation error is contained within the DEM?  
3. What influence do elevation errors in shoreline data have on interpolated 

shoreline locations?  
4. What influence do elevation errors in DEM data have on interpolated shoreline 

locations?  
5. What influence do combined elevation errors have on interpolated shoreline 

locations?  
6. Where, if anywhere, do uncertainties exist in a map of results? 

2 Methods used for Summarising Error 

The area selected for study is located in Michigan's northern Lower and Upper 
Peninsulas (Fig. 1).   This region contains many conspicuous Lake Algonquin 
bluffs.  Local relief varies within the region, which includes moraines, steep bluffs 
and relatively flat outwash plains. 

2.1 Measurement Errors in the Shoreline Data 

While Schaetzl et al., (in press) collected position data, efforts were also made to 
assess the accuracy of GPS-measured elevation data.  Positions were measured for 
eight different benchmarks of known elevation (one was measured twice, but 
during different trips to the field).  Measured benchmark elevations were 
compared to actual elevation values published by the National Geodetic Survey 
for the same monuments (NGS Information Services Branch, 1999).  A root mean 
squared error (RMSE) of 1.20 meters represents the average magnitude of 
difference between measured and published values.  In addition, RMSE values for 
eastings and northings were not greater than 0.8 meters (not shown). Because the 
methods used to gather and process shoreline data were the same as those used to 
gather and process benchmark data, the average vertical error in the shoreline data 
was inferred to be similarly small.  Summary statistics were calculated to describe 
the distribution of error within the benchmark data (Table 1).  Although the 
sample size is small (n=9), the statistical evidence in Table 1 does not indicate that 
the error distribution is not normal.  Hence, we assumed the distribution of error to 
be normal.  Further assessment indicated that error did not appear to be a function 
of space, position, or some form of landscape covariation process.  Therefore, we 
believe these errors are measurement errors and error magnitudes are associated 
with the limits of equipment precision.  We assume this error process is random 
and spatially independent. 



 

Table 1. Summary statistics for elevation error distributions 

Statistic Shoreline data DEM
RMSE 1.20 5.09
Min -1.63 -21.20
Max 1.75 22.10
Mean 0.00 0.01
Variance 1.61 25.94
Skewness 0.25 0.24
Kurtosis -1.64 2.23

2.2 Errors in the DEM 

During their survey, Schaetzl et al. collected additional position data for 
shorelines that existed later and lower than the Main Algonquin shoreline.  These 
ancillary position data and National Geodetic Survey benchmark data (NGS, 
2001) were used to assess the accuracy of DEM elevations at 1353 locations.  All 
data sets were referenced to the same coordinate system, and horizontal and 
vertical control networks.  A root mean squared difference of 5.09 meters (see 
Table 1) indicates a larger average magnitude of error exists in the DEM than in 
the shoreline data set.  Therefore, it is reasonable to suspect that larger errors in 
the DEM contribute more uncertainty to results than smaller errors in the shoreline 
data. 

Summary statistics were calculated to describe the distribution of error within 
the DEM (Table 1).  The Kolmogorov-Smirnov test was used to test the 
cumulative frequency distribution for non-normality.  Significance test results did 
not provide evidence to reject the standard null hypothesis; the sample distribution 
fits an expected normal distribution, using a 90 percent confidence interval.  
Hence, we assumed the distribution of error in the DEM to be normal. 

Although we assumed errors to be normally distributed, we did not assume 
errors to be spatially independent.  Bolstad and Stowe (1994), Brown and Bara 
(1994) and Kyriakidis et al. (1999) have demonstrated reasons for why errors in 
USGS DEM products exhibit spatial autocorrelation and not spatial independence 
structures.  Isotropic and anisotropic semivariograms were calculated and analysed 
to characterise the distribution of errors; each indicated an isotropic and positively 
autocorrelated covariance structure exists.  However, unlike Bolstad and Stowe 
(1994), further analysis did not reveal any linear relationship between error values 
(signed or unsigned) and position values (x or y or z).  Hence, we treated the 
covariance structure associated with DEM errors as a spatially dependent random 
process of unknown origin. 



 

2.3 The Spatial Model  

The spatial model used by Schaetzl et al. (Fig. 3a) is relatively simple, but it 
simulates a complex, crustal deformation process.  In essence, the model 
reconstructs the ancient shoreline by adjusting a DEM of modern terrain to 
account for isostatic rebound.  First, former water surface elevations are modelled 
as a function of location using the shoreline data and a second-order polynomial 
trend surface with parameters estimated via ordinary least squares.  This trend 
surface represents the upwarped nature of the ancient landscape sans local relief 
(e.g., Fig. 2). 

 

 
(a) (b) 

Fig. 3. The spatial models used by (a) Schaetzl et al., and (b) this research 

Second, the minimum elevation value in the shoreline data set is identified then 
subtracted from all elevation values in the warped surface.  The resulting surface 
represents isostatic rebound relative to the lowest known shoreline elevation.  This 
step is necessary because much disagreement exists in the literature regarding the 
actual lake level and controlling outlet elevations (e.g., Hough, 1958 and Larsen, 



 

1987).  Therefore, the isostatic rebound surface is calculated relative to the lowest 
known elevation and not a controlling outlet. 

Third, the isostatic rebound surface is subtracted from a surface model of 
modern elevations, a.k.a. the DEM, thereby producing an isostatically depressed 
elevation model with local relief.  Finally, classifying all elevation values with 
respect to the minimum shoreline elevation value cartographically floods the 
adjusted elevation model.  Nodes with elevation values greater than the minimum 
value are classified as above shoreline, while the balance are classified as not 
above shoreline. 

3 Methods Used for Modelling Uncertainty 

Monte Carlo simulation is a computer intensive technique used to reveal the 
contributions of error to results from input data, as well as differences across a 
geographic area (Burrough and McDonnell, 1998).  In essence, a typical 
simulation consists of evaluating a spatial model many times, each time using 
inputs that have been modified.  Individual input values are modified randomly 
via some model that specifies the error distribution of the input and makes 
assumptions about the behaviour of error.  Parameters for the model are derived 
with respect to known or assumed information about errors in the input data.  
After a large number of realisations are generated, the set of spatial model results 
is summarised to determine the range of possible outcomes. 

The goal of a Monte Carlo simulation is not to determine a single correct 
answer, but rather to define probable limits associated with a large number of 
possible outcomes given random errors in data.  The Monte Carlo simulation 
technique is appropriate for this analysis because it can reveal contributions of 
error to results from input data, which is the purpose of this research. 

The error model employed during this work adopts four assumptions.  First, the 
distribution of error associated with each input value in each data set is normal.  
Second, because each error may be treated as a random variable, every measured 
value comprises one out of an infinite set of possible yet, equally valid 
representations.  The third assumption is employed with respect to the shoreline 
data set only; the error associated with any one input value is independent, 
random, and cannot be systematically corrected.  Last, the fourth assumption is 
employed with respect to the DEM only; the errors associated with input values 
are spatially structured, random, and can be simulated via the sequential Gaussian 
simulation technique described below (see Section 3.2 and Goovaerts, 1998). 

3.1 Simulation One: Uncertainty from Shoreline Data 

During the first simulation, 100 realisations of shoreline elevations were 
generated.  Each realisation consisted of original shoreline elevation values that 
were perturbed independently by error values drawn randomly from the normal 



 

probability distribution function with mean = 0 and variance = 1.61 (see Table 1).  
The adjusted spatial model (Fig. 3b) was run 100 times, each time using one of the 
perturbed data sets, rather than the original, as input.  The DEM values were held 
constant.  This simulation produced a set of 100 binary grids, each containing cells 
that represented above shoreline (1) and not above shoreline (0) locations.  Using 
grid algebra, the set of 100 binary grids were summed and divided by the scalar 
100 to produce a single and final grid.  Final grid cells with a zero value indicate 
locations that were classified above shoreline zero percent of the time.  Final grid 
cells with a unity value indicate locations that were classified above shoreline 100 
percent of the time.  Values ranging between zero and one indicate the proportion 
of results that were above the minimum shoreline elevation value. 

3.2 Simulation Two: Uncertainty from the DEM 

During the second simulation, 100 realisations of the DEM were generated.  Each 
realisation consisted of DEM values that were perturbed by random and spatially 
structured errors, which were made conditional to ancillary shoreline and NGS 
benchmark data. 

Realisations were generated using a two-step procedure.  First, the spatial 
structure of DEM error was estimated by employing the geostatistical software 
program Gstat (Pebesma and Wesseling,1998) to fit a compound exponential 
variogram model [Eq. 1] to an empirical variogram of measured DEM errors.  
And second, we employed sequential Gaussian simulation (sGs and succinctly 
described by Goovaerts, 1998:4-5) to account for the spatially dependent error 
process, and condition the DEM to higher accuracy spot data.  According to 
Goovaerts (1998:4), 

 
"sequential simulation amounts to modelling the conditional cumulative distribution 
function (ccdf)... ...then sampling it at each of the grid nodes visited along a random 
sequence.  To ensure reproduction of the z-semivariogram model [Eq. 1 - authors 
inclusion], each ccdf is made conditional not only to the original n data but also to 
all values simulated at previously visited locations." 

 

In sum, we used sGs to develop 100 models of spatially structured DEM errors 
that were used to perturb the original DEM. 
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where:   nugget = 1,  
 sill1 = 9,  
 range1 = 270 m,  
 sill2 = 22, and  
 range2 = 3800 m. 
 

The adjusted spatial model (Fig. 3b) was run 100 times, each time using one of 
the perturbed data sets, rather than the original, as input.  Original shoreline data 
values were held constant. This simulation produced a second set of 100 binary 



 

grids, which were summarised in the same manner described in Section 3.1.  It 
was expected that this simulation would produce a wider range of results, and 
therefore more uncertainty, than did the first simulation because the average 
magnitude of error associated with the DEM is greater than that associated with 
the shoreline data set. 

3.3 Simulation Three: Uncertainty from Error Interaction 

The interaction between input errors can take many forms.  For example, errors in 
one data set may cancel errors in the other - a best-case scenario.  A worst-case 
scenario would reveal a compounding effect.  Moreover, the degree of interaction 
may vary over space, thereby perturbing results in some locations differently than 
others.  The third simulation, which incorporated 100 realisations each of 
shoreline data and the DEM, was used to reveal influences that the interaction of 
errors in both data sets had on results. Accordingly, the adjusted spatial model 
(Fig. 3b) was run 100 times to produce a third set of 100 binary grids.  Again, 
binary grids were summarised in the same manner as describe in Section 3.1. 

4 Mapping the Results 

Maps were prepared to illustrate the spatial distributions of shoreline locations 
associated with the three final grids.  For display purposes, grid cells with values 
less than 0.05 were reclassified as below shoreline and illustrated with white.  
Grid cells with values greater than 0.95 were reclassified as above shoreline and 
illustrated with a gray tone.  Values including and between 0.05 and 0.95 were 
reclassified as uncertain and highlighted with black.   

4.1 Influence of Elevation Errors in the Shoreline Data Set 

Relatively small measurement errors inherent to shoreline data contributed some 
uncertainties to results.  Fig. 4a shows the probable distribution of shoreline 
locations and areas over which the position of the Lake Algonquin shorelines 
remains in doubt.  Much of the land and water interface is distinct but some 
sections are peppered with relatively small areas of uncertainty.  Several larger 
areas of uncertainty exist at locations apparently reworked by fluvial activity (e.g., 
the Thunder Bay River system west of Alpena) and spaces possibly associated 
with emergent wetlands (e.g., islands in the Upper Peninsula).  However, some of 
these uncertainties may also be products of data distribution.  Much of the 
shoreline survey data was collected in the Lower Peninsula.  Many but fewer 
positions were measured in the Upper Peninsula and none were gathered in 
Canada.  Given what is commonly known about the behaviour of trend surfaces 
calculated beyond the extent of input data (i.e., for locations in Canada), we 



 

hypothesise that some of the uncertainties illustrated in Fig. 4a were contributed 
by trend surface flutter in the adjusted spatial model.  However, that is a 
hypothesis to be entertained during future research. 

 

 

(a) (b) 

Fig. 4. Shoreline uncertainties propagated from, (a) measurement errors in shoreline 
elevation data, and (b) spatially structured errors in the DEM.  Modern water body names, 
county boundaries, and places mentioned in the text were added as references. 

4.2  Influence of Elevation Errors in the DEM 

Fig. 4b shows the distribution of above shoreline locations and areas over which 
the position of the Lake Algonquin shoreline remains uncertain.  Although the 
larger errors in the DEM were suspected to contribute more uncertainty to results, 
distributions in the output are surprisingly large.  While similarities exist between 
the spatial distributions of uncertainty in Figs. 4a and 4b, some striking differences 
are present.  In some areas, the width of the band of uncertainty is greater than 10 
km.  For example, the peninsula located north of Alpena (Fig. 4a) was 
cartographically reduced to two islands (Fig. 4b). Much of the land area in the 
Upper Peninsula (Fig. 4a) has also been reduced by uncertainty (Fig. 4b).  
However, modelling DEM elevation errors has served to reveal some new 
information.  For example, results from simulation two show a massive spit 



 

complex located approximately halfway between Alpena and Mackinaw City.  
This complex was not apparent in Schaetzl's original findings or after simulation 
one.  Large errors in the DEM may have propagated into broad uncertainties, but 
when rigorously modelled, they may also contribute to discovery. 

4.3  Influence of Interacting Errors 

The interaction between errors during simulation three manifested into uncertainty 
distributions nearly identical to those produced during simulation two. Hence, a 
separate figure is not included here. Shadows of uncertainty caused by errors in 
the shoreline survey were masked by shadows caused by errors in the DEM. No 
compounding effect was evident.  Most of the slight differences occurred in the 
island and spit complex located just south of Mackinaw City and the island 
complex located north of the North Channel.  As hypothesized above, however, 
the observable differences in Canada may have been induced by trend surface 
flutter in the adjusted spatial model. 

5 Discussion 

The shoreline survey data used in this research consist of position measurements 
made along relict, and thus static, lacustrine features formed by Lake Algonquin.  
Yet, active coastal environments are dynamic and their associated shorelines can 
change quickly via the combined influences of erosion and deposition processes.  
For that reason, the exact position of any shoreline, whether modern or ancient, 
cannot be known with absolute certainty.  However, based on arguments put forth 
by Schaetzl et al. (in press), we accept the shoreline survey data set as the set of 
best proxy indicators of Lake Algonquin shoreline locations. 

Burrough and McDonnell (1998:243) consider the question, "if a new attribute 
U is defined as a function of inputs A1, A2,...An, we want to know what is the error 
associated with U, and what are the contributions from each An to that error?"   In 
this research, the new attribute U represents Lake Algonquin shoreline position, 
and we want to know the contribution of error in shoreline position from the 
shoreline survey data and the DEM, A1 and A2 respectively. 

Results from this research illustrate the significant impact that even small errors 
in spatial data can have on model results.  Recall that elevations in the shoreline 
data set contain an average error magnitude of only 1.2 meters.  These small 
errors, after being propagated through several GIS operations, manifested into 
hundreds of meters of positional uncertainty in some locations. 

The DEM contained elevation values with an average error magnitude greater 
than 5 meters.  This error range is larger than the range associated with the 
shoreline data, and subsequently, was propagated into larger uncertainties. 



 

5.1 Uncertainty Distributions in Maps of Results 

Obvious spatial patterns are evident in results when errors in the DEM are 
propagated.  Review of Fig. 4 reveals several locations that are sensitive to the 
larger errors inherent to the DEM.  A re-examination of field notes, USGS 
topographic maps, and the original DEM provided grist for an explanation.  
Relatively flat areas, like those formed by alluvial outwash processes, contain 
little local relief and subtle changes in elevation.  Should the interpolated position 
of a shoreline vary along the vertical dimension of these relatively flat locations, 
even by only a few meters, then the intersection of the water surface and the land 
surface can vary widely over the horizontal plane.  Conversely, those locations 
with relatively steep gradients and significant local relief, like those associated 
with wave-cut bluffs (e.g. like those located just south of Alpena), will tend to be 
less sensitive to errors in interpolated shoreline positions.  Although differences in 
shoreline elevation will change the position of the shoreline along the vertical 
axis, less change would occur along the horizontal plane.  In sum, those areas 
most sensitive to errors tended to exhibit shallow gradients. 

6 Conclusions 

Lake Algonquin shorelines in Michigan cannot be mapped with the same degree 
of precision at all locations, at least not with the data sets, spatial model or terrain 
data currently available. This finding in no way discredits those data sets or the 
work done by Schaetzl et al., because they have delineated the boundaries of Lake 
Algonquin much more extensively and precisely than any previous work.  
However, it seems appropriate to suggest limitations on how their results could be 
used.  For example, their results would be quite useful for reference purposes 
when illustrated at smaller cartographic scales, like the one used for Fig. 1, 
because the width of the band of uncertainty may be concealed within the width of 
a pen stroke.  At larger nominal cartographic scales, like the one used for Fig. 4, 
their results would not be as useful for determining shoreline position because the 
exact extent of the former lake boundary remains uncertain in many locations.  
Yet, future efforts to map the extent of Lake Algonquin and other paleolakes will 
benefit from the research presented here as uncertainty maps can be used to focus 
subsequent fieldwork and surveying efforts.  An iterative process of planning, 
fieldwork, spatial modelling, and uncertainty mapping, with refinements made 
along the way, may be what is required to finally map Lake Algonquin. 

Acknowledgements 

This work was supported by a NSF (Geography and Regional Science) grant 
(BCS-9819148) to RJS.  We acknowledge the many contributions of students 
from GEO 809 (Fall 1999) to this project: B. Weisenborn, K. Kincare, X. 



 

Cordoba, K. Shein, C. Dowd, and J. Linker.  Also, we thank Beth Weisenborn for 
sharing with us her template of Lake Algonquin, which we used to create Fig. 1. 

References 

Bolstad PV, Stowe T (1994) An evaluation of DEM accuracy: elevation, slope, and aspect. 
Photogrammetric Engineering & Remote Sensing 60(11):1327-1332 

Brown DG, Bara TJ (1994) Recognition and reduction of systematic error in elevation and 
derivative surfaces from 7-1/2 minute DEMs. Photogrammetric Engineering and 
Remote Sensing 60(2): 189-194 

Burrough PA, McDonnell RA (1998) Principles of Geographic Information Systems.  New 
York: Oxford University Press Inc. 

Futyma RP (1981) The northern limits of glacial Lake Algonquin in upper Michigan.  
Quaternary Research 15: 291-310 

Gilbert GK (1898) Recent earth movements in the Great Lakes region. U.S. Geological 
Survey 18th Annual Report, Part 2. Washington D.C. 

Goldthwait JW (1908) A reconstruction of water planes of the extinct glacial lakes in the 
Lake Michigan basin.  Journal of Geology 16: 459-476 

Goodchild MF, Gopal S (1989) Accuracy of Spatial Databases. London: Taylor & Francis. 
Goovaerts P (1998) Impact of the simulation algorithm, magnitude of ergodic fluctuations 

and number of realizations on the spaces of uncertainty of flow predictions. Stanford 
Center for Reservoir Forecasting, Stanford University, Unpub. annual report No 11. 

Heuvelink GBM (1998) Error propagation in environmental modelling with GIS. Bristol, 
PA: Taylor & Francis 

Hough JL (1958) "Geology of the Great Lakes."  Urbana: University of Illinois Press 
Kyriakidis PC, Shortridge AM, Goodchild MF (1999) Geostatistics for conflation and 

accuracy assessment of digital elevation models. International Journal of Geographical 
Information Science 13(7):677-707 

Larsen CE (1987) Geological history of Glacial Lake Algonquin and the Upper Great 
Lakes. U.S. Geological Survey Bulletin 1801 

Larson G, Schaetzl RJ (2001) Origin and evolution of the Great Lakes. Journal of Great 
Lakes Research 27(4):518-546 

Leverett F, Taylor FB (1915) Pleistocene of Michigan and Indiana and the history of the 
Great Lakes. U.S. Geological Survey Monograph 53 

National Geodetic Survey, Information Services Branch. (2001) NGS Datasheets [online]. 
Available from: http://www.ngs.noaa.gov/datasheet.html (Viewed on March, 2001) 

Pebesma EJ, Wesseling CG (1998) Gstat, a program for geostatistical modelling, prediction 
and simulation. Computers and Geosciences 24(1):17-31 

Schaetzl RJ, Drzyzga SA, Weisenborn BN, Kincare KA, Cordoba XD, Shein KA, Dowd 
CM, Linker J (in press) Correlation and mapping of Lake Algonquin shorelines in 
Michigan. Annals of the Association of American Geographers. 

Spencer JW (1891) Deformation of the Algonquin beach, and birth of Lake Huron.  
American Journal of Science 4:12-21 

Stanley GM (1936) Lower Algonquin beaches of Penetanguishene Peninsula. Bulletin of 
the Geological Society of America 47: 1933-1960 


