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Abstract 

Although many different types of data mining tools have been developed for 
geographic analysis, the broader perspective of geographic knowledge 
discovery�the stages required and their computational support�have been 
largely overlooked.  This paper describes the process of knowledge construction 
as a number of inter-related activities and the support of these activities in an 
integrated visual and computational environment, GeoVISTA Studio.  Results are 
presented showing examples of each stage in the knowledge construction process 
and a summary of the inter-relationships between visualisation, computation, 
representation and reasoning is provided. 
Keywords: knowledge discovery, data mining, visualisation, machine learning, 
abduction 

1 Introduction 

Despite enormous efforts in quantification, our understanding of many of the 
Earth’s systems remains non-axiomatic; the systems are ‘open’ and consequently 
it is not possible to deduce all outcomes from known laws and rules.  Geographic 
science must therefore adopt a manner that encourages the creation or uncovering 
of new knowledge (Baker, 1996; Takatsuka and Gahegan, 2001).  For this reason 
alone�and completely uncoupled from concerns about increasing data 
volumes�it is vital that knowledge discovery methods can be brought 
successfully to bear on problems across geography and the wider geosciences. 

                                                           
1 Also from Geological Survey of Canada. 
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The foundation of this paper is the relationship that knowledge construction and 
discovery activities have with the different approaches used for scientific 
inference; it is via an understanding of this relationship that we can categorise the 
kinds of knowledge that can be discovered or learned (epistemology), and thus 
begin to comprehend the roles required of domain experts and computational tools 
in the knowledge discovery process.  Building on this foundation, the goal of the 
work described here is to facilitate the knowledge construction process in 
geography (or geo-sciences in general), by providing better computational support 
and closer integration of various exploratory visual and computational methods. 

1.1 Background:  Data Mining Knowledge Discovery to Date 

Many different styles of spatio-temporal knowledge discovery have been proposed 
(see Roddick and Spiliopoulou, 1999 for a wide-ranging bibliography), from the 
entirely computational to visually-led methods (e.g. Openshaw et al., 1990; 
Koperski and Han, 1995; Knorr and Ng, 1996; Ester et al., 1996, 1998; Gahegan 
et al., 2001).  Automated methods currently available concentrate on mining 
categories, clusters, outliers and other kinds of patterns that might occur in data, 
rather than on developing these patterns into knowledge structures.  Examples are 
the Self Organising Map (Kohonen, 1997) and the AutoClass (Cheeseman and 
Stutz, 1996) and AutoClust (Estivill-Castro and Lee, 2001) packages.  

Parallel efforts across many disciplines, including statistics, machine learning, 
databases and information visualisation have emphasized different aspects of the 
knowledge discovery process (e.g. Agrawal et al., 1993; Gehrke et al., 1999; 
Glymour et al., 1997; Rainsford and Roddick, 1999; Haslett et al., 1991; 
MacEachren et al., 1999).  Within this spectrum, the various roles played by the 
expert and the machine differ greatly, sometimes with little thought to the 
different abilities that each has to offer (Valdez-Perez, 1999).  The nature of the 
results obtained also differ, from probabilistic rules in computational form to deep 
insights gained by the expert from visual displays that cannot easily be shared or 
formalized.  See Table 1 for a summary.  

A specifically geographically-oriented overview of data mining and knowledge 
discovery has been recently developed as an emerging theme by the University 
Consortium on Geographic Information Science (UCGIS) (Yuan et al., 2001) and 
is available via http://www.ucgis.org/emerging/.  The role played by geographic 
visualisation in supporting knowledge discovery activities is specifically tackled 
in a related research initiative by the International Cartographic Association 
(ICA) and reported by Gahegan et al. (2001).  Section 3 below discusses the tasks 
and roles in the knowledge discovery process in more detail, but first we begin by 
examining some of the problems encountered by data mining and knowledge 
discovery methods applied in the geographical domain. 



  

Table 1. Summary of the different discipline perspectives on data mining and knowledge 
discovery activities.  Contributed by the author to Yuan et al. (2001). 

 Databases Statistics Machine 
learning 

Visualisation 

 
Finding 

Association 
rules 

Local pattern 
analysis and global 
inferential tests 

Neural 
networks, 
decision trees 

Exploratory 
visualisation, 
Visual data 
mining 

 
Reporting 

Rule lists  Summary statistics, 
significance and 
power 

Likelihood 
estimation, 
information gain

A stimulus 
within the visual 
domain 

 
Representing 

Schema 
update, 
metadata 

Fitted statistical 
models, local or 
global 

Rules, graphs, 
functions,  

Shared between 
the scene and the 
observer 

 
Validating 

Weak 
significance 
testing 

Statistical 
significance tests 

Learning 
followed by 
verification 

Human subjects 
testing. 

 
Optimising 

Reducing 
computationa
l complexity 

Data reduction and 
stratified sampling 
strategies 

Stochastic 
search, gradient 
ascent methods 

Hierarchical  and 
adaptive 
methods, grand 
tours 

2 Problems With Geographical Knowledge Discovery 

2.1 What Constitutes Discovery? 

Scientific discovery draws on a wide range of techniques, often simultaneously, in 
the search for new insights and theories (e.g. Hanson, 1958; Popper, 1959; 
Langley, 2000).  Within this complex process, different forms of inference are 
required. 

Philosophically, the process of actually discovering something new is closely 
tied to a form of reasoning called abduction (Psillos, 2000; Peirce, 1878).  
Abduction is the simultaneous act of uncovering some structure within the data 
and producing a hypothesis with which to explain it.  The structure uncovered is 
necessarily unknown at the outset, while the theoretic explanation may be drawn 
from what is already known or may involve an expansion or a reshaping of 
existing knowledge.  The importance of abductive reasoning in the geosciences is 
argued convincingly by Baker (1996).  

Practically, Fayadd et al. (1996) also point to the development of knowledge 
via a number of stages: data selection, pre-processing, transformation, data mining 
and interpretation/evaluation that progressively refine a large dataset to the point 
where it makes sense to propose object structures and relationships. 



 

2.2 Why is Geographical Knowledge Discovery Unique and Difficult? 

Geography is an integrative discipline, so data necessarily spans a wide range of 
perspectives and interests, from the social to the physical and all points in 
between.  Arising from this complex mix of perspectives, and coupled with a 
growing infrastructure for gathering information, the following problems arise.  

1. Data volume.  Like many disciplines where data mining is applied, geography 
is rich in data.  Knowing which portions of a dataset to analyse, and which to 
ignore, becomes problematic. 

2. Complexities caused by data gathering and sampling.  Although data are 
available in increasing volume, it is still often the case that we must resort to 
surrogates or aggregates for the phenomena of interest, rather than direct 
measurements (Openshaw, 1984; Yuan et al., 2001). 

3. Complexities caused by local relationships.  Earth systems are so intrinsically 
interconnected that it is difficult to isolate an analysis conducted on some part 
of a system from the effects of other unmodelled aspects.  The outcome often 
appears in statistical form as heteroskedasticity.   

4. Complexities associated with the domain itself.  Interesting and relevant 
signals in data are often entirely hidden by stronger patterns that must first be 
removed.  For example, the cyclic nature of many geographical systems (daily, 
annual, sunspot) impose a heavy signal on data that can overshadow more 
localised variance (Roddick and Lees, 2001).  

5. Lack of appropriate methods.  While the existing techniques described in 
section 1.1 are useful for exploring a dataset, they fail to offer the explicit 
connection to theory or explanation that characterises abduction (section 2.1). 
The best that can be managed in a computational setting is a kind of low-level 
explanation offered in the language of the underlying feature-space, not in a 
higher form as domain knowledge.  

6. Difficulty in formalising the geographic domain.  There is, as yet, no 
universally accepted conceptual model of geography (e.g. Goodchild, 1992), 
and the models that are currently implemented in commercial GIS vary 
significantly one from another, often in quite fundamental, philosophical ways.  
This leads to three distinct problems: (a) data are often intrinsically non-
commensurate, they cannot be directly compared or combined; (b) it is difficult 
to apply formal geographical knowledge to the process of knowledge 
discovery, since such knowledge is not readily available; (c) when new 
knowledge is uncovered it is difficult to represent that knowledge 
formally�there is nowhere to put it! 

Additional details of some of these problems are presented by Yuan et al. 
(2001) and Miller and Han, (2001).  All six of these problems speak to the need to 
bring domain knowledge to bear on the knowledge discovery process.  As 
described above (point 6), the lack of a formal conceptual model for geographic 
information, models and processes, presents a formidable barrier to the automation 
of knowledge discovery and precludes the use of computationally-based 



  

abduction.  As Psillos (2000) argues: "The more conceptually adequate a model of 
abduction becomes, the less computationally tractable it is". 

In the absence of formal mechanisms for representing and applying domain 
knowledge, many researchers have modified the problem to focus on ways to 
engage the human as a direct node in the problem-solving process, rather than 
simply the consumer of the results.  Using visually-led approaches, an abductive 
task is performed collaboratively between the observer and the visualisation.  The 
stimulus to abduction�patterns in the visual displays�are observed as a 
consequence of the way the data are presented and the way the observer perceives 
and comprehends them.  The simultaneous task of hypothesis generation is also 
similarly split, the mappings used to visualise the data may imply a hypothesis and 
an observer may generate one or more theories to explain the observed structure.   

An additional problem is that, with few exceptions, the tools currently available 
operate in isolation, typically performing a single function (e.g. clustering, 
classification), or providing a view onto the data from a single perspective (e.g. 
scatterplot, parallel coordinate plot).  By doing so, they implicitly assume that 
problems in science can be isolated to a single conceptual ‘plane’, which, when 
correctly understood and represented, can be fixed to form the basis on which 
further science can be constructed.  However, it is often the case that we must 
experiment across more than one level simultaneously, particularly where 
complex situations and under-constrained theory present multiple alternatives that 
must be evaluated (Baker, 1999).  Take, for example, the case of eco-regions: to 
be useful, an eco-region must not only neatly summarise many complex 
environmental dimensions, it must also form a useful basis for further analysis.   

We thus regard knowledge discovery or knowledge construction within the 
geospatial sphere as a developmental process, with meaning being progressively 
constructed and refined through a series of pre-processing and interpretative steps 
(e.g. Fayyad et al., 1996; MacEachren, et al., 1999; Valdez-Perez, 1999; Risch et 
al., 1997; Ribarsky et al., 1999; Wong, 1999).  Current systems lack adequate 
tools for supporting this process. 

3 A Software Laboratory for Knowledge Construction 

What we envisage is a computing environment where a user can move seamlessly 
between exploring data, constructing elements to represent observed structures, 
applying these structures operationally, assessing their performance and 
communicating findings.  This has led us to construct GeoVISTA Studio, which 
aims to encompass this entire spectrum of activities in an integrated manner 
(Gahegan et al., 2002).  A technical description of Studio has been previously 
reported (Takatsuka and Gahegan, 2001) so will not be repeated here.  In short, it 
is a visual programming environment, which allows users to quickly design, test 
and refine strategies to explore and analyse geospatial data.  Functionality is 
encapsulated in JavaBeans that support a range of activities, from visualising high 
dimensional feature spaces, applying neural networks and traditional statistical 



 

analysis tools through to mapping outcomes.  Examples of the use of Studio, and 
its support for the process of discovery, appear in the following sub-section. 

3.1. Scientific Activities in Support of Human-Directed Discovery 

Although there is no consensus on any one scientific method, there are several 
prevalent activities proposed both by philosophers (e.g., Feyerband, 1975; 
Hanson, 1958; Kuhn, 1962; Popper, 1959) and geographers alike (e.g. Harvey, 
1969).  A subset of these activities is clearly pertinent to geographical knowledge 
discovery, beginning with exploratory activities from which concepts are 
synthesised then woven together into models or theories that can be evaluated and 
presented to others.  Such activities are empirically supported by psychologists 
(Feist and Gorman, 1998; Zimmerman, 2000), and some are even implemented 
computationally (Langley, 2000; Shrager and Langley, 1990; Thagard, 1988), 
though largely without geographical focus. 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig. 1. A generalised framework for geoscientific discovery consisting of exploratory, 
synthesis, analysis, evaluation, and presentation activities.  These respectively correlate 
with the evolution of features, concepts, theories and models, explanations, and 
presentations. 

Fig. 1 presents an overview of some of the key aspects of the discovery 
process.  It is depicted as a cycle, or a spiral, and this is apt because we can then 
envisage the negative outcomes causing the cycle to begin again and the positive 

Exploration: 
EXPLORING, 

DISCOVERING

Analysis: 
GENERALIZING, 

MODELING

Evaluation:
EXPLAINING,
TESTING

Deduction

Abduction

 
Data 

 
Concept 

Model 

 
Theory 

Presentation: 
COMMUNICATING, 

CONSENSUS- 
BUILDING

Synthesis: 
LEARNING, 

CATEGORIZING

Model-based 

 
Map 

 
Explanation 

Induction 
Rhetoric 



  

outcomes (such as a validated theory described by a map) as being then becoming 
the data that is fed into the next iteration of the cycle at a more abstract level.  
Thus meaning is constructed in successive layers, each one supported by those 
below it (Popper, 1959).  However, in practice, all stages are connected and may 
proceed in almost any order and simultaneously, as the connecting boxes in the 
interior of the diagram attempt to show.  Further descriptions of the main stages 
follow. 

Exploration: involves selecting which data, features (i.e. attributes), and 
feature weightings, are appropriate and significant, based on what is known and 
the prevailing scientific climate.  It includes orienting human and other sensors to 
an environment by making preliminary observations.  These observations can be 
notoriously subjective, being influenced by existing knowledge and various social 
pressures; moreover, this activity may be guided by perceptual and other implicit 
mechanisms that are difficult to express or even be conscious of (Shrager, 1990). 
Exploration is associated with scientific discovery inasmuch as it provides a 
stimulus for hypothesis generation and grounds for abduction; i.e. exploration 
involves selecting the data for which explanations are to be sought (abductively).   

Fig. 2 shows two exploratory views provided by Studio onto a feature-space of 
state-level, socio-demographic data of the USA: a dynamic map and a clustering 
tool (a self-organising neural map or SOM).  These and other tools provide the 
user with a number of different perspectives onto the data, ranging from the 
geographic distribution of variables (the map), to the clustering of places based on 
their similarity in feature space (SOM).  The user can explore connections 
between these views via the linking and brushing tools (Cleveland and McGill, 
1988; Buja et al., 1996; Hardisty et al., 2001) that Studio provides.  A number of 
more traditional methods are also included here, such as the re-ordering of the 
feature space using correlation analysis and principal components.  When used in 
conjunction with the visualisation tools, these allow the user to discard attributes 
that offer little or no additional information. 

 

 

  
Fig. 2. Two views of a demographic dataset, allowing the user to explore the data from a 
number of different perspectives.  Dynamic map (left), and a view of the unsupervised 
clustering of states provided by the SOM. 



 

Synthesis: involves building concepts and taxonomies, or revising them, from 
selected features and data.  These taxonomies then form the basis for terminology 
used in various explanatory structures, such as logical theories, mathematical laws 
or even text narratives. Synthesis is therefore closely aligned with the process of 
categorisation (in cognitive science) and classification (in computation), in which 
concepts (or classes) are explicitly induced from data.  Induction is an important 
mechanism here, as classes are often determined by recognising recurring patterns 
in select feature dimensions of specific example data.   

The following Studio examples (Fig. 3) show experiments in the development 
of categories for describing a complex forest habitat.  The Parallel Coordinate Plot 
(PCP) is used, along with tools that allow user-driven groupings of the data to be 
defined and imposed.  Categories are constructed visually by recolouring ranges of 
data across one or more dimensions, then synthesised inductively via a Learning 
Vector Quantisation (LVQ) classifier. 

 

 

Fig. 3. Five candidate categories constructed in a PCP then learned using LVQ 

Analysis: involves, on the one hand, using the established taxonomic 
framework and given data to develop general explanatory structures for concept 
behaviour and structure. On the other hand, it involves developing statements 
about how data are specifically related to each other (e.g. spatially, temporally, 
thematically, causally, etc.) and to the explanatory structures they exemplify.  
Taken together, these two aspects can be seen to form a model for the data; which 
can be either formal (e.g. probabilistic) or informal (e.g. text narrative, Suppes, 
1960; 1962).  Once a model is developed, the knowledge construction process in 
complete.  Evaluation strategies must then establish its usefulness and reliability, 
and these strategies are often deduced from the model. 

For example, the outcomes of synthesising various structures and categories 
(from the previous example) into themes can be used in the more traditional forms 
of GIS analysis (e.g. overlay) to build models of phenomena such as hydrology or 
landcover change (Fig. 4), and to suggest strategies for their evaluation. 

 



  

 
Fig. 4. Outcomes of synthesis form the inputs to analysis 

Evaluation: involves testing the developed model against the validation data, 
or possibly against other models.  It specifically requires data regularities to be 
explained by the model, using standards acceptable within a discipline.  
Philosophically and logically, unsuccessfully disconfirming the conceptual model 
is more informative than confirming it (Popper, 1959), a notion exploited by 
successful scientists who confirm early in their work, while model-building, but 
seek to disconfirm later as models evolve and settle (Feist & Gorman, 1998).  The 
reasoning performed in evaluation is often model-based in that the behavioural, 
structural and logical-mathematical aspects of models are first proposed and then 
used as constraints on reasoning when testing models against the data.   

Table 2 shows one form of evaluation where conflicts in meaning within a 
geological map are quantified; this evaluation can also be portrayed visually. 

Table 2. Evaluation of semantic conflict between geologic mappers 

 
 
Data Type 

 
 

X 

 
 

Y 

 
 

r1 

 
 

r2 

Taxonomic
Semantic 
Conflict 
(# sites) 

Operational
Semantic 
Conflict 
(# sites) 

Total 
Semantic 
Conflict 
(% sites) 

m 
Mean 

Conflict 
Distance 

r 
Feature 
Space 
Radius 

 
 

m/r 

Structure 4 4 3 1 0 41 2.7 % 86.4 1635.45 0.0528 
Lithology 7 7 5 2 2  155 10.61 % 158.38 40910.7 0.0038 
Combined 10 10 8 2 1  137 10.43 % 133.50 40911.2 0.0036 

Presentation: involves communicating with the external community to build 
consensus.  This explicitly engages the social aspects of doing science (Kuhn, 
1962), and possesses deep rhetorical components related to the holistic impact of 
narrative (Baker 1999; Ricoeur, 1985).  Maps, and other visual devices in general, 
have always been an important knowledge construct in geography, and their 
rhetorical nature is well documented (e.g. Harley, 1989).  Their transformation 
into digital products provides opportunity for elaborating communication methods 
between knowledge producers (e.g. map-based group collaboration and decision 
making systems (Jankowski et al., 2001)), and between producers and consumers 
(e.g. digital libraries, NRC, 1999). 

 



 

 

Fig. 5. Java Applet encapsulating the entire analysis of gentrification activities in 
Harrisburg, PA, that can be readily shared with others (Takatsuka and Gahegan, 2001) 

The example in Fig. 5 shows a Java Applet, automatically created by Studio for 
web deployment, directly from an analysis of urban gentrification activities.  It 
contains the entire process by which the analysis was constructed and is readily 
explorable by other researchers who can then accept or refute the findings. 

4 Summary and Conclusions 

The different knowledge construction activities are summarised in Table 3 
according to the visualisation and computational techniques that can be used to 
support them via Studio.  The dominant form of inference employed in each stage 
is also shown, as are the various representation devices required to support the 
activities.  (The latter are not yet explicitly supported in Studio but are the subject 
of current and future work.) 



  

Table 3. Knowledge discovery activities related to computational, visual, representation 
and reasoning issues 

Representation Scientific 
Activity 

Visualisation Computation 

Object Structure 

Reasoning 

Exploration PCP, 
scatterplot, 
iconographic 
displays 

SOM, k-means, 
clustering methods, 
GAM 

Feature Dataset Abductive 

Synthesis Interactive 
visual 
classification, 
PCP 

Machine learning, 
maximum 
likelihood, decision 
tree 

Concept Taxonomy Inductive 

Rule Theory Analysis Scene 
composition, 
visual overlay 

Statistical analysis 
Model 

Deductive 

Evaluation Uncertainty 
visualisation 

Statistical testing, 
M-C simulation 

Inference Explanation Model-based 

Presentation Maps, charts, 
Reports, etc. 

Web mapping, 
digital libraries, 
multi-media 
hypermaps, 
collaboratories 

Document 
(e.g. Map) 

 

Library 
(e.g. Atlas) 

Rhetorical 

Although presented in a coherent sequence above, these activities are generally 
thought to be mutually affective as depicted in Fig. 1.  Of particular note is the fact 
that fundamental knowledge emergence is explicit within exploratory abductive 
activity.  Fig. 1 also summarises the key representation and reasoning elements, 
which should act as a first order requirements statement for computational 
scientific systems.  In addition to this, and following from the description in 
Sections 2 and 3, a geographical knowledge construction environment should: 

1. Offer a variety of simultaneous views onto the data to gain alternative 
perspectives. 

2. Allow different conceptual structures to be imposed onto the data (such as 
categories and relations) to prompt the generation of useful hypotheses. 

3. Provide quick evaluation strategies for findings to assess their utility and 
viability in terms of existing theory, and means to revise proposed structures in 
the light of this evaluation, with little or no inertia. 

4. Include higher-level analysis tools with which to formulate models based on 
knowledge construction outcomes, to test both the utility of the findings, and 
the correctness of the models themselves. 

5. Incorporate tools to extract re-usable knowledge gained then represent it and 
communicate it to human experts (Gains, 1996). 



 

6. Provide a packaging mechanism so that the entire knowledge discovery process 
can be shared and independently validated or refuted. 

GeoVISTA Studio is able to touch on all of these issues to a limited extent at 
present, but at the time of writing concentrates on computational and visual 
support for the early discovery activities of exploration and synthesis.  As such it 
can be seen as an environment within which to construct the categories and 
concepts that existing GIS make such heavy use of (but provide little support for 
their creation). Studio is available for no-cost download from 
http://www.geovistastudio.psu.edu/jsp/tryit.jsp, and we are actively seeking 
contributions of functionality (in the form of Java Beans) from other researchers. 

Of the many challenges that remain, perhaps most difficult among them is to 
connect higher level, geographical domain knowledge with the tools used to 
search for potentially interesting anomalies or regularities within data.  This higher 
level knowledge is required to support the abductive inference that converts data 
artifacts into useful domain knowledge (Sowa, 1999), and without it the structures 
uncovered are likely to remain unused.  Taking a long-term perspective, it is 
unclear as to whether abduction might ultimately become fully automated, though 
such progress is highly unlikely in the short term.  The current focus is thus to 
engage the head-knowledge of the domain expert as effectively as possible, using 
a variety of visual and computational tools brought to bear in a highly co-
coordinated fashion.  
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