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Abstract 

This paper presents a new map projection intended for mapping regular Level-of-
Detail structures like quad-trees, wavelets or Lindstrom/ROAM triangulations on 
a spherical/ellipsoidal earth. The projection maps the squares of regular structures 
to near-squares on the globe, even near the poles. The projection gives simple 
equations, visually pleasing graphic output and works well with familiar 
algorithms and data structures. 
Keywords: global grid, cartographic projection, level-of-detail, spatial reference 
system 

1 Introduction 

In many applications, geographical data is stored as a regular quadratic grid. The 
data unit is a near quadratic cell. When only a limited area is handled, this grid is 
usually oriented to a map projection.  

For global applications however, we have the problem that no projection 
handles the whole earth very well without having areas where the scale shows 
strong variation. There are discontinuities and shape or area distortions.  

For a global grid of dimension COLS�ROWS a common method is to use a 
simple uniform scaling from the geographical coordinates, giving grid positions: 
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Where the latitude domain is: ��[-�/2,�/2], and for the longitude: ��[0,2�> 
where � wraps around at 2�.. 

This method has some advantages and several disadvantages. It is very simple, 
and for equatorial areas, it gives reasonable results. However, as we approach the 
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poles the cells on the sphere are increasingly narrower and more trapezoidal in 
shape. 

In a Level-of-Detail (LOD) environment (for Lindstrom triangulations, terrain 
texture pyramids, wavelets, quad-trees etc. ..) it is often important that the aspect 
ratio of the cells is as close to 1 as possible. The length of the longest axis of the 
cell usually determines the detail level for a cell. Where the ratio between the cell 
dimensions is very far from 1 we would get an unnecessarily high data density in 
the direction where the cells are shorter. 

In spite of this, the uniform scaling is frequently used in systems for global 
mapping. Examples are the tessellations used for GeoVRML (Reddy M, Leclerc 
YG, Iverson L, Bletter N (1999) or VGIS(Lindstrom P, Koller D, Ribarsky W, 
Hodges LF, Op den Bosch A, Faust N (1997). It is also used as the storage 
coordinate system of many publicly available global data sets:  

�� GTOPO30 (http://edcdaac.usgs.gov/gtopo30/gtopo30.html),  
�� Globe (http://www.ngdc.noaa.gov/seg/topo/globe.shtml). 
 

Using a conformal map projection would correct some of this, but a conformal 
projection cannot map the whole earth in one projection system without having 
areas where the scale approaches infinity. However, continuous LOD methods 
allows the model to adapt to changing detail requirements over the area, and 
compensates for some of the large variations of scale implied with conformal 
projections. 

Some large scale (but not global) data sets use conformal projections: 

�� the Smith-Sandwell bathymetric model uses the Mercator projection between 
72�N and 72�S (http://topex.ucsd.edu/marine_topo/mar_topo.html), and, 

�� the IBCAO arctic ocean bathymetric model uses a polar stereographic 
projection: (http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html). 

 
Other authors have gone in the opposite direction (Tobler W, Chen ZT (1986) 

and (Ottoson P (2001), defining an equal-area co-ordinate system for preserving 
the area of the cells instead of the shape. This approach has the advantage of 
having an equal data volume in each cell at the same level of detail, given a 
uniform complexity. 

There have been other attempts to develop global grid systems based on 
approximating the sphere to a regular polyhedron. A prominent example is 
octahedral Quaternary Triangular Meshes (Dutton G (1990) and several other 
papers of the same author). It is based on a hierarchical decomposition of equal-
sided triangles where a triangle is split into four smaller triangles for each level of 
detail. Other authors, for example: (Goodchild MF, Shiren Y (1992) and 
(Bartholdi JJ, Goldsman P (2001) have explored the QTM with emphasis on its 
use for spatial indexing and its geometrical properties. 

The QTM gives a very homogeneous hierarchical mesh, but its triangle based 
split pattern makes it difficult to integrate with the commonly used square based 
methods. In addition, if it should be used for continuous view dependent LOD we 



will need non equal-sided triangles for the connections between triangles at 
different levels. This breaks much of the elegance of the original model. 

For global wavelets both (�, �) parameterisations (Freeden W, Windheuser U 
(1994) and QTM methods (Schröder P, Sweldens W (1995) have been used. 

In 2000 the U.S. National Center for Geographic Information and Analysis 
arranged a conference on global grid structures: International Conference on 
Discrete Global Grids (http://www.ncgia.ucsb.edu/globalgrids/index.html). 
Several of the mentioned methods where addressed there, but there does not seem 
to be any general agreement on a universally "best" method. 

2 Mercator's Projection 

An infinitesimal change in geographic position is mapped via Mercator’s 
projection to an infinitesimal distance on the surface of the earth ellipsoid by the 
following equations: 

� � � � � � ����� dMdvdNdu �� ,cos  

Where M(�) is the Meridial radius of curvature and N(�) is the Normal radius 
of curvature: 

� �
� �

� �
� �
� �

� �
� �

� � ���

�

�
�

�

�
�

�
�

22

2

2

3

2

sin1

11

��

�
�

�

�

�

W

W
N

W
r

M

W
r

N

eq

eq

 

Where req is the equatorial radius of the ellipsoid and � is the eccentricity. 
In Mercator's projection the east/west transform is defined as x=req � and the 

north/south transform is defined so that the projection is conformal (dx/dy=du/dv): 
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In the spherical case �=0 and the equation simplifies to: 
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The projection transform functions are found by integrating Eqs. 2 or 3. 

3 A Finite Near-Conformal Regular Grid Projection 

When mapping a rectangular grid to the sphere we still want the meridians to be 
mapped to vertical grid lines: 

�dcdx ��  (4) 

In the north/south direction we want a transform that to some degree grows like 
the Mercator's projection, but maps to a finite range. We try a polynomial 
expansion of Eq. 3: 
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This can be integrated to find a relation between y and �: 

� � 1
1ln

210
2

�

�
�

�

�
� � �

�

�

�
�

b
b

b
a

b
day
�

�

 (6) 

The parameters a and b are determined to let the projection have the properties 
we desire for scaling and range. From Eq. 5 we see that dy/d� �� if b���1. To 
avoid asymptotic behaviour within the ordinary range of � we want | b� | < 1 for 
all � � [-�/2, �/2]. Therefore b � <-2/�, 2/� >. As the equations are symmetric 
for positive and negative b we concentrate on b 	 0. 

The case b = 0 results in dy = a
d�, and is trivial. For b � 2/� the scaling dy/d� 
gets increasingly steeper and approaches the behaviour of the Mercator's 
projection. We still want a finite range for the projection, and expect a value of b 
that is slightly smaller than 2/�.  

In the following we use a domain � � [-�/2, �/2] and a range of y � [-y
�/2, y�/2]. 

We insert the values for the extremes and use a substitution for b: 
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Considering the expected domain of b we would similarly expect � � <0, 1], 
with the most useful value near 0. Then we can remove the absolute value symbol, 
and rewrite the equation as:  
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which is easily solved numerically by fixed-point iteration starting with �0 = 0. 
Since the exponent over e is always positive the denominator is always greater 
than 2, and the restriction on � is followed. We should note that this relation 
always has a solution for � = 1. Whether it also has a solution for � � <0, 1> 
depends on the value of 4y

�/2/a�. It is relatively easy to prove that this solution 
exists and is unique when: 
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The inverse projection is easily computed when we know that |b�|<1: 
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3.1 Scale 

The dimension of the cells are defined by du/dx and dv/dy: 
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In the following  dv/dy is called the y-scale: sy 
 
The aspect ratio of a cell is then: 
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The aspect ratio tells us how close the cells are to be quadratic. A value of 1 
represents a quadratic cell, higher values indicate a “narrow” cell and lower values 
a “wide” cell. If we want the aspect ratio to be 1 at �=0 we get a = c (1-�2). 

3.2 Distance, Direction and Area 

The length of an infinitesimal line element is given as: 
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The direction (azimuth, angle between the north direction and the line) of the 
line element: 
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The area of a rectangular element: 
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3.2.1 Distance Approximation 

Returning to the distance calculation we introduce Eq. 14 into Eq. 13 to eliminate 
dx. 
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To develop a simplified equation for the length of a geodetic line we introduce 
some approximations that are valid for smaller distances, where some of the 
properties are considered constant along the line: 

�� Azimuth is constant along the line, and approximated as:  
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�� � ��M  is constant for small changes of latitude. 

�� � ���  is nearly constant for small changes of latitude, except near the poles. 



� � � �
� �

� �
� �

� � � � � �122

2

tanhtanh
coscoshcos

coshcoscos
2

1

2

1

2

1

2

1

yy
Azb

M
y

dy
Aza

M

dy
yAza

Mdy
Az

s
dSS

a
b

a
b

y

y a
b

y

y a
b

y

y

y
p

p

���

���

�

���

��

��

 

This is again expanded to the second degree in a Taylor series around y = y0 
(and �=�0), and the approximation for cos(Az) is inserted. By selecting 
y0=(y1+y2)/2 the second degree terms disappear and we get: 
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3.2.2 Area Approximation 

The area of a grid cell is found by integrating Eq. 15 and using the same 
simplifications as in section 3.2.1: 
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When using a Taylor series expansion around y0 in the same way as above we 
get: 
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4 Examples 

In this section we will develop the equations further for a 2n
�2m+1 grid. Here we 

get this range: 0 �x<2n, -2m/2�y�2m/2. For simplicity we assume a spherical earth, 
the elliptical equations are developed with slightly more work from the full 
equations in section 3. 

The east/west transform is: 
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If we set the aspect ratio at equator to 1 we get a=c=2n/2�. Given the range of y 
we have y

�/2=2m/2. 
The fix point recurrence relation is then: 
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If the grid has relative dimensions of m = n-1 we get b = 0 and a uniform 
scaling as in Eq. 1. 

For m>n-1 the other equations are: 
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4.1. Aspect ratio 

As the aspect ratio �(�) is important for the shape of the grid cells it is studied in 
more depth. For the limit case m=n+�, b = 2/� the aspect ratio is: 
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This can be considered the "best" aspect ratio that can be obtained by this 
method. It has its maximum at �(�/2) = 4/�. Naturally, for a conformal projection 
the aspect ratio would be constant 1 for the whole domain. 

Some computations of aspect ratios are summarised in Fig. 1.  Except for the 
limit case the aspect ratio rises to infinity at the poles. The size of the grid cells 
(the projection scale) would also change dramatically from cell to cell as we 



approach the pole. As expected, the projection is not well suited if the area of 
interest is very close to the poles. 

 

Fig. 1. Aspect ratios for different values of m=n+x 

However, for m = n+1 the aspect ratio is reasonable even a few ten kilometers 
from the pole and for m = n+2 it is still less than 1.5 at around 100m from the 
pole.  

For many applications an aspect ratio of around 2 at 85� is acceptable, at least 
much better than an aspect ratio of 2 at 60� as the uniform scaling would give. At 
the same time the quadratic coordinate range we get when m=n may have 
advantages by using the coordinate values most efficiently. 

The improvement given by going from m=n+1 to m=n+2 may not be worth the 
extra narrowing of the x coordinate range. Instead it may have some advantages to 
change the scaling (parameter a) so that the aspect ratio at the equator is slightly 
less than 1, to distribute the error more evenly. 

4.2 Approximation Errors 

When using the approximated equations for distance or grid cell area we would 
like to know their area of acceptable accuracy. This is not necessarily easily 
computed, as it may be difficult to estimate the impact of the simplifications in the 
development of the approximated equations. 

The errors are found by comparing distances computed with the approximated 
equations and ”exact” geodetic line methods. A series of computations is 



performed with successively larger distances until the error reaches a given 
threshold. Fig. 2. shows the maximum distance in kilometers before the error 
threshold is reached, at different latitudes. 
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Fig. 2. Approximation error thresholds in distance computation, m = n grid 

As expected, the maximum distance for a given error tolerance is reduced with 
increasing latitude. In this case, the distances are computed for a line with azimuth 
135�, for longer distances, the error is direction dependent, and using another 
direction would give slightly different results. Similar tables can also be computed 
for the area approximation, comparing the results with data from the Lamberts 
equal-area projection. 

5 Conclusion 

For data visualisation purposes, the global regular grid projection is capable of 
mapping a regular grid to the globe with acceptable distortions. It has two 
singularities - at the poles - and most of the projection distortions are concentrated 
there. As the scale increases towards the poles a grid cell covers successively 
smaller area. This implies an increasing resolution towards the poles. For most 
purposes, however, the interesting data is located in the lower latitudes, and the 
projection should preferably be combined with a LOD structure for balancing the 
scale with the need for resolution. 

The projection is relatively simple to integrate with many well-known methods 
and data structures. More complex methods may give better results, but are 
usually considered too difficult for practical use. Most projects therefore fall back 
to using a uniform scaling to latitude/longitude. For them, this method could be a 
good alternative. 

For limited regions, various geometrical properties like distance and area can 
be computed directly from projected grid coordinates. The approximation error 



thresholds are not easily found, and a table area size, where the error is within 
acceptable limits, should be computed before the approximation functions are 
used. 

The projection is used in a "virtual globe" project on the Internet where a 
Lindstrom/ROAM -like regular triangulation is mapped to the earth, described in 
(Aasgaard R, Sevaldrud T (2001). The methods are demonstrated on 
http://globe.sintef.no. 

As an example two regular partition triangulations are shown in Fig. 3. 

  

Fig. 3. Uniform scaling (left) vs. m=n+1 projection (right). 
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