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ABSTRACT: 
 
The mixed pixels in remotely sensed data are one of the main error sources resulting in poor classification accuracy using traditional 
classification methods. In order to improve classification accuracy, linear spectral mixture analysis (LSMA) has been used to handle 
the mixed pixel problems. This paper aims to achieve an appropriate processing routine of LSMA through the comparison of 
classification results derived from different processing methods, i.e., constrained and unconstrained least-square solutions, different 
numbers of endmembers, different image bands used, and minimum noise fraction (MNF) transformation. A Landsat Thematic 
Mapper (TM) image of June 18, 1998, was used, and field data were collected in Rondônia, Brazilian Amazon. Seven classes are 
defined: mature forest, intermediate secondary succession (SS2), initial secondary succession (SS1), pasture, agriculture, water, and 
bare land (including urban areas, roads, and bare soil for cultivation). This study indicates that using constrained or unconstrained 
least-square solutions, atmospherically corrected or raw TM images in LSMA do not produce significant difference in the overall 
classification accuracy. However, reducing correction between image bands used in LSMA is useful in improving fraction quality 
and classification accuracy. Selection of four endmembers (green vegetation, shade, bright soil, and dark soil) and bands TM 3, 4, 5, 
and 7 provided the best classification accuracy. The overall classification accuracy reached 86%. This study shows that selecting 
appropriate endmembers and image bands is crucial for developing high quality fraction images using LSMA. 
 
 

INTRODUCTION 
 
Mixed pixels are common in remotely sensed data because of 
limitations in spatial resolution of the data and the 
heterogeneity of features on the ground. The mixture spectra 
are often generated when the pixel covers more than one land-
cover class. This problem often produces poor classification 
accuracy when conventional algorithms such as the maximum 
likelihood classifier (MLC) are used. In moist tropical regions, 
classification of stages of secondary succession (SS) is 
especially difficult because of its variations in vegetation stand 
structure, species composition,  and biomass (Mausel et al., 
1993). However, it is possible to obtain better results if the 
mixed pixels are decomposed into different proportions of 
selected components. In order to solve the mixed pixel 
problem, scientists have developed different models to unmix 
the pixels into different proportions of the endmembers (Ichoku 
and Karnieli, 1996). Linear spectral mixture analysis (LSMA) 
is one of the most often used methods for handling the spectral 
mixture problem. It assumes that the spectrum measured by a 
sensor is a linear combination of the spectra of all components 
within the pixel (Roberts et al., 1998; Ustin et al., 1998). LSMA 
is a physically based image analysis process that supports 
repeatable and accurate extraction of quantitative subpixel 
information (Adams et al., 1986; Smith et al., 1990; Roberts et 
al., 1998; Ustin et al., 1999). It has been used for vegetation or 
land-cover classification (Ustin et al., 1996; Cochrane and 

Souza, 1998; Aguiar et al., 1999; Petrou, 1999; Ustin et al., 
1999; DeFries et al., 2000; Ustin and Xiao, 2001; Theseira et 
al., 2002) and for change detection (Adams et al., 1995; Roberts 
et al., 1997; Roberts et al., 1998; Ustin et al., 1998; Elmore et 
al., 2000; Rogan et al., 2002). 
 
Although LSMA has been recognized as an effective method in 
handling spectral mixture problems, some uncertainties are still 
not fully understood. For example, which unmixing solutions 
(e.g., constrained and unconstrained least-square solutions) can 
improve the quality of fraction images? How many 
endmembers are suitable for land-use and land-cover (LULC) 
classification? Can image transformation (e.g., minimum noise 
fraction or MNF) improve the fraction quality? Is atmospheric 
correction of remotely sensed data required before using 
LSMA? This paper contributes to these debates through 
comparisons of LULC classification results based on fraction 
images, which are developed from different image processing 
routines in Rondônia, Brazilian Amazon.  
 
 

STUDY AREA AND FIELD DATA COLLECTION 
 

Rondônia has had the highest deforestation rate in the Brazilian 
Amazon during the last twenty years (Dale and Pearson, 1997). 
Following the national strategy of regional occupation and 
development, colonization projects initiated by the Brazilian 
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government in the 1970s played a major role in this process 
(Schmink and Wood, 1992). Most colonization projects in the 
state were designed to settle landless migrants. Settlement 
began in this area in the mid-1980s, and the immigrants 
transformed the landscape into a mosaic of forest remnants, 
cultivated crops, pastures, and fallow land. The data used in this 
study were collected in Machadinho d’Oeste in northeastern 
Rondônia (Figure 1).The climate in Machadinho d’Oeste is 
classified as equatorial hot and humid, with tropical transition. 
The well-defined dry season lasts from June to August, and the 
annual average precipitation is 2,016.6 mm (Rondônia, 1998). 
The annual average temperature is 25.5ºC, and monthly 
averages for air moisture range from 80 to 85 percent. The 
terrain is undulated, ranging from 100 m to 450 m above sea 
level. Several soil types were identified, mainly alfisols, 
oxisols, ultisols, alluvial soils, and other less spatially 
represented associations (Miranda and Mattos, 1993). Settlers, 
rubber tappers, and loggers inhabit the area, transforming the 
landscape through their economic activities and use of 
resources. 
 

 
 

Figure 1. Location of Machadinho d’Oeste in the 
State of Rondônia, Brazilian Amazon 

 
Field data were collected in the dry season of 1999 and 2000. 
Preliminary image classification and band composite printouts 
indicated candidate areas to be surveyed, and a flight over the 
areas provided visual insights about the size, condition, and 
accessibility of each site. After driving extensively throughout 
the settlements, field observations gave a sense about the 
structure of regrowth stages, mainly regarding total height and 
ground cover of dominant species. Indicator species, such as 
Cecropia sp., Vismia sp., palms, grassy vegetation, and lianas 
also helped to assign the SS stages. Every plot was registered 
with a Global Positioning System (GPS) device to allow 
integration with spatial data in Geographic Information 
Systems (GIS) and image processing systems. Detailed 
information regarding data gathering can be found in Batistella 
(2001). The field data were randomly separated into two 
groups. One group was used for training data for supervised 
classification, and another group was used for accuracy 
assessment. 
 
 

LULC CLASSIFICATION USING LSMA 
 
The application of LSMA to LULC classification involves 
image preprocessing, endmember selection, constrained or 
unconstrained least-square unmixing solutions, and 
classification. TM imagery for June 18, 1998, was 

radiometrically and atmospherically calibrated into surface 
reflectance using an improved image-based DOS model (Lu et 
al., in press). The image was geometrically rectified based on 
control points taken from topographic sheets at 1:100,000 scale 
(UTM south 20 zone). Nearest-neighbor resampling technique 
was used. The root-mean-square (RMS) error was smaller than 
0.5 pixel. 
 
A variety of methods were used to determine endmembers 
(Smith et al., 1990; Quarmby et al., 1992; Boardman, 1993; 
Roberts et al., 1993; Settle and Drake, 1993; Boardman et al., 
1995; Bateson and Curtiss, 1996). Some previous literature has 
also discussed and summarized the methods of endmember 
selection (Adams et al., 1993; Tompkins et al., 1997; Mustard 
and Sunshine, 1999). For many applications of LSMA, image 
endmembers are often used because they can be obtained 
easily, representing spectra measured at the same scale as the 
image data (Roberts et al., 1998). Image endmembers were 
derived from the extremes of the image feature space, assumed 
to represent the purest pixels in the images (Roberts et al., 
1998; Mustard and Sunshine, 1999). Three endmembers (shade, 
soil, and green vegetation or GV) were identified from the 
scattergram of bands TM 3 and TM 4 and scattergram of bands 
TM 4 and TM 5. An average of 4 to 10 pixels of these vertices 
was calculated. When selecting the endmembers, cautions need 
be taken to identify outliers.  
 
In order to develop high-quality fraction images, different 
image transformations can be used (Cochrane and Souza, 1998; 
Van der Meer and de Jong, 2000). The MNF transformation is 
one of the often used methods for reducing redundancy of 
information between image bands and assisting selection of 
endmembers. In this paper, the main objective is to find a 
proper image processing method for LULC classification using 
LSMA. Therefore, six different processing methods were tested 
and their classification results were compared. The following 
routines were defined:  

1. Raw-c: using constrained LSMA method with three 
endmembers (GV, shade, and soil) on raw six-band TM 
image;  

2. Ref-c: using constrained LSMA method with three 
endmembers on six-band TM reflectance image;  

3. Ref-uc: using unconstrained LSMA method with three 
endmembers on six-band TM reflectance image;  

4. MNF-c: using constrained LSMA method with three 
endmembers on the first four MNF components;  

5. Subset-c: using constrained LSMA method with three 
endmembers on image band subset (bands TM 3, 4, 5, 
and 7); and  

6. Subset-4c: using constrained LSMA method with four 
endmembers (GV, shade, bright soil, and dark soil) on 
image band subset (bands TM 3, 4, 5, and 7). 

Seven LULC classes—mature forest (MF), intermediate 
secondary succession (SS2), initial secondary succession (SS1), 
pasture (including cultivated and degraded pastures), 
agriculture (including coffee and cacao plantations and other 
crops), water, and bare land (including urban areas, roads, and 
bare soil for cultivation)—were defined according to the LULC 
characteristics of the study area. The classification was 
conducted on the fraction images using a maximum likelihood 
classifier. 
 
Error matrices are often used to assess classification accuracy 
by comparing the relationships between ground-truth data 
(reference data) and classified results (Congalton, 1991; 
Janssen and Van der Wel, 1994; Jensen, 1996; Smits et al., 
1999). Producer’s accuracy (a measure of omission error) and 



 

 

user’s accuracy (a measure of commission error) were 
calculated based on error matrices. The reference data covering 
different LULC classes were collected during fieldwork. These 
data were linked to the TM image, using the IMAGINE AOI 
(area of interest) tool to create test samples. Each AOI was 
associated with an integer number corresponding to a given 
LULC class. Then, a reference data image was created and 
compared to the classified image pixel by pixel to create the 
error matrix table for accuracy assessment. 
 
 

RESULTS AND DISCUSSION 
 
The endmember fractions were developed using LSMA based 
on different image processing routines. Figure 2 gives an 
example illustrating the fraction characteristics of some typical 
LULC classes in the study area. In the soil fraction, bare land 
has significantly higher values, while different successional and 
mature forests have very small fraction values. Pastures and 
agriculture such as coffee plantations have relative higher 
fraction values than those of successional and mature forests. In 
the GV fraction, water and bare land have small fraction values. 
Mature forest has the lowest GV fraction values (after bare land 
and water), and SS1 has the highest GV fraction values. In the 
shade fraction, water has the highest value and bare land  the 
lowest value. Mature forest has significantly higher fraction 
value, and SS1 and pastures have lower fraction values. SS2 
and agriculture have lower values than mature forest but higher 
values than pasture and SS1. The error fraction indicates that 
high quality fraction images are obtained and the results are 
reliable because the error value for all LULC classes is very 
small. This figure indicates that water and bare land are the two 
classes that have the most different characteristics in the 
fraction image compared with any other LULC classes. The 
distinction between vegetation types (SS and mature forest) and 
pasture or agricultural land is better in the soil fraction, but the 
distinction between different SS stages and mature forest or 
between pasture and agriculture is better in the GV and shade 
fractions. Other fraction images derived from different image 
processing routines have similar trends in distinguishing LULC 
classes. 
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Figure 2. Fraction values of typical LULC classes in Rondônia  
 
Table 1 summarizes the classification accuracies using different 
processing routines. Concerning atmospheric correction or not, 
the RAW-c produced 0.9% higher overall accuracy than Ref-c. 
This implies that atmospheric correction of TM images cannot 
improve classification or such correction is not required for 
LSMA application to LULC classification when image 
endmembers are used. The RAW-c method provides a slightly 
better accuracy for pasture and bare land, but the Ref-c method 
provides a little better accuracy for successional classes. 
 

Table 1. Comparison of classification accuracy derived from different processing routines 
 

Different Image Processing Routines 
Raw-c  Ref-c  Ref-uc  MNF-c  Subset-c  Subset-4c 

LULC  
Classes 
 UA PA UA PA UA PA UA PA UA PA UA PA 
Forest 
SS2 
SS1 
Pasture 
Agriculture 
Bare land 
Water 

96.04 
35.89 
85.08 
78.41 
85.03 
94.72 

100.00 

99.65 
52.58 
64.30 
88.68 
76.03 
93.49 
80.91 

95.82 
35.66 
94.15 
79.47 
77.23 
73.45 

100.00 

99.53 
57.74 
62.51 
83.53 
80.17 
96.08 
74.55 

95.71 
35.83 
93.87 
80.52 
77.09 
65.61 

100.00 

99.53 
57.10 
64.00 
79.38 
82.31 
97.40 
71.82 

95.67 
37.42 
89.55 
86.48 
68.24 
86.67 
97.75 

98.59 
52.73 
69.12 
86.37 
78.84 
94.79 
79.09 

95.98 
36.04 
92.52 
81.17 
82.78 
86.87 

100.00 

99.41 
61.61 
64.68 
89.08 
77.85 
95.04 
73.64 

95.73 
35.02 
91.43 
84.96 
87.71 
98.22 

100.00 

98.77 
62.58 
70.95 
89.02 
84.96 
86.68 
92.73 

OA 83.26 82.34 81.83 83.93 84.11 85.90 
Note: UA = user’s accuracy, PA = producer’s accuracy, and OA = overall accuracy in percent. 
 

 
With a constrained or unconstrained least-square solution, the 
Ref-c and Ref-uc did not produce significantly different overall 
classification accuracy, although Ref-c has 0.5% higher 
accuracy than Ref-uc. The Ref-c provided a little better 
accuracy for bare land, but the accuracy for other classes 
between Ref-c and Ref-uc is very similar. Concerning image 
transformation or not, MNF-c produces 1.6% higher overall 
classification accuracy than that of Ref-c. This implies that 
image transformation is helpful in improving the separability of 

LULC classes. MNF transformation mainly improves the 
pasture and bare land classification accuracy. For image bands 
used in LSMA, Subset-c provides 1.8% better overall accuracy 
than Ref-c. This implies than removal of highly correlated 
image bands such as TM 1 and TM 2 in LSMA improved the 
quality of fraction images. The Subset-c method mainly 
improves pasture, SS2, and bare land accuracy. Concerning 
how many endmembers are used, the Subset-4c provides 1.8% 
better overall classification accuracy than Subset-c. The Subset-



 

 

4c method mainly improves SS1, pasture, and agriculture 
accuracy. This implies that adding one more soil endmember 
can improve those classes for which soil conditions directly 
affect their reflectance.  
The preceding analysis indicates that (1) selecting appropriate 
image bands through image transformation or removal of 
highly correlated bands and (2) identifying a sufficient number 
of endmembers are critical for improving the fraction quality 
and classification accuracy. On the other hand, the results also 
indicate that confusion mainly occurred between SS1 and SS2 
and among SS1, pasture (e.g., degraded pasture), and 
agriculture (e.g., coffee plantation). In this study area, the 
majority of successional vegetation is less than 10 years old on 
the 1998 TM image. The subclasses for succession were 
artificially defined based on ground-truth data and TM 
reflectance. Most of the SS2 vegetation was between 8 and 10 
years old, and most of SS1 was less than 8 years old. This leads 
to poor classification accuracy of SS2 because of the high 
confusion between old SS1 vegetation and SS2. In practice, the 
transition between SS1 and SS2 is very smooth and no distinct 
boundary exists. Also, SS1 is often confused with degraded 
pasture and some economic agricultural crops, such as coffee 
plantations. The confusion between bare land and pasture 
becomes worse with overgrazing during the dry season, when 
soil spectral response contributes more significantly to the 
signature of sparsely covered grassy vegetation. On the other 
hand, degraded pasture in the process of vegetation recovery 
often has high densities of Vismia sp. and Orbignya sp., 
increasing the confusion with the spectral response for SS1 or 
even perennial agriculture. Spectral responses for perennial 
agriculture can also be confused with SS1, mainly in areas of 
initial recovery of disturbed gallery vegetation. 
 
In the moist tropical forest, vegetation stand structure and 
species composition are very complex. For an optical satellite 
sensor such as Landsat TM, the sensor mainly captures the 
leaves, wood, and shadowing information for a dense 
vegetation area. But for sparse vegetation, soil, and litter also 
affect the reflectance. In a large study area, soil conditions can 
be different, and the impacts of soil on reflectance can vary. 
Not all components selected are resolvable in a given image 
because of the particular mixture and their spectral contrasts. 
Different study purposes and different characteristics of 
selected study areas will require different endmembers. The 
selection of endmembers can be refined based on the analysis 
of the error fraction or unmodeled spectral variance. For TM 
images, selecting more than four endmembers is often difficult 
based on the image itself. Also, high correlation between TM 
bands limits the number of endmembers that can be used in 
LSMA. 
 
 

CONCLUSIONS 
 
This study indicated that LSMA is a promising approach for 
LULC classification in the Amazon. The soil fraction helps 
better distinguish successional and mature forests from pastures 
and agricultural lands. Green vegetation and shade fractions 
better distinguish mature forests from successional forests and 
pastures from agricultural lands. Based on the classification 
results, the following conclusions were achieved: 

1. Constrained or unconstrained least-square unmixing 
solutions and atmospherically corrected or raw TM 
images do not produce significantly different overall 
classification accuracy. The overall accuracy was 
between 81.8% and 83.3%. 

2. MNF transformation improved the overall accuracy, 
especially for pasture classes and bare land. An overall 
accuracy of 83.9% was achieved when using this 
technique, a 1.6% increase compared with the Ref-c 
method. 

3. TM band subset images (bands TM 3, 4, 5, and 7) 
improved the accuracy for SS2, pasture, and bare land. 
An overall accuracy of 84.1% was achieved in this case. 

4.  Four endmembers (GV, shade, bright soil, and dark soil) 
with TM band subsets (TM 3, 4, 5, and 7) improved the 
accuracy for SS1, pasture, and agriculture. The overall 
accuracy reached 85.9% when using this approach. 

In summary, selecting endmembers appropriately and reducing 
correlation between image bands used are two crucial aspects 
for developing high-quality fraction images when LSMA is 
used for LULC classification.  
 
 

ACKNOWLEDGEMENTS 
 
The authors wish to thank the National Science Foundation 
(grants 95-21918 and 99-06826), the National Aeronautics and 
Space Administration (grant N005-334), and Brazil’s CAPES 
(Program for the Advancement of Education) for their support, 
which provided funds for the research that led to this paper. 
This project is part of the Large-Scale Biosphere-Atmosphere 
Experiment in Amazônia (LBA) program, LC-09, examining 
the human and physical dimensions of land-use and land-cover 
change. We also thank Indiana State University and Indiana 
University for facilities and support of our work and 
collaborators in Brazil, especially the LBA Program, 
EMBRAPA Satellite Monitoring, and the population of the 
study area, who made this work possible. We also appreciate 
the editing done by Joanna Broderick. None of the above 
funding organizations or individuals should be held responsible 
for the views presented in this paper. Sole responsibility for 
content lies with the authors. 
 
 

REFERENCES 
 
Adams, J.B., D.E. Sabol, V. Kapos, R.A. Filho, D.A. Roberts, 
M.O. Smith, and A.R. Gillespie, 1995. Classification of 
multispectral images based on fractions of endmembers: 
application to land cover change in the Brazilian Amazon. 
Remote Sensing of Environment, 52, pp. 137–154. 

Adams, J.B., M.O. Smith, and A.R. Gillespie, 1993. Imaging 
spectroscopy: interpretation based on spectral mixture analysis. 
In: Remote Geochemical Analysis, Topics in Remote Sensing 4, 
ed. C.M. Pieters and P.A.J. Englert, Cambridge University 
Press, Cambridge, U.K., pp.145–166. 

Adams, J.B., M.O. Smith, and P.E. Johnson, 1986. Spectral 
mixture modeling: a new analysis of rock and soil types at the 
Viking Landser 1 site. Journal of Geophysical Research, 91, 
pp. 8098–8112. 

Aguiar, A.P.D., Y.E. Shimabukuro, and N.D.A. Mascarenhas, 
1999. Use of synthetic bands derived from mixing models in 
the multispectral classification of remote sensing images. 
International Journal of Remote Sensing, 20, pp. 647–657. 

Bateson, A., and B. Curtiss, 1996. A method for manual 
endmember selection and spectral unmixing. Remote Sensing of 
Environment, 55, pp. 229–243. 



 

 

Batistella, M., 2001. Landscape change and land-use/land-
cover dynamics in Rondônia, Brazilian Amazon. Ph.D. diss., 
Indiana University, Bloomington, Ind. USA, 399 pp. 

Boardman, J.M., 1993. Automated spectral unmixing of 
AVIRIS data using convex geometry concepts. In: Summaries 
of the Fourth JPL Airborne Geoscience Workshop, JPL 
Publication 93-26, Jet Propulsion Laboratory, Calif., USA, 
pp.11–14. 

Boardman, J.M., F.A. Kruse, and R.O. Green, 1995. Mapping 
target signature via partial unmixing of AVIRIS data. In: 
Summaries of the Fifth JPL Airborne Earth Science Workshop, 
JPL Publication 95-1, Jet Propulsion Laboratory, Calif., USA, 
pp.23–26. 

Cochrane, M.A., and C.M. Souza Jr., 1998. Linear mixture 
model classification of burned forests in the eastern Amazon. 
International Journal of Remote Sensing, 19, pp. 3433–3440. 

Congalton, R.G., 1991. A review of assessing the accuracy of 
classification of remotely sensed data. Remote Sensing of 
Environment, 37, pp. 35–46. 

Dale, V.H., and S.M. Pearson, 1997. Quantifying habitat 
fragmentation due to land-use change in Amazônia. In: 
Tropical Forest Remnants: Ecology, Management, and 
Conservation of Fragmented Communities, ed. W.F. Laurance 
and R.O. Bierregaard Jr., The University of Chicago Press, 
Chicago, Ill., USA, pp.400–409. 

DeFries, R.S., M.C. Hansen, and J.R.G. Townshend, 2000. 
Global continuous fields of vegetation characteristics: a linear 
mixture model applied to multi-year 8km AVHRR data. 
International Journal of Remote Sensing, 21, pp. 1389–1414. 

Elmore, A.J., J.F. Mustard, S.J. Manning, and D.B. Lobell, 
2000. Quantifying vegetation change in semiarid environments: 
precision and accuracy of spectral mixture analysis and the 
normalized difference vegetation index. Remote Sensing of 
Environment, 73, pp. 87–102. 

Ichoku, C., and A. Karnieli, 1996. A review of mixture 
modeling techniques for sub-pixel land cover estimation. 
Remote Sensing Reviews, 13, pp. 161–186. 

Janssen, L.F.J., and F.J.M. Van der Wel, 1994. Accuracy 
assessment of satellite derived land-cover data: a review. 
Photogrammetric Engineering and Remote Sensing, 60, pp. 
419–426. 

Jensen, J. R., 1996. Introduction Digital Image Processing: A 
Remote Sensing Perspective, 2d ed. Prentice Hall, New York. 

Lu, D.S., P. Mausel, E.S. Brondizio, and E. Moran, in press. 
Assessment of atmospheric correction methods for Landsat TM 
data applicable to Amazon basin LBA research. International 
Journal of Remote Sensing. 

Mausel, P., Y. Wu, Y. Li, E.F. Moran, and E.S. Brondizio, 
1993. Spectral identification of succession stages following 
deforestation in the Amazon. Geocarto International, 8, pp. 61–
72. 

Miranda, E.E., and C. Mattos, 1993. Machadinho d’Oeste: de 
colonos a munícipes na floresta tropical de Rondônia. 
Ecoforça/Embrapa-NMA, Campinas, Brazil, 154 pp. 

Mustard, J.F., and J.M. Sunshine, 1999. Spectral analysis for 
earth science: investigations using remote sensing data. In: 
Remote Sensing for the Earth Sciences: Manual of Remote 
Sensing, 3d ed.,  v. 3, ed. A.N. Rencz , John Wiley and Sons, 
New York, pp. 251–307. 

Petrou, M., 1999. Mixed pixel classification: an overview. In: 
Information Processing for Remote Sensing, ed. C.H. Chen, 
World Scientific Publishing Co., Singapore, pp. 69–83. 

Quarmby, N.A., J.R.G. Townshend, J.J. Settle, and K.H. White, 
1992. Linear mixture modeling applied to AVHRR data for 
crop area estimation. International Journal of Remote Sensing, 
13, pp. 415–425. 

Roberts, D.A., G.T. Batista, J.L.G. Pereira, E.K. Waller, and 
B.W. Nelson, 1998. Change identification using multitemporal 
spectral mixture analysis: applications in eastern Amazonia. In: 
Remote Sensing Change Detection: Environmental Monitoring 
Methods and Applications, ed. R.S. Lunetta and C.D. Elvidge, 
Ann Arbor Press, Ann Arbor Mich., USA, pp. 137–161. 

Roberts, D.A., R.O. Green, and J.B. Adams, 1997. Temporal 
and spatial patterns in vegetation and atmospheric properties 
from AVIRIS. Remote Sensing of Environment, 62, pp. 223–
240. 

Roberts, D.A., M.O. Smith, and J.B. Adams, 1993. Green 
vegetation, non-photosynthetic vegetation, and soils in AVIRIS 
data. Remote Sensing of Environment, 44, pp. 255–269. 

Rogan, J., J. Franklin, and D.A. Roberts, 2002. A comparison 
of methods for monitoring multitemporal vegetation change 
using Thematic Mapper imagery. Remote Sensing of 
Environment, 80, pp. 143–156. 

Rondônia, 1998. Diagnóstico sócio-econômico do Estado de 
Rondônia e assistência técnica para formulação da segunda 
aproximação do zoneamento sócio-econômico-ecológico – 
Climatologia, v. 1. Governo de Rondônia/PLANAFLORO, 
Porto Velho, Brazil, 401 pp. 

Schmink, M., and C.H. Wood, 1992. Contested Frontiers in 
Amazônia, Columbia University Press, New York, USA.  

Settle, J.J., and N.A. Drake, 1993. Linear mixing and the 
estimation of ground cover proportions. International Journal 
of Remote Sensing, 14, pp. 1159–1177. 

Smith, M.O., S.L. Ustin, J.B. Adams, and A.R. Gillespie, 1990. 
Vegetation in deserts: I. A regional measure of abundance from 
multispectral images. Remote Sensing of Environment, 31, pp. 
1–26. 

Smits, P.C., S.G. Dellepiane, and R.A. Schowengerdt, 1999. 
Quality assessment of image classification algorithms for land-
cover mapping: a review and a proposal for a cost-based 
approach. International Journal of Remote Sensing, 20, pp. 
1461–1486. 

Theseira, M.A., G. Thomas, and C.A.D. Sannier, 2002. An 
evaluation of spectral mixture modeling applied to a semi-arid 
environment. International Journal of Remote Sensing, 23, pp. 
687–700. 

Tompkins, S., J.F. Mustard, C.M. Pieters, and D.W. Forsyth, 
1997. Optimization of endmembers for spectral mixture 
analysis. Remote Sensing of Environment, 59, pp. 472–489. 



 

 

Ustin, S.L., Q.J. Hart, L. Duan, and G. Scheer, 1996. 
Vegetation mapping on hardwood rangelands in California. 
International Journal of Remote Sensing, 17, pp. 3015–3036. 

Ustin, S.L., D.A. Roberts, and Q.J. Hart, 1998. Seasonal 
vegetation patterns in a California coastal savanna derived from 
Advanced Visible/Infrared Imaging Spectrometer (AVIRIS) 
data. In: Remote Sensing Change Detection: Environmental 
Monitoring Methods and Applications, ed. R.S. Lunetta and 
C.D. Elvidge, Ann Arbor Press, Ann Arbor, Mich., USA, pp. 
163–180. 

Ustin, S.L., M.O. Smith, S. Jacquemoud, M. Verstraete, and Y. 
Govaerts, 1999. Geobotany: vegetation mapping for Earth 
sciences. In: Remote Sensing for the Earth Sciences: Manual of 
Remote Sensing, 3d ed., v. 3, ed. A.N. Rencz, John Wiley and 
Sons, New York, USA, pp. 189–233. 

Ustin, S.L., and Q.F. Xiao, 2001. Mapping successional boreal 
forests in interior central Alaska. International Journal of 
Remote Sensing, 22, pp. 1779–1797. 

Van der Meer, F., and S.M. de Jong, 2000. Improving the 
results of spectral unmixing of Landsat Thematic Mapper 
imagery by enhancing the orthogonality of end-members. 
International Journal of Remote Sensing, 21, pp. 2781–2797. 

 

 


	Rondônia has had the highest deforestation rate in the Brazilian Amazon during the last twenty years (Dale and Pearson, 1997). Following the national strategy of regional occupation and development, colonization projects initiated by the Brazilian govern

