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ABSTRACT: 
 
This paper is focused on two topics: first, it deals with a technique for the automated generation of 3D building models from directly 
observed LIDAR point clouds and digital aerial images, and second, it describes an object-relational technique for handling hybrid 
topographic data in a topographic information system. Automatic building extraction combining the mentioned data sources consists 
of three steps. First, candidate regions for buildings have to be detected. After that, initial polyhedral building models have to be 
created in these candidate regions in a bottom-up procedure. Third, these initial polyhedral building models have to be verified in the 
images to improve the accuracy of their geometric parameters. This paper describes the current state of development, the overall 
work flow, and the algorithms used in its individual stages. Intermediate results are presented. 
 
 

1. INTRODUCTION 

1.1 Motivation and goals 

The great demand for 3D building models for various 
applications collides with the enormous costs of acquisition of 
these data at an appropriate level of detail. Quite some efforts 
have been spent in the past to automatically extract buildings 
from digital aerial images (Lang, 1999) or from digital surface 
models (DSM) derived from laser scanner data (Weidner, 
1997). The most recent achievements in the field of automated 
acquisition of 3D building models are based on the integration 
of data from two or more sources in order to overcome the 
drawbacks of specific sensor types. For instance, a DSM is 
combined with existing 2D GIS data (Brenner, 2000) or with 
digital aerial images (Ameri, 2000). The trend towards 
combining data from multiple sensors for the automatic 
reconstruction of topographic objects is triggered by the fact 
that new sensor types such as LIDAR, SAR, and high-resolution 
space borne scanners, have become available. In the future, the 
task of data acquisition for topographic information systems 
(TIS) might be performed by “multi-sensor-grammetry” rather 
than by traditional photogrammetry. It is the goal of this paper 
to give a contribution to the development of this “multi-sensor-
grammetry” by presenting a new method for the automatic 
creation of polyhedral building models in densely built-up areas 
by combining high-resolution LIDAR DSM and aerial images. 
Along with that method, an object-relational technique for 
storing large sets of building models in a TIS is described.  
 
Automatic building extraction by combining DSM and aerial 
images consists of three steps (Ameri, 2000). First, building 
candidate regions have to be detected in the DSM. Second, 
initial polyhedral building models have to be created in the 
candidate regions by a bottom-up procedure using both the 
DSM and the aerial images. Third, the initial polyhedral 
building models have to be verified in the aerial images to 
improve the accuracy of their geometric parameters. 
 

Our technique follows this three-step procedure. It is still work 
in progress and, thus, not all of its modules have already been 
finished. This paper describes the current state of development, 
the overall work flow, and the individual modules. Intermediate 
results will be presented for the modules already having been 
implemented.  
 
1.2 Related work 

1.2.1 Building detection from DSM: For that purpose, the 
points of the DSM have to be classified according to whether 
they belong to the terrain, to buildings or to other object classes, 
e.g., vegetation. Morphological opening filters or rank filters are 
commonly used to determine a digital terrain model (DTM) 
which is subtracted from the DSM. By applying height 
thresholds to the normalized DSM (nDSM) thus created, an 
initial building mask is obtained (Weidner, 1997; Ameri, 2000). 
The initial classification has to be improved in order to remove 
vegetation areas. In (Brunn and Weidner, 1997), this is 
accomplished by a framework for combining various shape cues 
in a Bayesian network. Our algorithm for building detection 
from DSM is based on the method of linear prediction 
presented in (Kraus and Pfeifer, 1998). 
 
1.2.2 Generic procedures for creating polyhedral building 
models: The data driven generation of a polyhedral model starts 
by finding initial hypotheses for planar patches in object space. 
This has been performed by first reconstructing 3D line 
segments from aerial images and then finding tilted “half 
planes” delimited by these line segments (Baillard et al., 1999) 
or by grouping co-planar line segments supported by the results 
of a color-based segmentation of aerial images (Moons et al., 
1998). Other possibilities are given by propagating the results 
of gray level segmentation of an aerial image to object space 
using a DSM (Ameri, 2000) or by a curvature based 
segmentation of the DSM, e.g. (Brenner, 2000). The initial 
planar patches having been found, neighboring patches are 
grouped (Baillard et al., 1999, Ameri, 2000). After that, the 
polygons delineating the borders of planar patches have to be 
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derived, which involves determining consistent intersections at 
the building vertices (Moons et al., 1998). Finally, the 3D 
polygons have to be combined in order to obtain consistent 
building models. At the building outlines, vertical walls have to 
be added to the model, and the floor has to be modeled. 
Parametric models which are typically used in model driven 
techniques for building extraction (Veldhuis, 1998; 
Rottensteiner, 2001) are used in a data driven context by 
(Brenner, 2000): the polygons delineating a building in a 2D 
map are split into rectangular regions. In each rectangle, the 
parameters of parametric models are determined using a DSM, 
and the model achieving the best fit is accepted. 
 
1.2.3 Model verification by wire frame fitting: If an 
approximate object model exists, its (roof) edges can be back-
projected to the images, where the model edges are matched 
with image edges. Thus, the accuracy of the model is increased 
considerably, especially with respect to the building outlines. 
Such model driven techniques are used for measurement of 
parametric primitives (Veldhuis, 1998; Rottensteiner, 2001). 
The method described in (Rottensteiner, 2001) is general 
enough to be applicable to any polyhedral model, and it is used 
in our work. Another technique for wire frame fitting of 
polyhedral models based on other observation equations is 
described in (Ameri, 2000). 
 
1.2.4 Management of building data: In (Koehl and 
Grussenmeyer, 1998) and in (Grün and Wang, 1998), relational 
data base concepts for managing building models and DTMs are 
presented. By these concepts, the full power of standard 
relational data base systems can be exploited, especially with 
respect to semantic attributes. This advantage is contrasted by 
the fact that the data representing a single building are 
distributed over several tables. In order to perform an operation, 
an application has to construct the objects involved from these 
data. (Yang et al., 2000) use a relational data base system for 
managing building models, too, but in their system, the 
buildings are represented by binary large objects (BLOBs), and 
a tree-like structure is used for structuring the data by geometric 
criteria in order to increase access rates. The advantage of fast 
access is contrasted by the programming effort required to 
interpret the BLOBs and by the problems in exchanging data. 
The method described in our paper is also based on relational 
data bases and BLOBs. It is an expansion of the technique for 
the management of DTMs by (Hochstöger, 1996). 
 
 

2. WORK FLOW FOR BUILDING EXTRACTION 

The work flow for our method for automatic building extraction 
is presented in Figure 1. First, building candidate regions have 
to be detected in the DSM by a hierarchical classification 
procedure of the LIDAR points. As a result, regions of interest 
for the geometric reconstruction of the buildings are obtained. 
In the subsequent processes, these regions of interest are treated 
individually. Building detection is described in section 3. 
 
In the regions of interest, initial planar patches are reconstructed 
in object space by the results of a segmentation of the DSM, 
classifying grid points as being “planar”. This segmentation can 
be improved by a segmentation of the digital images giving 
regions of homogeneous gray level or color distribution. 
Neighboring patches being co-planar have to be merged, and a 
further analysis of neighborhood relations gives hypotheses for 
lines of intersection and/or step edges. As soon as no more 

hypotheses for grouping of planar patches can be found in the 
data, the resulting polyhedral model consisting of a 
conglomerate of intersecting (mostly: roof) planes is completed 
by adding vertical walls at the bordering edges of the planar 
patches not yet being neighbored by another plane and by 
adding a horizontal plane for modeling the floor. The creation 
of the initial polyhedral models is described in section 4. 

 
 

Figure 1.  Work flow for building extraction. 
 
The initial polyhedral building models have to be verified in the 

images by 3D-model fitting to improve the accuracy of their 
geometric parameters. The parameters having been determined, 
the models can be regularized by introducing hypotheses about 
planes being orthogonal to each other. The 3D-model fitting 
procedure is explained in section 5. 
 
The feedback loop shown in Figure 1 indicates a coarse-to-fine 
strategy by which initially a model is created from the most 
salient structures found in the data. This initial model then 
guides further processing as additional data become considered 
and need to be “explained” by the model.  
 
In all phases of building extraction, a close integration of 3D 
object and 2D image spaces is needed to improve the degree of 
automation, the reliability and accuracy of the results. Multi-
view optical images are needed to cope with occlusions, 
ambiguities, and to get the 3rd dimension. On-line self-checking 
has to be performed in all stages of the extraction process. 
 
 

3. BUILDING DETECTION FROM LIDAR DSM 

3.1 DTM generation from LIDAR data in urban regions 

In (Kraus and Pfeifer, 1998), a method for linear prediction is 
proposed to separate vegetation from terrain points for the 
interpolation of DTMs from LIDAR data. The error distribution 
of the LIDAR heights is assumed to be skew with a strong bias 
towards off-terrain elevations. This assumption is used for 
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robust estimation in order to eliminate these points. After that, a 
classification of the LIDAR points is performed by thresholding 
the residuals. For LIDAR DSMs having high point densities, 
the algorithm has to be modified to work in a hierarchical 
framework because in densely built-up areas, it has to cope with 
relatively large blocks of houses which share the statistical 
behavior of steep hills rather than that of single outliers. The 
algorithm has to be applied to thinned-out data first to get an 
initial classification of terrain points. After that, iteration is 
continued starting from pre-classified data. In (Briese, 2001), 
this strategy has been evaluated for the generation of a high-
quality DTM of a test site in the City of Vienna.  
 
3.2 Detection of buildings by comparing DSM and DTM 

Two digital elevation models of identical grid width are derived 
by linear prediction: a DTM is computed from the points 
classified as “terrain points” with a high degree of smoothing, 
whereas a DSM is computed from all points without smoothing 
(Figure 2a ). An initial building mask is created by thresholding 
the height differences between the DSM and the DTM. This 
initial building mask still contains areas covered by vegetation, 
and some individual building blocks are not correctly separated 
(Figure 2b). A morphological opening filter using a small (e.g., 
5 x 5) square structural element is applied to the initial building 
mask in order to get rid of small elongated objects and to 
separate regions just bridged by a thin line of pixels. A 
connected component analysis of the resulting image is applied 
to obtain the initial building regions. At this instance, regions 
smaller than a minimum area (e.g., 40 m2) and regions at the 
border of the DSM are discarded (Figure 2c).  
 
Some of the remaining regions correspond to groups of trees. 
They can be eliminated by evaluating a “terrain roughness” 
criterion derived by an analysis of the second derivatives of the 
DSM. In (Fuchs, 1998), a method for polymorphic feature 
extraction is described which aims at a classification of texture 
as being homogeneous, linear, or point-like, by an analysis of 
the first derivatives of a digital image. This method is applied to 
the first derivatives of the DSM using a large (e.g., 9 x 9) 
integration kernel. For each initial building region, the number 
of “point-like” pixels is counted. Regions containing more than 
50% of pixels classified as being “point-like” (thus, pixels being 
in a neighborhood of great, but anisotropic variations of the 
surface normals) are very likely to contain vegetation rather 
than buildings, and they are eliminated.  
 
The terrain roughness criterion is very efficient in classifying 
isolated vegetation regions, but it cannot find vegetation areas 
which are still connected to buildings. In a final stage of 
analysis, we try to eliminate such areas. By morphological 
opening using a square structural element, regions just 
connected by small bridges are separated. The resulting binary 
image is analyzed by a connected component analysis which 
results in a greater number of regions, and the terrain roughness 
criterion is evaluated again. Pixels being in regions now 
classified as containing vegetation are erased in the initial 
building label image. Thus, in vegetation areas originally 
connected to buildings, only the border pixels remain classified 
as “building pixels”. Again, morphological opening helps to 
erase these border pixels. The resulting building label image 
only contains a small percentage of erroneously classified pixels 
in a few backyards (Figure 2d).  
At a very coarse level of detail, a 3D city model can be derived 
by creating prismatic models from the boundary polygons of the 

building regions using the average building heights computed 
from the DSM. An example for such a city model with a height 
accuracy of about ±5 m is shown in Figure 3. 
Figure 2.  Building detection in a test site in the City of Vienna. 

Original resolution: 0.1 m (in-flight) by 1 m (cross-flight).  

a) DSM; grid width: 0.5 x 0.5 m2; extent: 410 x 435 m2.  
b) Initial building mask (height threshold ∆hmin=3.5m). c) initial 

building label image before evaluating terrain roughness.  
d) Final building label image.  

 

 
Figure 3. VRML visualization of prismatic models created from 

the boundary polygons of the building regions from Figure 2. 
 
 

4. MODEL GENERATION 

4.1 Generation of initial 3D planar segments 

To start with model generation, initial 3D planar segments, their 
geometrical parameters, and their initial border polygons have 
to be found in the regions of interest. This can be achieved by 
generating a “segment label image” defined in object space with 
an appropriate grid width. Each pixel of that image is assigned 
the label of the planar segment it belongs to.  
 
The framework for polymorphic feature extraction (Fuchs, 
1998) is applied for the generation of planar segments, too. Just 
as described in section 3.2, the framework is applied to the first 

a) b) 

d) c) 



 

 

derivatives of the DSM, this time using a small integration 
kernel of 3 x 3 pixels. Pixels classified as being homogeneous 
are surrounded by pixels having similar components of the 
normal vector, i.e., they are in a region containing co-planar 
points (Brunn and Weidner, 1997). The binary image of the 
homogeneous pixels is used for further processing (Figure 4a).  
 
By applying a connected component analysis to this binary 
image, planar patches should be detectable. However, due to 
errors in the classification of homogeneous pixels, especially at 
the intersections of roof planes which are almost horizontal, the 
regions thus detected often turn out to be too large. Typically, 
this leads to L-shaped segments such as the one at the upper left 
corner of Figure 4a. In order to avoid these segmentation errors, 
an iterative strategy is applied for the generation of planar 
patches. The binary image of homogeneous pixels is 
morphologically opened using a square structural element 
before applying the connected component analysis. The 
geometric parameters of the planar patches thus detected are 
derived along with their r.m.s. errors from all points inside these 
patches. The height residuals are used to split the initial patches 
in case this appears to be necessary. The patches with the best 
fit, i.e., those with r.m.s. errors better than a certain threshold 
(e.g., ±10 cm) are considered to be seed regions for region 
growing. These seed regions are grown iteratively by adding 
neighboring pixels to a region if their distances from the 
original adjusting plane are below a certain threshold. In this 
way, the most relevant and best fitting planes are extracted from 
the DSM. After that, the plane parameters are updated, and the 
pixels already being assigned to a planar patch are erased in the 
binary images. The connected component analysis is repeated, 
and the parameters of the new planar patches are evaluated 
again. This procedure is repeated with a decreasing size of the 
structural element for morphological opening. Thus, smaller and 
smaller initial regions are found, and by only allowing well-
fitting planes to grow, it is possible to split the regions 
corresponding to more than one roof plane because the r.m.s. 
error of the planar fit is a good indicator for the occurrence of 
such situations. Figure 4b shows the results of seed region 
generation for one of the buildings from Figure 2. 
 

 
a)                                                b) 

 
c)                                                d) 

 

Figure 4.  Creation of initial planar patches from a DSM in one 
of the building regions from Figure 2. a) Classification results 
of polymorphic feature extraction. White: pixels classified as 

“homogeneous”. b.) Planar regions obtained by iteratively 
applying a connected component algorithm and region growing. 

c) Pixels not being consistent to a planar patch.  
d) Final segment label image. 

A further analysis has to detect planes which cover too small an 
area for resulting in pixels classified as being homogeneous. We 
search for regions not being consistent with the planar regions 

detected so far (Figure 4c). The borders of the buildings are 
typically found in that process, which is caused by laser points 
on the walls. Again, we get rid of these points by a 
morphological opening operation using a 3 x 3 square structural 
element, and a connected component analysis is applied to the 
resulting image in order to create additional planar patches. 
Figure 4d shows the final segment label image created for one 
of the building regions from Figure 2. The r.m.s. errors of 
planar adjustment varies between ±5 cm and ±15 cm for the 
segments corresponding to the “homogeneous” points. The 
segments having a r.m.s. error larger than ±10 cm possibly still 
correspond to more than one roof plane. In the planar regions 
created by the analysis of the originally inconsistent points, the 
r.m.s. errors vary between ±25 cm and ±5 m, which is caused by 
the fact that some of these regions still correspond to trees, 
whereas other regions also correspond to more than one roof 
plane. In the future, a further analysis will split these planar 
patches into smaller ones corresponding to even smaller planes 
in object space. This can be accomplished, e.g., by a height 
segmentation of the DSM in these regions. Another possibility 
for doing so is the integration of the information from the 
digital aerial images into the process of finding the initial planar 
patches. The digital images are also segmented based on the 
algorithm for polymorphic feature extraction, which results in a 
set of edge and point features and a set of patches of 
homogeneous gray levels for each image. The image segments 
could be considered in region growing, for instance by applying 
additional conditions with respect to homogeneity of gray levels 
at projected positions. In addition, the geometrical resolution of 
the segment label image can be increased considerably because 
the resolution of digital aerial images is still superior to the 
resolution of a laser scanner DSM. 

 
4.2 Grouping planar segments to create polyhedral models 

To derive the neighborhood relations of the planar segments, a 
Voronoi diagram based on a distance transformation of the 
segment label image has to be created (Ameri, 2000): each pixel 
inside the region of interest not yet assigned to a planar segment 
is assigned to the nearest segment. The distances of pixels from 
the nearest segments are computed by using a 3-4 chamfer 
mask. Figure 5 shows a Voronoi diagram of the segment label 
image from Figure 4d. From the Voronoi diagram, the 
neighborhood relations of the planar segments are derived, and 
the borders of the Voronoi regions can be extracted as the first 
estimates for the border polygons of the planar segments. 

 
Figure 5.  A Voronoi diagram of the label image in Figure 4d. 

 
After deriving the neighborhood relations, neighboring planar 
segments have to be grouped. There are three possibilities for 
the relations of two neighboring planes (Baillard et al., 1999). 
First, they might be co-planar, which is found out by a 
statistical test applied to the plane parameters. In this case, they 
have to be merged. Second, two neighboring planes might 
intersect consistently, which is the case if the intersection line is 
close to the initial boundary. In this case, the intersection line 



 

 

has to be computed, and both region boundaries have to be 
updated to contain the intersection line. Third, if the planes do 
not intersect in a consistent way, there is a step edge, and a 
vertical wall has to be inserted at the border of these segments.  
 
After grouping neighboring planes, the bounding polygons of 
all enhanced planar regions have to be completed. (Moons et 
al., 1998) give a method for doing so and for regularizing the 
shape of these polygons at building corners. Finally, the 
completed planar polygons have to be combined to form a 
polyhedral model. Polygon sides not being intersections or step 
edges are supposed to be situated at the building outlines. 
Vertical walls and a floor have to be added to the model.  
 

 
Figure 6.  A VRML visualization of a model created from the 

boundary polygons of the Voronoi diagram in the test area  
from Figure 3. 

 
The tools for grouping planes and for computing intersections 
and the positions of step edges have not yet been implemented. 
Figure 6 shows a VRML visualization of a 3D model created 
from intersecting vertical prisms bounded by the borders of the 
Voronoi regions with the respective 3D roof planes. The 
structure of the roofs is correctly resembled, but the intersection 
lines of neighboring roof planes are not yet computed correctly. 
However, the visualization shows the high potential of the 
method for generating roof planes from LIDAR data. 
 
 

5. WIRE FRAME FITTING 

The initial polyhedral model is back-projected to the images 
(Figure 7), where its edges can be matched with image edges. 
This is necessary in order to improve the accuracy of the 
building models, especially with respect to the building 
outlines. Our model fitting algorithm has first been used for 
automatic fine measurement of parametric and prismatic 
building models in a system for semi-automatic building 
extraction (Rottensteiner, 2001). It is based on the integration of 
object modeling by boundary representation (B-rep) and hybrid 
adjustment in the way it is realized in the adjustment package 
ORIENT (Kager, 1989). Each face of the B-rep corresponds to 
a set of “shape” (“GESTALT”) observations, i.e., a set of points 
declared to be situated on the same surface (Kager, 1989), and 
the parameters of these surfaces have to be determined. In 
parameter estimation, the topology of the B-rep is represented 
by the fact that a building vertex gives support to at least three 
surfaces and by implicit geometric conditions imposed by a 
specific way of formulating the surface equations 
(Rottensteiner, 2001). Before matching is performed, the 
parameterization of the planes of the initial polyhedral models 

has to be decided upon, and all “shape observations” and plane 
parameters which represent the building model in the 
reconstruction process have to be prepared. 
 

 
 

Figure 7.  The roof polygons of the building in Figures 4 and 5 
back-projected to one of the images (white). Approximate 

ground pixel size: 15 cm. 
 

Model fitting is based on hierarchical feature based multi-image 
matching applying the scheme of hypotheses generation and 
verification (Gülch, 1994). Starting from the approximate 
values, the wire frame of the building is back-projected to the 
images. Straight image line segments are matched with the 
object edges. Whereas matching candidates for all object edges 
are searched for independently in all images, hypothesis 
verification is performed in an overall robust estimation process 
in a hybrid adjustment of the “shape observations” representing 
the object models, the heights of the points of the DSM, and the 
camera co-ordinates of image features. Robust estimation is 
applied in order to determine false matches between image and 
object edges. In a test project in the context of semi-automatic 
building extraction (scale 1:4500, six-fold overlap) the method 
has been shown to achieve results with an accuracy in the range 
of a few centimeters (Rottensteiner, 2001).  
 
After model fitting, regularization hypotheses (e.g., orthogonal 
walls) can be created. A mapping between the type of 
regularization and the formulation of “shape observations” as 
described in (Rottensteiner, 2001) has to be found, and model 
fitting is repeated. 
 
 

6. MANAGING BUILDING DATA IN A TIS 

In addition to investigating the work flow for object 
reconstruction, considerable efforts have been spent to find an 
object-relational technique for the management of large sets of 
building data in a TIS. This method is based on the principles 
which have been demonstrated to handle digital elevation data 
of whole states (Hochstöger, 1996). The program TopDM, a 
development of our institute, is used as a TIS. It is based on a 
relational data base with additional topologic and geometric 
elements (Hochstöger, 1996). An object-relational principle 
(Kraus, 2000) is used for the management of building data in 
order to use the existing relational data base and to offer an 
object oriented view at the data base for application programs. 
 
TopDM offers an area called “derived products market” (DPM), 
where DTMs are managed in a table of the relational data base. 
Each line of that table corresponds to a DTM. However, only 
the meta data of the DTM are actually contained in that table, 
whereas the actual DTM is stored on the disk. The meta data 
comprise attributes such as object type, data format, file name 
and extension in object space, the latter one being used for 
queries according to geometric criteria. The principle of 
managing the meta data in a relational data base while treating 



 

 

the actual data as BLOBs stored separately on disk was shown 
to be well-suited for managing digital elevation data of whole 
states in (Hochstöger, 1996). That principle could also be 
applied to building data by introducing new possible values for 
the attributes “object type” and “data format”. The B-reps of the 
buildings are stored on disk in a specific binary data format.  

 
Figure 8.  Inheritance tree for topographic objects. 

 
An object oriented interface for the DPM was realized by 
creating an inheritance tree for topographic objects (Figure 8). 
The base class topoObject corresponds to a topographic object 
containing the meta data described above. The actual method of 
geometric modeling is not yet implemented in that class. In a 
first level, two classes corresponding to objects being modeled 
by 2.5D and 3D modeling techniques, respectively, are derived 
from class topoObject, but these classes do not yet correspond 
to real objects. The classes derived from them, however, 
correspond to actual data modeled by means of specific (2.5D 
or 3D) modeling techniques: DTMs in 2.5D grid-based 
representation or as TIN, and 3D objects in B-rep. In order to 
realize the object oriented view at the topographic data, an 
interface sending queries to the DPM had to be implemented. 
This interface has to interpret the attribute “object type” in the 
results of the query, instantiate an object of the class 
corresponding to the actual value of that attribute and use the 
class specific methods for reconstructing the object in memory 
from the data found on the file corresponding to the value of the 
attribute “file name”. The results of the query are presented to 
an application as a list of instances of class topoObject, and the 
application can use the methods of that class, e.g., for 
visualizations such as the one presented in Figure 7.  
 
 

7. CONCLUDING REMARKS 

In this paper, we have presented a method for automatic 
extraction of buildings from multiple data sources. Parts of that 
method are still work in progress, but we were also able to 
present preliminary results achieved by the modules already 
implemented in a test project in the City of Vienna. These 
preliminary results show the high potential of the method. 
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