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ABSTRACT: 
 
This paper presents an inverse analysis of the unobserved trigger factors with respect to the slope failures based on the Structural 
Equation Modeling (SEM). The quantitative prediction models generally construct the relationship between the past slope failures 
and the causal factors (i.e. lithology,  soil, slope, aspect, etc.), but does not deal with the trigger factors(i.e. rail fall, earthquake, etc.), 
due to the difficulties of pixel-by-pixel observation of the trigger factors itself. As a measure, in this study, an inverse analysis 
algorithm on the “trigger factors” is proposed, which consists of the following steps: 
z Step1: The relationship between the slope failures (as the endogenous variables), the causal and trigger factors (as the exogenous 

variables) are delineated on the path diagram used in SEM.  
z Step2: The regression weights in the path diagram are estimated in minimizing the errors between the observed and reemerged 

“variance-covariance matrix” by the model.   
z Step3: As an inverse estimation, through the measurement equation in SEM between the causal and the trigger factors, a 

“Trigger Factor Influence map (TFI map)” is newly produced. 
As an application, the TFI maps are produced with respect to the “slope failures” and the “landslides,” respectively. Furthermore, 

as a final product, the difference of those TFI maps are delineated on a “Difference map (DIF map).” The DIF map and its 
interpretation are indeed useful not only for assessing the hazardous area affected by the trigger factors, but also as a “heuristic 
information” for locating places for setting the field measuring systems. 
 
  

1. INTRODUCTION 
 
“When, Where and What scale” of the slope failures and the 
landslides are the important aspects to endure the person’s life as 
well as the social- and economical-infrastructures against the 
unpredictable risk. Due to the limitation of the detail field 
investigation, the research approaches applying the satellite 
remote sensing data and the various kinds of geographical 
information (termed “causal factor”) are highly expected for 
identifying the hazardous area affected by the slope failures and 
landslides as well. However, under the present situation, the 
quantitative prediction models for the slope failures deals with 
only those causal factors (Carrara et al., 1995; Chung et al., 
1995; Kasa et al., 1991; Obayashi et al., 1999), but not applying 
the “trigger factors”, such as the local downpour, earthquake, 
weathering, etc., because of the difficulties of pixel-by-pixel 
observation of the trigger factors itself. As another viewpoint 
against the previous researches, the trigger factors should be 
treated as “unobserved factors” in terms of time and space in 
prediction. To estimate such trigger factors, the substantial 
questions are 
 
z How can we incorporate the “trigger factors” in prediction 

modeling? ; and,  
z Is it possible to estimate the “trigger factors,” quantitatively?  
 
With those issues as background, we have tackled the following 
outstanding subjects: 
 
z To construct an inverse-analysis algorithm for the “trigger 

factors”, based on the Structural Equation Modeling (SEM). 
z To produce the Trigger Factor Influence maps (termed TFI 

map) with respect to the slope failures and the landslides, as 
well as to consider its application for the landslide hazard 
assessment.  

 
2. STUDY AREA AND PREDICTION MODEL 

 
2.1 Study Area and Spatial Input Data Set  
 
The study area is located on Futtu in Chiba prefecture, Japan. In 

the rainy season between July and August in 1988, the local-
downpour with continuous rainfall had caused the slope failures 
and landslides in this study area. Through the field investigation 
and the aerial photographs, those occurrences were precisely 
plotted on the topographical map as the training data sets for 
constructing the prediction model. 
 
The quantitative prediction model constructed the relationship 
between those past occurrences and the following nine “causal 
factors": (1) Soil, (2) Surface geology, (3) Vegetation, (4) Land 
cover, (5) Vegetation index, (6) Slope, (7) Aspect, (8) Elevation, 
and (9) Drainage. Each map consists of 100×50 pixels (3.0 Km
×1.5 Km, 30m/pixels corresponding to the ground resolution of 
the Landsat TM data). The latter four factors were produced 
based on the Digital Elevation Model (DEM). The experts in 
each research field have made the Soil-, Surface geology- and 
the vegetation-map. The land cover map is made through the 
maximum likelihood classification for the Landsat TM data. The 
vegetation-index map is also produced by calculating the 
Normalized Vegetation Index (NVI) given by  
 

 NVI = ( B7 – B5 ) / ( B7 + B5 )                  (1)                         
 
where B5 and B7 are the digital numbers in each pixel 
corresponding to TM-Band 5 and TM-Band 7, respectively.  
 
2.2 Quantitative Prediction Model 
 
Figure 1 shows the inverse analysis concept of the trigger 
factors expanding the previous quantitative prediction model. 
Chung and Fabbri (1999) have adopted the formulas for geologic 
hazard zonation as a part of "favorability function" approaches, 
and the various procedures have been applied to the landslide 
prediction. To promote those prediction models as well as 
optimizing prediction, the practical analytical procedures have 
been presented as follows; i) Comparative strategy of the 
prediction models (Kojima et al., 1998, 1999), ii) Analysis of the 
landslide types (Kojima et al., 2000), iii) Testing on the time-
robustness in prediction (Kojima et al., 2001), and iv) Sensitivity 
analysis of the prediction models with respect to the causal 
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factors (Chung et al., 2002). 
 
Those analytical procedures are crucial components in the 
prediction models, and are indeed useful not only for the experts 
working on the landslides, but also for the end-users of the 
prediction models. However, the conventional prediction models 
generally construct the relationship between the past slope 
failures and the causal factors, but could not apply the “trigger 
factors,” because of the difficulties in observing the trigger 
factors “pixel-by-pixel”. As a measure in this study, an inverse 
analysis algorithm on the “trigger factors” is presented, based on 
the Structural Equation Modeling (termed SEM) that was 
originally proposed by Joreskog and Lawley (1968). SEM is also 
well known as the “analysis of covariance structures,” in a word, 
SEM could be regarded as a model integrated the regression 
analysis jointly with the exploratory factor analysis. The detail of 
SEM itself is available for the references (Joreskog et al.1968). 
  

3．．．．INVERSE ANALYSIS OF TRIGGER FACTOR 
 
Figure 1 shows the proposed inverse-analysis algorithm of the 
“trigger factor,” which consists of the following steps: 
 
3.1  Conditional Probabilities as the Input Data 
 
To construct a probability model for slope failure hazard, 
consider the following proposition: 
 

Fp : “ a pixel p will be affected by a future slope failure of a 
given type D.”    

 
The conditional probabilities in each causal factor given by 
 
Prob(Fp|Cij) = Tij / Nij                                                          (2) 

where Cij is the ith category of the jth causal factor; Nij is the 
number of pixels of Cij;  and Tij is number of pixels of the past 
slope failures or landslides that had occurred in the area 
corresponding to Cij.  Prob(Fp|Cij)  are used as the input data for 
the SEM-based analysis. 
 
3.2  Path Diagram 
 
To make a prediction model, the relationship between the slope 
failures (as the endogenous variables), the causal and trigger 
factors (as the exogenous variables) should be delineated on the 
path diagram used in the SEM. Figure 2 shows the intricate 
relation between the causal and trigger factors with respect to the 

 
Figure 1. Proposed inverse-analysis algorithm of the “trigger factor” with respect to the slope failures and landslides. 

 
Figure 2.  Causal and Trigger factors with respect  

to the slope failures and landslides.  



 

 

slope failures and landslides. As a counterpart of Figure 2, let us 
consider the path diagram as shown in Figure 3 that is called a 
recursive model. Prob(Fp | Cij) of Equation 2 are the input data 
as the exogenous variables, while the pixels corresponding to 
occurrences and non-occurrences of the slope failures as well as 
landslides are assigned to the value “1” or “0”, respectively, that 
are used as the endogenous variables.  
 
3.3 Hypothesis Testing 
 
Not knowing the trigger factors, the program is how to estimate 
the path weights of {a1 , ... , an , b1 , ... , bn , c1 , ... , cn} in Figure 
3.  Through the estimation procedure in SEM, those are 
estimated by minimizing the errors between the observed 
variance-covariance matrix and the reemerged one. Among 
various estimation procedures, i.e., maximum likelihood 
estimation, asymptotically distribution-free estimation, 
generalized least squares estimation, ‘scale free’ least squares 
estimation, unweighted least squares estimation, etc., Maximum 
likelihood estimation procedure is selected in this study, which is 
generally reported as a better estimator for the large population 
than the others.  
 
To make clear the significance introducing the “unobserved 
trigger factors” in Figure 3, let us consider the following path 
models for the slope failures and landslides, respectively: 
 
z Model A: using both causal and trigger factors for the “slope 

failures,” as shown in Figure 3. 
z Model  B: only using causal factors for the “slope failures.” 
z Model  C: using both causal and trigger factors for the  

“landslides,” as shown in Figure 3. 
z Model  D: only using causal factors for the “landslides.” 
 
As the hypothesis testing for those models, the Chi-square value, 
the Goodness of Fit Index (GFI), the Adjusted Goodness of Fit 
Index (AGFI), the Akaike Information Criterion (AIC), and the 
Root Mean Square Error Approximation (RMSEA) are applied 
as the statistical measures of fit. Table 1 shows the results of the 
hypothesis test and the fit measures.  
 
The Chi-square value for Model A is higher than that for Model 

B, also the probability level in Model A indicates more than 0.05, 
but not in Model B, which means that Model A could not be 
rejected under the significance level “0.05”, while there is no 
reliability on the identification of Model B. As the other 
measures of fit, the GIF and the AGFI need to be more than 0.9, 
conversely, the RMSE should be less than 0.08 for the model 
selection. Furthermore, among those models, the only model 
with the lowest AIC should be selected.   
 
Based on the above experiments, for the slope failures in the 
study area, we would say at least that Model A is better than 
Model B on the statistical grounds. Furthermore, for the 
landslides, Table 1 indicates that Model C would be better fit 
against Model D. Those results imply that the path diagram 
introducing the “trigger factor” shown in Figure 3 might be 
meaningful for constructing the prediction model.  
 
3.4 Path Parameter Estimation 
 
Table 2 shows the standardized regression weights of estimated 
for the selected Model A and Model C side by side. The 
difference of those parameter weights between Model A and 
Model C is obvious, which corroborates that the trigger factors 
with respect to the slope failures and the landslides may be 
different.  
 
Focusing on the path-relation between the trigger factor and the 
causal factors, in Model C for the landslides, the highest weight 
“0.869” comes from the path between the trigger factor and the 
land-cover. While in Model A for the slope failures, it is 
interesting to note that the negative weights come from the path 
between the elevation, drainage and the land-cover. Comparing 
such differences of the path weights, we can evolve the factor 
analysis from various points of view on the slope failures and the 
landslides. 
 
3.5  Prediction Map 
 
Based on the path model of Figure 3, the prediction maps could 
be produced. Plate 1(a) and Plate 1(b) show the prediction maps 
with respect to the slope failures and the landslides, respectively. 
Table 3 shows the description of those prediction maps, which 
are made by the mini-max discriminate method that classifies the 
pixels into two groups as “occurrence and non-occurrence (Kasa, 
Kojima, et al., 1991).” The classified results of these kinds are 
indeed useful for supporting the decision-making of the landslide 

 
 

Figure 3. Path diagram for the SEM-based analysis. 

Table 1.  Hypothesis test results and the fit measures. 
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Table 3. Description of the prediction maps 
                                 shown in Plate 1(a) and Plate 1(b). 
 

Table 2. Results of the standardized parameter estimates. 
 

evention plans, against the general prediction map ranked with 
veral hazardous levels.   

 Plate 1(a) and Plate 1(b), it is obvious that the prediction 
tterns are fairly different, which means the causal and the 
gger factors between the slope failures and the landslides 
ght be different. In the next section, as further investigation, 
 us discuss about the inverse estimation of the trigger factor 
r the slope failures and landslides as well.      

6 Inverse Estimation of Trigger Factor  

te that the path components connecting “unobserved variables 
each other” and “observed variables to unobserved variables” 
 often called the “structural equation” and “measurement 

uation,” respectively. In this study, through the measurement 
uation, the influence of the trigger factor are inversely 
timated pixel-by-pixel, and those are delineated on a “Trigger 
ctor Influence map (termed TFI map).” In the path diagram 
own in Figure 3, the measurement equation between the 
gger factors (as unobserved variables) and the causal factors 
 observed variables) is given by 

jiij ji e  fa  z +=                                                             (3)                                                                                                          

ere jiz is the conditional probability of the jth causal factor in 

 ith pixel as shown in Equation 2;  ja is the path parameter 

Table 2 linked the  jth causal factor with the trigger factor; 

i is the real value of the degree on the trigger factor influence 

in the ith pixel; and jie is the error for the jth causal factor in the 

ith pixel. The objective is how to calculate the estimates of if̂  of 
the trigger factor inversely, based on Equation 3.  The inverse 
function is given by 

∑
=

=
p

j
jiji zbf

1

ˆ                                                           (4)               

 
The parameters of {b1, … , bn} are determined by minimizing 
the following least square error: 
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Note that the average and the variance for jiz  and if  are 

standardized to “0” and “1”, respectively. So, the error parameter 
could be ignored in Equation 5. Hence, {b1, … , bn} are simply 
given by 

∑
=′

′
′=

p

j

jj
jj rab

1

                                                             (6)             

where jjr ′ is the element ( j , j’ ) of the inverse matrix for the 

correlation matrix. Through Equation 4, if̂  is calculated pixel-
by-pixel, and is delineated on the Trigger Factor Influence map 
(TIF map). Plate 1(c) and Plate 1(d) show the TIF maps with 
respect to the slope failures and the landslides, respectively.  
From those TIF maps jointly with the prediction maps, the 
following points could be indicated: 
 
z At a glance, it is found that the estimated patterns between 

the TIF maps with respect to the slope failures and the 
landslides are clearly different.  

z In Plate 1(c) on the slope failures, the steeper the slope is, 
the higher the trigger factor influence is for the most part. On 
the other hand, in Plate 1(d) on the landslides, the gentler 
the slope is, the higher the trigger factor influence is. Those 
results corroborate that the trigger factors could be estimated 
“pixel-by-pixel” through the path model shown in Figure 3.  

z However, in Plate 1(c) on the slope failures, we can also see 
the areas where the trigger factor influence is high in spite of 
relatively gentle slope. Especially, for those areas, the detail 
field investigation should be carried out.  

 
For the practical utilization of the TIF maps, let  us  consider  the  



 

 

 

 
Plate 1  Prediction maps and the Trigger Factor Influence maps (termed TFI map)  

with respect to the slope failures and the landslides, respectively. 



 

 

interpretation for differences of the TIF maps with respect to the 
slope failures and the landslides, respectively. 
 

4. INTERPRETATION OF THE TRIGGER  
FACTOR INFLUENCE MAP (TIF MAP) 

 
As the conventional interpretation of the prediction maps, the 
difference map (termed DIF map) is produced between two 
prediction maps with respect to the slope failures and landslides 
(Kojima, et al. 1998, 2000, 2001). Similarly, to make clear the 
difference of the trigger factor influence, the DIF map between 
two TIF maps for the slope failures and landslides is produced as 
shown in Plate 1(e). Attention should be paid that we can 
interpret the difference of the trigger factor influence according 
to the legend for Plate 1(e) as follows: 
 
z Shade of red: The degree of trigger factor influence for the 

slope failures is higher than that of the Landslides. 
z White: The degree of trigger factor influence for the slope 

failures is almost equivalent to that of the Landslides. 
z Shade of blue: The degree of trigger factor influence for the 

slope failures is lower than that of the Landslides. 
 
Such “heuristic information” might be useful not only for 
assessing the hazardous area affected by the trigger factors in 
terms of the types of the slope failures and landslides, but also 
for improving the cost-effectiveness in locating the places for 
setting the field measuring systems, i.e. the tensiometer, the rain 
gage, etc.  
 

5. CONCLUDING REMARKS 
 
 In this contribution, we have discussed about an inverse analysis 
of the unobserved trigger factors with respect to the slope 
failures as well as the landslides, based on the Structural 
Equation Modeling (SEM). The results of this study are 
summarized as follows: 
 
z Due to the difficulties in observing the trigger factors “pixel-

by-pixel,” we strongly point out the necessity for the inverse 
estimation of the “unobserved trigger factors” itself. As a 
measure, through the measurement equation between the 
causal factors (as observed variables) and trigger factors (as 
unobserved variables), a “Trigger Factor Influence map 
(termed TFI map)” is newly produced. 

z As an application of the proposed inverse-analysis 
algorithm, the TFI maps are produced with respect to the 
slope failures and the landslides, respectively. Furthermore, 
as a final product, the differences of those TFI maps are 
delineated on a “Difference map (termed DIF map).”  

z Through the DIF map, we can evolve the analysis on the 
“trigger factor influence” with respect to the slope failures 
and the landslides, jointly with the prediction maps and the 
expert's opinions as well.  

 
As for the subsequent subjects, in order to corroborate the 
practicality of the inverse-analysis algorithm (Figure 1), the 
additional investigation for other study areas should be carried 
out. As occasion demands of the investigators, we can readily 
add the training data sets of other types of slope failures and 
landslides in analysis. In this point of view, the analytical 
procedure shown in Figure 1 is expected to contribute to the 
landslide hazard assessment as one of the standards.  
 
Furthermore, as for the structure of the path diagram in Figure 3, 
a single “exogenous variable” is considered as the “trigger-
factor.” However, in practice, either slope failures or landslides 
are caused by various trigger factors as shown in Figure 2. So, 

the modified path models adding the several exogenous variables 
as the trigger factors should be investigated to improve the 
identification of the models itself.  
 
It is no exaggeration to say that the precise estimation of the 
trigger factor itself is impossible. As one of the measures, the 
inverse-analysis algorithm presented in this study, as well as 
“heuristic information” on the DIF map of the trigger factor 
influence maps, might be effective for identifying the hazardous 
area affected by the different types of slope failures and the 
landslides. Such a systematic analysis procedure, as against the 
limitation of the conventional research approaches for prediction 
modeling, might be essential to optimize prediction as well as to 
promote the former quantitative prediction models. 
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