
AN EFFICIENT DATA MANAGEMENT APPROACH FOR LARGE CYBERCITY GIS

Qing Zhu, Xuefeng Yao, Duo Huang, Yetin Zhang

National Key Lab of Information Engineering for Remote Sensing, Surveying and Mapping,

Wuhan University 430079, P.R. China
E-mail: zhuq@rcgis.wtusm.edu.cn

Commission IV, WG IV/4

KEY WORDS: CyberCity, Spatial Database Engine, R+_trees, Object-relational Database.

ABSTRACT:

CyberCity facilitates the processes of urban planning, communication system design, control and decision making,
tourism, etc. However, the high efficient database management has become a bottleneck of CyberCity applications. This
paper proposes an efficient approach to manage the integrated databases of large CyberCity. This approach consists of
following three schemes: At first, a special R+_tree index was designed to accelerate spatial retrieving. The spatial
index of CyberCity includes three different types of indexes, i.e. 3D object index, DEM index and image index. The
whole city is divided into rectangular regions, and geometries are then classified into the regions by the center of the
rectangular bounding box of each geometry. We call it a R+_tree index because among the bounding boxes of local
regions has no intersection. And among all the leaf nodes of the R+_tree (geometry records) there is no repetition.
Secondly, different data compression algorithms are adopted to compress the digital elevation models, 3D vector
models and images, such as LZ77 lossless compression algorithm for compression of vector data and JPEG compression
algorithms for texture images. Thirdly, in order to communicate with the Oracle8i database, the CyberCity GIS spatial
database engine (SDE) is designed. At last, based on the SDE prototype a case study is presented. It is hopeful to satisfy
the requirement of real time applications of CyberCity GIS. It is proved to establish the efficient spatial index and to
adopt proper compression methods as well as to extend the data retrieve strategy of commercial ORDBMS are
significant for large CyberCity GIS.

1. INTRODUCTION

The term ‘CyberCity’ is used to represent the virtual
representation of a city that enables a person to explore
and interact, in cyberspace, with the vast amounts of
environmental and cultural information gathered about
the city (Gruber, 1999; Zhu et al., 2000). It facilitates the
processes of urban planning, communication system
design, control and decision making, tourism, etc. The
CyberCity not only shows data in three dimensions, i.e.
the 3D city models in most cases, but also presents
photorealistic surface description. Therefore, the
description of surface character and material parameters,
including geometry, photo texture and additional
information, are the contents of a CyberCity database, and
this would result in the CyberCity database of an entire
city facing an amount of some hundred gigabytes of data.
Even very complex and large scenes are organized as a
collection of files. The access efficiency of the file system
is too low to afford the development of the CyberCity, the
database management system has been required to
manage the huge urban data of CyberCity. The high
efficient database management has therefore become a
bottleneck of CyberCity applications (Kofler et al. , 1996
). The relational databases have been established as the
most important database technology during the last 30

years, which are widely used in nowadays 2D geographic
information systems (GISs). But to the 3D GIS, the
disadvantage of relational database has become more and
more obvious. Because the CyberCity has various data
types, which include many numeric item data, string data,
large unstructured data such as texture images of surfaces,
structured vector data of 3D objects, and large size of
terrain orthoimages. The object-oriented database is still
not mature to organize all such kinds of data and their
relations, so we choose the object-relational database,
such as Oracle 8i, which has the mechanism to organize
the individual data into some kind of objects, it reserves
the advantage of relational database and adapts the idea
of object-oriented into it. It can not only handle the
complex relations of the 3D data, but also is good at
forming the data into objects which should be treated as a
whole logically. On the other hand, the access efficiency
of Oracle8i is optimistic and more suitable for CyberCity
GIS.

This paper is organized as following: after briefly
introducing the architecture of CyberCity geographic
information system (CCGIS), the R+_tree spatial index
method, data compression algorithms and spatial data
engine (SDE) based on object-relational database
Oracle8i are proposed respectively. At last, based on the

�����
����

���
���

���
	���

���������	�
��
��
�����������������

���������
��
�
�������������

����	�
��	���	���

����
������

 Symposium on Geospatial Theory, Processing and Applications,
Symposium sur la théorie, les traitements et les applications des données Géospatiales, Ottawa 2002

mailto:zhuq@rcgis.wtusm.edu.cn

SDE prototype a case study and conclusion will be
presented.

2. THE ARCHITECTURE OF CCGIS

The construction of CyberCity requires 3D city models
with realistic material or texture description and related
attributes and to provide spatial query and analysis
functions. There are usually three basic models involved
in the CCGIS, including Digital Elevation Model (DEM
), Digital Orthoimage Map (DOM) and 3D Object
Models like buildings, roads, pipeline etc. Unlike the true
3D GISs needed in geological or oceanic applications, the
main objective of current CyberCity GIS is to deal with
the 3D objects as surface models (sometimes they are
considered as 2.5D models). It does not matter how the
3D real world is mapped into spatial databases, the main
point is the availability of 2.5D and 3D capability in GIS
what should be realized in an efficient and robust manner
(Fritsch, 1996). As shown in figure 1, the architecture of
CCGIS consists of three layers, the top layer is the 3D
real time applications such as 3D dynamic interactive
visualization (Zhu, 1998). The data access depends on the
mid layer, i.e. the CCGIS-SDE, which majors in the
communication with the bottom layer, i.e. the database
management system (DBMS), which manages the data of
CCGIS in database. The database is an object relational
database, i.e. Oracle 8.1.6. This SDE extends the data
retrieve functionality, and provides an efficient data
management approach including special R+_tree index,
data compression schemes and fast access strategy as
mentioned below.

Figure 1 The architecture of CCGIS

3. R+_TREE INDEX FOR FAST DATA RETRIEVE

As mentioned above, the data volume of a whole city is
huge, if we want to retrieve data from the vast database
without spatial index, this process would be very time-
consuming, so proper spatial index must be built up to
accelerate the data locating. The authors propose to use

R+_tree as the basis for a CyberCity GIS to develop a
data structure to spatially organize large amounts of 3D
data. Herein we call it a R+_tree index because among the
bounding boxes of local regions has no intersection. And
among all the leaf nodes of the R+_tree (geometry
records) there is no repetition, in order to keep the data
consistence of the database, one geometry in one city is
exclusive. As shown in figure 2, the spatial index of
CyberCity includes three different types of indexes, i.e.
3D object index, DEM index and image index. The whole
city is divided into rectangular regions, and geometries
are then classified into the regions by the center of the
rectangular bounding box of each geometry. A global
table which manages all the rectangular regions of a city
is established to locate the local regions with the
bounding box information. Simultaneously several
management tables are set up according to the number of
local region, each local region has a management table to
manage all the geometry tables in this rectangular region.
To insert geometries into the geometry table, the proper
local region and proper geometry table based on the
center of the rectangular bounding box of each geometry
is selected.

3.1 Management of large DEM

A so-called gridded manner algorithm was designed to
handle large DEM as raster data. In gridded manner
method, tile is the logical subdivision of the whole region
and server as the foundation of data index. Block is the
basic data storage and access unit. For 3D real time
visualization applications, block is also the basic
rendering and LOD (levels of detail) process unit. When
blocks are stored every block is aligned with each other in
tile and neighbour block and an overlay line data in four
directions. Cell is the minimum subdivision of DEM data.
It consists four original elevation points. All block within
a specific grid interval constitute a layer. In another word
layer is the DEM dataset of the same grid interval at a
certain scale or resolution. LOD is an important concept.
As far as DEM data is concerned, LOD relates to various
grid interval DEM data (DEM pyramid). A large grid
interval layer is created from the neighbouring minor grid
interval layer. All layers have the same structure that is
composed of blocks.
In object-relational DBMS, one layer data is stored in one
table and the friend type of DEM data stream is large
object binary (Lob). In modern DBMS, Lob is a popular
data type. Though Lob is an unstructured data type, it can
be trimed or appended arbitrarily and can store up to 4GB
in some DBMS. So Lob is convenient to store large
unstructured data, for instance, the image and video. In
DEM layer table an elevation value in Lob field can
consist of 2,3 or 4 bytes. When source data is submitted
to DEM database, it is decomposed to blocks and each of
them is indexed according to database original point and
correspond (x, y) block width and height. This process

3D Real Time

Oracle Database

The CCGIS-SDE

(a) The concept of R+_tree

(b) The table structure
Figure 2 The R+_tree index

creates a series of float-formatted elevation data stream.
Each block stream is the minimum data storage unit in
Lob field. After all source data is stored in DEM database
the initial DEM layer table is created.
The most advantage of this kind of DEM database is that
the DEM data can be accessed arbitrarily based on block
unit. Because of the limited data size of a block, the
gridded manner means that we can roam in an unlimited
DEM data freely, irrespective of region area or data size.

3.2 Management of large DOM

The process of DOM data is similar with that of DEM.
Both the original points, the block structures and the layer

structures of DOM database are identical with DEM’s. It
is apparent that DOM database is bound up with DEM
database. These features result in the same query scope in
DEM database can get the DOM data in the same region
within DOM database. Because the resolution of the
orthoimage is usually higher than that of DEM at the
same layer, the data volumes of each block at the same
layer are then quite different. For example, a DEM block
may consists of 1K nodes as 4K bytes elevation values,
but a DOM block may involve 64K pixels as 196K bytes
RGB color values.

Global Region Bounding Box

Local Region0 Bounding Box Local Region1 Bounding Box Local Region2 Bounding Box

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

●●●

Regions Management Table [RBOX]

… … … … … …

R0
r

R1
r

R2
r

R3
r

R4
r

R5
r

R6
r

R7
r

R8
r

R9
r

R10
r

R11
r

R12
r

R13
r

R14
r

Local Region Table0 [RBOX0] Local Region Table1 [RBOX1]

Object Table0 [RBOX]

Object Table1 [RBOX]

Object Table2 [RBOX]

Local Region0 [RBOX0]

Local Region1 [RBOX1]

3.3 Management of large 3D object models

The 3D vector objects are classified into five basic types,
i.e., the point objects, line objects, surface objects, body
objects and group objects. Usually we treat the trees,
streetlamps etc as point objects, they always have an
anchor point. The pipelines and the wires are usually
treated as line objects, which are looked as polylines
abstractly, and always organized as point string. The
surface objects include the roads and the waterways. The
last is the main body of urban data, the group objects
includes all kinds of buildings as the body objects
generally are treated as the element of group objects, one
group object represent one building, it can be composed
of one to several body objects. We use the five types to
organize the whole 3D objects. In a city scale, the data
amounts to several hundred Gigabytes, two kinds of
tables are therefore setup to organize the whole data of
the five types. One is the geometry table, and another one
is the manager table to manage the geometry tables. The
large unstructured data and huge structured vector data of
3D objects are compressed and stored in Blob, each Blob
item can hold 4-Gigabyte data.

4. DATA COMPRESSION SCHEMES

Because we have to manage large amount of data in
CyberCity applications, even the vector data of 3D
objects (buildings, roads, pipelines, etc.) still accounts
for large percents. An obvious way to reduce the size of
data is compression, compression saves a lot of disk
space at the server and reduces network load
tremendously. On the other hand, the data must be
decompressed at the client with high efficiency.
Especially, for vector data the compression would not
result in any loss, but for image just without visible loss
of quality is ok. Therefore, we choose LZ77 compression
algorithm for vector data, the LZ77 is a dictionary
compression algorithm without loss. The zip proportion is
about 1 : 10 when it is used to compress text data, but
when we use this algorithm on the vector data, the zip
proportion is about 1 : 8, and the speed of unzip is very
fast as shown in table 1. We call the coded bits instant-
code that means we can decode the bits by the flag stored
in it after we get it. At the same time, some loss
compression algorithms are used for texture images, for
example the JPEG and wavelet methods are employed.

Table 1 the statistics of vector data compression
Buildings Bodys Data size(Bytes) Coded data size(Bytes) Decode time(s)

1 2 28768 3940 0.003496
10 24 112744 15349 0.017157

100 238 1138569 142321 0.155967

Figure3 The fetching process of 3D objects

CCGIS

Query Command (with Box)

CCGIS-SDE

Oracle Database

R+_Tree

Compressed Vector Data

LZ77 uncompression algorithm

5. SPATIAL DATA ENGINE

In order to communicate with the Oracle8i database, the
CyberCity GIS needs spatial database engine (SDE) to
improve the performance of data access. As shown in
figure 3, to fetch the vector data, a message is sent to SDE
with the bounding box of query region, SDE firstly finds
all the local regions the query refers, then locates the
specific geometries in the geometry table through the
special R+_tree index, but only the compressed data is
obtained from database hereto. Of course, the real time
decoding algorithms are provided for further process.

6. CASE STUDY

Based on the Oracle 8.16, a SDE prototype is designed
and used for an experiment. At the Oracle sever (Pentium
III, 600Mhzs, 100Mbps network), the whole number of
buildings is more than 100,000, about 2M bytes of 200
buildings’ 3D vector geometric data and texture images
can be accessed in 0.125s from server to client. It is
hopeful to satisfy the requirement of real time 3D
visualization applications of CyberCity GIS. It is proved
to establish the efficient spatial index and to adopt proper
compression methods as well as to extend the data
retrieve strategy of commercial ORDBMS are significant
for large CyberCity GIS.

7. CONCLUDING REMARKS

This paper introduced the architecture and the mechanism
of the data management system of the CyberCity GIS.
More efficient spatial index must be created to support
more complex data access. On the other hand, the fast
compression algorithm should be found to compress the
object texture images and the terrain orthoimages, and the
fast decoding algorithm with multi-resolution for real time
applications is quite significant.

8. ACKNOWLEDGMENT

This project is supported by the NSFC (No.40001017),
the Fok Ying Tung Education Foundation (No.71017)
and the major state basic research program
(No.G1999043801).

9. REFERENCES

Fritsch D., 1996, Three-Dimensional Geographic

Information Systems—Status and Prospects, In:
International Archives of Photogrammetry and
Remote Sensing. Vol. XXXI, Part B3 , pp. 215-221.

Gruber M and Wilmersdof E., 1997, Urban Data
Management - A Modern Approach, Computers ,
Environment and Urban System, 21(2):147-158.

Gruber M. 1999, Managing Large 3D Urban Databases,
47th Photogrametric Week, (Dieter Fritsch and Rudi
Spiller, editors), Wichmann Verlag, Germany,
pp.341-349.

Kofler M., Rehatschek H. and Gruber M., 1996, A
Database for a 3D GIS for Urban Environments
Supporting Photorealistic Visualization, Int.
Archives of Photogrammetry and Remote Sensing,
Vol. XXXI, B2, Vienna 1996.

Molenaar, M., 1992. "A topology for 3D vector maps",
ITC Journal, No. 1, pp. 25-33.
Rikkers, R., Molenaar, M., 1994. "A query oriented

implementation of a topologic data structure for 3-
dimensional vector maps", International Journal of
Geographical Information Systems, 8(3): 243-260.

Zhu Qing, 1998, Three Dimensional Dynamic
Visualization Model, Journal of Wuhan Technical
University of Surveying and Mapping (in Chinese),
23(2):83-87.

Zhu Qing, Li Deren, Gong Jianya, Xiong Hanjiang, 2000,
The Integrated Spatial Databases of GeoStar, In:
International Archives of Photogrammetry and
Remote Sensing , Vol. XXXIII, Part B4, pp. 1243 –
1246.

	INTRODUCTION
	THE ARCHITECTURE OF CCGIS
	R+_TREE INDEX FOR FAST DATA RETRIEVE
	Management of large DEM
	Management of large DOM
	Management of large 3D object models

	DATA COMPRESSION SCHEMES
	SPATIAL DATA ENGINE
	CASE STUDY
	CONCLUDING REMARKS
	ACKNOWLEDGMENT
	REFERENCES

