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ABSTRACT:

Modern photogrammetry and, more generally, the current technology for Earth observation are dependent on various
forms of data processing. After the sensing or acquisition step, the data are available in digital format and all what
has to be done is to calibrate, to orient and to extract georeferenced information. In this context, data processing for
trajectory determination, sensor calibration and sensor orientation follows various patterns, all of them particular cases
of the general time dependent parameter estimation problem defined by the ediatign) + v(¢), z(t),z(t)) = 0,

where f is the mathematical functional modeljs the time,¢(¢) is the time dependent observation vecta(t) is a
white-noise generalized process vectd() is the parameter vector andt) the time derivative of:(¢). A number of

different approaches to estimate parameigt$ from data/(t) has been developed according to the particular form of

the above model equatiof+ v = f(x), f({ +v,z) =0, f(£,0(t) + v(t),z(t)) = 0andi(t) = f(t,L(t) + v(t), x(t))

are examples of model equations leading to network and Kalman filter/smoother solution strategies. Although these
two procedures have proven to be well suited to their respective model equation structure, the paper discusses some
of their limitations and alternatives, particularly for time dependent problems. The proposed family of methods uses
numerical techniques that integrate the rigorous least-squares method and the finite difference methods for the solution
of the Boundary-Value problem of Ordinary Differential Equations. Although we do not claim that this has to substitute
existing, proven techniques, the paper indicates how hybrid static and dynamic data processing can be easily integrated
with this new approach.

1 INTRODUCTION plied to time-dependent precise networks for deformation
monitoring originating from VLBI and GPS. At the oppo-
Nowadays, trajectory determinatidfor navigation, geode- site end, the GPS aircraft trajectories for Earth observation

tic positioning and remote sensing orientation is maimyapplications like aerial triangulation or LIDAR aerial sur-

based on two parameter estimation methodologies: leasf€yS were determined under the network approach (Frief3,
squares network adjustment —the network approach (NA)1—990)'

and Kalman filtering and smoothing —the state-space ap- : . : .
proach (SSA). It is known that Kalman filtering is a gen_pl'he goal of the ongoing research behind this paper is not

eral form of sequential least-squares. However, in practicé? devise a *unified” algorithm that pa}ckage bOtP clafsr
é:gl least-squares and state-space estimation in “one.” The

there is no much connection between the two approach his rath i ical alaorithmi d
other than some output estimated parameters following th@PProach Is ratneér pragmatic —numerical, algorithmic an
oftware oriented— as the theories of least-squares estima-

network approach being used as input observations for & T
second esFt)iFr)nation stepgflollowing the?state—space approac on (Koch, 1995) and state-space estimation (Maybeck,
And vice versa. It must be mentioned that the GPS re- 979_a, ngbeck, 1979b) are well es_tabhshed. The act_ual
search related community has since long been faced pal IS to interpret stochasu; dynamic mod.elsf —i.e., dif-
the problem of making a decision between classical leas erential or difference equathns— and th.e|r time depen-.
squares, Kalman filtering and smoothing and some inter(—jent unknown parameters —i.e., stochastic Processes— in
; p way that, for the time dependent parameter estimation
both the processing of moving object trajectories and foPrOblem’ both the _network approach anc_j the state-space
the processing of stationary or quasi-stationary objects. F(?rpproach are applllcable. We do not claim tha.t both ap-
the family of problems just mentioned (static, quasi-staticproa(:h(.ES be fully mtqch_angeable. We do claim that in
and kinematic) there are examples of successful «'jlpplica't:‘—ome circumstances, it might be advantageous to apply the

tion of both the state space approach and of the netwo&etwork approach to the estimation of time dependent pa-

approach. To illustrate the statement, we cite two “clagrameters. As well, we claim that time dependent problems

sics” that have had and still have a significant impact in ge'—n geomatics do not necessarily require a SSA treatment.

omatics in the past decade. The GLOBK system (Herrmgm addition to the numerical, algorithmic, software data

2003) uses Kalman filtering and has been successfully a modelling and software use potential advantages of a uni-

Lin this paper trajectory determination is understood as the determin)®d approach, there are a number of estimation problems
tion of a time series of positions, velocities and attitudes. that might benefit from it. They include the modelling




of trajectories for airborne and spaceborne imaging linwould represent the position of the point at titmer the

ear arrays, the calibration of inertial instruments (angularesult of the particular experiment.

rate sensors and accelerometers) with “cross-over” type ] ) ] ]

of observation equations and the modelling/estimation of* fundamental stochastic process is B®wnian motion
geodetic networks for monitoring and prediction purposes(Or Wiener processr continuous random wajlnamed af-

It has to be mentioned that a parallel research effort is b€ @ 19th century botanist who observed that pollen grains
ing conducted by A. &rmens for inertial strapdown kine- ©N & liquid described an irregular trajectory. lIts formal
matic airborne gravimetry @mens and Colomina, 2003, derivative is called white noise. White noise is formally

Téermens and Colomina, 2004) for an optimal calibrationconsidered a stochastic process to facilitate the visualiza-
of accelerometers. tion and interpretation of the continuous idealization of

discrete time processes whose random variables are inde-
The key idea behind this investigation is that a stochasPendent, normally distributed ones. (Sometimes, in the en-
tic dynamic model (a stochastic differential equation) anddineering literature, it is said that the white noise process is
its stochastic processes can be transformed through dig-helpful concept that does not exist in the world of math-
cretization into a family of stochastic difference equationsematics. In fact, this statement is wrong. White noise ex-
and discrete time processes. Those, in turn, can be seenigis as a generalized stochastic process (Jksendal, 1993), a
a family of observation equations and parameters that ca$lightly more complex concept than a stochastic process.)

be processed under the network approach. The stochastic analogs ofdinary differential equations

The paper begins by reviewing some definitions and con(ODE) are thestochastic differential equatioSDE). The
cepts from the theory of stochastic processes and stochd2€0ry for SDE can be found in (Gksendal, 1993). SDE
tic differential equations. We take this approach becaus@'iS€ naturally from real-life ODE whose coefficients are

of the available sound theory that includes continuity theONly approximately known because they are measured by

orems and numerical solution methods consistent with thi'Struments or deduced from other data subject to random
stochastic nature of the problem. Then, the state-space af§©rS-  The initial or boundary conditions may be also
the network approaches are defined and compared. On&BOWn just randomly. In these situations, we would ex-
this is done, in section 6 we define time dependent ne2€ct that the solutiop of the problem be a stochastic pro-
works in a way that generalize the traditional least-square§€SS- We will calp = p(t, w) aprediction Under certain
based networks. Here, the scope of the concept of a djion-restrictive] hypothesgs has a number of properties
namic or time dependent network is precisely defined. Thicluding that it is t-continuous (ksendal, 1993, pp. 48-
algorithmic and software implementation implications of 49)-

section 6, should be clear at that point. However, we un
derline them in section 7 for readers not familiar with the
development of network adjustment systems.

Assume now that we have managed to predict the stochas-
tic processp —the system— over a time intervalty, t¢].

In our application, determining reduces to determine an
estimate of the patf’(p(¢)) and estimates of the process

2 STOCHASTIC PROCESSES auto-covariance functions

A stochastic process is a parametrized collection of ranC(t1,t2) := E ((p(t1) — E(p(t1)))(p(t2) — E(p(t2)))") .
dom variables defined on a probability spaég 7, P)

(Law ler, 1995). The parameter spatés usually the time  Assume further that we are able to relatéhrough some

or a time interval. In other words, a stochastic process  |inear model —the observation equations— to another pro-

a set of random variables indexed by time cessz —the observations- so we have additional infor-
mation ofp. A natural question arises: can we improve
wi={z(t)[t € T, T C R} our estimates of with the additional information?. The

answer, in general, is yes, and the tool is the well known
nnfiltering and smoothing. Filtering at timerefers to find-
qng a best estimate for the systeits), ¢y < s < t; given
the observations in the intervalty, s]. Smoothing, refers
fo finding the best estimate fgx(s) at any time by using
he information ofz all over [ty,t,]. Saying thatp(s) is

est means that (Ilp — pl|?) is minimal over all solutions
of the system SDE that verify the observation equations
(see (Bksendal, 1993, pp. 58-59) for a detailed description
of the probability function associated to the SDE and to the
observations white noise processes).

where R is the set of real numbers. In this paper, and i
most applications, the parametrizing, indexing or taggi
subsetl’ is either N, the set of natural numbers, &. If
T = N, x is called a discrete time process and in the othe
case, = RorT = [a,b] C R, itis called a continu-
ous time process. The set where the random variables ta
values, typicallyR", is called the state space.

From the definition, it is clear that for ea¢ke T, we have
a random variablee — z(t)(w) := z(t,w) forw € Q.
But the functionz(t, w), for a given fixedw, can be seen
as a function ot, t — z(t,w) for t € T. This function
is apath We introduce the concept of a path because it is 3 THE STATE-SPACE APPROACH

close to our intuition in INS and GPS trajectories, satellite

orbits, etc. When we look at a trajectogycan be seenas a We will call state-space approad$SA), the methodology
point or one of our repetitive experiments and this w)  and principles of solving the above problem of prediction,



filtering and smoothing for time discrete processes (sednown] stochastic process —a time dependent parameter—
tion 2). is to the state-space approach. In the following, the names

“time dependent parameter” and “stochastic process” will
The SSA is the well known Kalman filtering and smooth- pe used indistinctly.
ing published by R.E.Kalman in 1960 (Kalman, 1960) and
discussed in numerous textbooks from different points of\ote that the state-space approach can be used, as well, for
view (Maybeck, 1979a, @ksendal, 1993). Equivalent latethe estimation of time independent parameters as they can
formulations in terms of sequential least-squares can bee modeled as stochastic constant processes. A stochastic
found in (Teunissen, 2001). The SSA has been successenstant takes the same valuever time. ¢ may or may
fully applied to precise navigation for surveying applica- not be known before the estimation process; but once it
tions (Scherzinger, 1997). is estimated it will not change over the time period where
the stochastic process is defined. An example of a random
We borrow the state-space name from the state-space regonstant is a GPS ambiguity —integer or real— in a phase
resentation of a dynamical system. A state vector is a minebservation equation.
imal set of variables whose values are able to describe a
system. The optimal solution to the prediction-filtering- Note, as well, that a stochastic dynamic model (stochastic
smoothing (section 2) is obtained through one of the recurdifferential equation) can be transformed into a set of sto-
sive algorithms of the Kalman filter type. chastic difference equations. Then, the family of stochas-
tic difference equations can be seen as a set of observation
In the prediction-filter cycle, the most important entity is equations and the network approach can be used. To dis-
the state vector. All the rest are subordinated parametersretize a stochastic dynamic model, we propose the differ-
In a way, the state vector dominates the scene which, ience methods (it is the “natural” way to do it). We are
some situations, may represent a problem. One exampbevare of limitations and/or inferior performances of the
is the difficulty in the feedback of the results of adaptivenumerical difference methods for the solution of ODEs.
Kalman filter steps to a correct scaling of the inertial obserHowever, the comparative analysis between difference met-
vations (angular rates and linear accelerations) in the inefiods and other more sophisticated numerical methods (vari-
tial navigation equations. (In theetwork approaclfNA),  ational methods, multiple shooting, ...) is usually done
this reduces to a classical estimation of variance compdn the context of deterministic ODE (Stoer and Bulirsh,
nents). Another example of the weaknesses of the SSA992). But, while the extension or generalization of the
is the estimation of gravity error states in the inertial nav-difference methods for deterministic ODE to the SDE is
igation equations. We may estimate the gravity error oktraightforward, the extension of the other mentioned meth-
our gravity model in better or worse ways, depending orods is less obvious. In future investigations we will explore
a number of instrumental, modelling and mission relatedhese numerical issues. Further, we refer the reader to the
factors. But we cannot impose that the gravity error estispecific literature on the numerical solution of SDE (Kloe-
mated at time; at pointz; is the same as the gravity error den and Platen, 1999).
estimated at a later timg at pointxs if 25 = 27y —the so-
called cross-over points— as discussed i@rfliens and
Colomina, 2003, €rmens and Colomina, 2004). 5 COMPARATIVE ANALYSIS

In the previous sections we have looked at the SSA and the
4 THE NETWORK APPROACH NA as different approaches to, essentially, solve the same
problem. Before we introduce and discuss time dependent
In geomatics, a network is a set of instruments, observaretworks we summarize their main advantages and disad-
tions and parameters that are inter-related through math&antages from a geomatic perspective.
matical models. The mathematical models are the obser-
vation equations. Tsolve the networks to perform an NETWORK APPROACH
optimal estimation of its parameters in the sense of least-
squares; i.e., the expectation of the parameters and theire® Advantages:
covariance is known. Moreover, their covariance is mini-

mal (Koch, 1995). The network approach exhibits superior 1. Support for conneciivity of parameters regard-

performance when the connectivity that observations cre- less of time. -

ate between the unknown parameters is high. 2. Support for both traditional networks and for SDE.
) ] 3. Possibility to compute the covariance of a lim-

In the network approach, our network will be solved in a ited number of selected parameters.

grand, single adjustment step where all parameters, time
dependent and independent, will be simultaneously esti-
mated. This is giving us some hint on how to implement 4 pisadvantages:
the network approach for time dependent networks in a
computer programme. We discuss this in sections 6 and 7. 1. Large system of linear equatiofs.

2The matrices are essentially of the band-bordered type and we can

An [Unkno_W”] random V_ariab|e —a time independent Par-apply sparse matrix techniques, fill-in reduction techniques and memory
ameter— is to the classical network approach what an [urpaging to solve the system of linear equations.

4. Variance component estimation.




2. Real-Time parameter estimation not feasible inwherev is a normally distributed variable of null expecta-

general. tion. A dynamic observation model —or a stochastic dy-
namic model— is an equation of the type
STATE-SPACE APPROACH Ft, L) +v(t), z(t),2(t)) =0 )

wherew(t) is a white noise process. In more global terms,
we will refer to the family of static observation equations
1. Real-Time parameter estimation Capabmty as the network static model. And to the famlly of dynamic
observation equatiofigs the network dynamic model. Typ-
ically, a particular dynamic model (2) will be given for
t € S’ whereS’ ¢ S. Note that a dynamic observa-
e Disadvantages: tion equation may include time independent parameters
and that a static observation equation may include time de-
1. Connectivity of parameters through static obser-pendent parameters but not its derivatives. Note, as well,

e Advantages:

2. The state vector dominates the scérighat is,
there is a clear definition of what the system is.

vation equations is not supported. that the static model may be of the form (1). This is not
2. Filter divergence. only consistent with the concept of an static observation
equation but necessary when it contains a time dependent

3. Computation of covariance matrices for all the

. arameter.
state vectors cannot be avoided. P

The dynamic model is a key component of a time depen-

The above list is by no means comprehensive but, in ouﬁjent network. Indeed, all what we know abat) before

opinion, the only situation where the SSA is clearly sy-Solving the nerork IS that(t)_ Is a stochastic process. In-
(ileed, the static model contributes to the determination of

perior is real-time parameter estimation. This statemen . ) . »
should not be taken as a recommendation. In real Iifer(t)' However, without the dynamic model there is no “dy-

problems, other factors may be taken into account. For in[latrn[cs” In ﬂjge/ p_rocess;t].e., we c?k:lnlot gyaf?fllteetthétllt the
stance, in INS/GPS trajectory determination, a SSA basett {xk(_t)|t < ﬂ}_’] IS af[:_onllnuot!s p_? d n p”n(t:'[f ?I, strictly h
software engine can be applied to both real-time and pos?ﬁpea Ing, matheématical continuity do€s not tefl us muc

processing computation modes. This aspect may be fundﬁ-bouf‘ the rougr_mess or smoc_)thness (?f the solution path but
mental before making implementation decisions. practical experience proves its effectiveness. (The lack of
dynamic modelling results, in practice, in somewhat rough

solutions forz(t). A typical example of this is found in
6 TIME DEPENDENT NETWORKS the determination of GPS trajectories under the network
approach when compared with the same trajectory deter-
A time dependent netwoik a network such that some of Mined under the state-space approach which are, usually,
its parameters are time dependent; i.e., that some of its pgmoother.)
rameters are stochastic processes. Analogously, we defi
that to solve a time dependent netwdekto perform an
optimal estimation of its parameters which include som
stochastic processes. (However, this is easier said than u

derstood and done. In this section we clarify the meaningye jjiustrate the above simple definition with two exam-

of the above statement and in section 7 we suggest SoMgaq: 3 geodetic monitoring network and an airborne imag-
implementation mechanisms.) We recall that optimality injn4 network (block) with INS/GPS aerial control. These

estimating a stochastic process means to estimate the b examples are time dependent networks as they include
expectation ijn(Q:tion path(t) in the sense of having min-  gynamic observation models and time dependent param-
imal £ (|| — &(|*) as mentioned in section 2. eters. Note, for instance, that the orientation parameters
of a block can be seen as a set of time independent, unre-
lated parameterfp;|i = 1,...,n} or as a time dependent
%arametel{p(t)hf € [a,b],a,b € R}.

Ilq\Fote, last, that in practice, we do not have to compute the
eauto-covariance function; we just have to provide a mech-
ﬁr_ﬂsm to compute it if requested.

Note that we are asked to solve for more information in
time dependent networks that in time independent one
Accordingly, as it was to be expected, we will be given

more information before the estimation process. This neWnhe airborne network (block) with INS/GPS aerial con-
information is the dynamic observation model for the ran+rol is a time dependent network because its unknown ori-
dom process. If we now rename our traditional observaentation parameters position, velocity and attitude depend
tion equations as the static observation model(s), then thgn the time. The “flight” is a stochastic process. This
global picture of time dependent networks becomes cleaine is a stochastic process ov&y, tr], wherety andt;

and clean. are the initial and the final time of the flight respectively.
The stochastic process is just defined over a finite time pe-

An static observation model is an equation of the type  yiod and we cannot predict the system beyopdecause

f&,l+v,2(t)=0 Q) 4In this paper no distinction is made between “equations” and “mod-
els” (both terms including the stochastic and functional components). We

3For some models this advantage could be a disadvantage. See sedi use both terms as appropriate to highlight the parallelism between
tion 3 for a related discussion. the dynamic and static aspects of the problem.




INS/GPS observations are required for the dynamic obers the estimation of time dependent and time indepen-

servation equations. The general network model is maddent parameters. The time dependent network is based on
up of the dynamic observation model —INS observationstatic and dynamic observation models. The time indepen-

equations— and the static observation model —GPS oldent network is (solely) based on static observation mod-

servation equations, ground control points and the phoels. Thus, the classical network can be seen as a particular
togrammetric collinearity equations. case of the new time dependent networks.

The geodetic monitoring network is a time dependent netThis unified approach is the basis for the reasonable de-
work in that it is a network of observed and measuredvelopment of time dependent network determination soft-
points at given epochs and we want to know the situationvare, which is at the same time rigorous and simple. We
of the network points within the time observation epochsdiscuss this aspect in the next section.
and in future time epochs. We have the measured points at
epochdt, t1, ---, ty] and we want to determine the po- 7.2 A unified algorithmic and software approach
sition of the network points at epo¢h + At. This is, in
principle, a stochastic process oy&y, +oo0). This model A modern well designed software system of the class we
is made up of the static observation model —GPS static okare discussing here is based in the object-oriented paradigm.
servation equations, known control point equations, knowrCombining object-oriented design and the previous theory,
constant 3D coordinate differences for points in a same te@ simple and powerful time dependent network determi-
tonic plates, etc.— and the dynamic observation model —nation software can be generated. This software system
known variable coordinate differences according to somghall include these fundamental entity classes: observa-
geophysical deformation model. tion, instrument, parameter and model. See (Colomina et
al., 1992) for a related discussion and modelling in time
7 A UNIFIED APPROACH independent networks.

The observations may have an associated time (time epoch
The implications of the definition of time dependent net-gf the observation). We call them time-tagged observa-
works of the preceding section are obvious. However, fofions, However, we emphasize that our observations, al-
the sake of clarity we underline them under the theoreticakhough time dependent, are stochastically independent as
algorithmic, software and production viewpoints. they are only subject to a white noise process. In principle,
it should not come as a surprise that for a time dependent
networks, all what we have to do is to generalize time de-
pendent parameters and dynamic observation models from

The classical network is a set of instruments, observatio e independent parameters and static observation mod-
and parameters. They are related through static observgg respectively.

tion models. The network approach is a procedure to es-
timate the parameters. The inputs are the values of ob-
servations and, if needed, the initial approximations of the
parameters. The outputs are the estimated values of the pa-
rameters. On demand, the network approach can generate NA SSA
the covariance of the parameters and/or the auto-covariance
function.

7.1 A unified theoretical approach

The time dependent network concept that we propose in
this paper is a set of instruments, observations and time
dependent and independent parameters. They are related
through static and dynamic observation models. Atime de- Figure 1: Unified SW approach
pendent parameter generates a set of equations, one equa-
tion for every time epoch. Now, the network approach is a
procedure to estimate both time dependent and time inddnterestingly enough, in our unified software approach, the
pendent parameters. The inputs are the values of the obs@rathematical foundation libraries are not much different
vations and, if needed, initial approximations of the paramfrom the classical approach. This applies both to internal
eters (note that, in this case, initial approximations are fopoftware aspects and to interface aspects. Moreover, with
time dependent and independent parameters). The output¥nor changes, most of the organizational parts and dis-
are the estimated values of the parameters including therete mathematical components of existing [well designed]
stochastic processes. On demand, the network approabgtwork adjustment packages can be kept. Even more in-
can generate the covariance of the parameters and/or tkgfesting is the fact that the NA and SSA computational
auto-covariance function. We insist on the parallelism ofengines can share the same model libraries, as the estima-
the time dependent and time independent network corfion engines work with the same models, their software im-
cepts. plementation and their external interfaces. In other words,
the parallel development and maintenance of an NA and an
We claim that the time dependent network concept proSSA engine within the frame of a general system is possi-
posed provides a unified theoretical framework that covble.

common math and modelling base




7.3 A unified exploitation approach Herring, T., 2003. GLOBK: Global Kalman filter VLBI
and GPS analysis program, version 10.1. Technical report,

Unified theoretic frameworks lead to simple and efficientMIT, Cambridge, MS, US.

algorithms and software. Unified software approaches lead ) o

to simple and efficient exploitation procedures. In partic-Ka&lman, R., 1960. A new approach to linear filtering and

ular, an eventual software implementation of the conceptBrediction problems. Transactions of the ASME, Journal

presented, would lead to common shareable input/outp@® Basic Engineering 82(1), pp. 34-45.

formats for a number of estimation engines. Kloeden, P. and Platen, E., 1999. Numerical solution of

A benefit of a unified approach is that we can follow dif- Stochastic Differential Equations. Springer Verlag, New
ferent strategies and that we can combine them. In somgork’ USs.

situations, one approach should be preferred. In other Sithoch, K., 1995. Parameter estimation and hypothesis test-
ations we can combine them. For a family of problems, ON&ng in linear models. Springer Verlag, Berlin, DE.

approach may be preferred for calibration tasks whereas

the other may be preferred for orientation tasks. Law ler, G., 1995. Introducttion to Stochastic Processes.

Chapman & Hall/CRC, Boca Ran, FL, US.
Note, as mentioned in section 1, that the output estimated

parameters of a static network may be used as input obse¥laybeck, P., 1979a. Stochastic models, estimation and
vations for a time dependent network. Similarly, an SSAcontrol. Mathematics in science and engineering, Vol. 141-
engine can be used to generate initial approximations for 4, Academic Press Inc., New York, NY, US.

NA engine. In all the cases, it is clear that interoperability

is easier to achieve with a unified approach. Maybeck, P., 1979b. Stochastic models, estimation and

control. Mathematics in science and engineering, Vol. 141-
2, Academic Press Inc., New York, NY, US.

8 CONCLUSION, ONGOING WORK AND L . L
FURTHER RESEARCH @ksendal, B., 1993. Stochastic differential equations: an

introduction with applications. Universitext, third edn,

In this paper we have defined in a precise way the Con_Springer-VerIag.

cept of time dependent networks. The proposed conce@cnerzinger, B., 1997. A position and orientation post-
extends the classical unified (from geodesy, photogrammgsrocessing software package for inertial/GPS integration

try and remote sensing) geomatic concept of network. IRPOSPROC). In: Proceedings of the KISS'97 Symposium,
short, a time dependent network is a classical network thataigary, AB, CA, pp. 197-204.

incorporates stochastic processes —that we call time de-

pendent parameters— and dynamic models —that we ca$toer, J. and Bulirsh, R., 1992. Introduction to Numerical
dynamic observation models. We have related time depernalysis. second edn, Springer-Verlag, New York, US.
dent networks and their solution approaches to the exist-, ) L.
ing Kalman filtering/smoothing and network methodolo- ' érmens, A. and Colomina, 1., 2003. Sobre la corr@aci
gies —what we call the SSA and the NA solution appro-o!e errores sisteaticos en gravimeia aerotransportada,
aches— and have discussed their advantages and disadva-SPanish). In: Proceedings of the 5. Geomatic Week,
tages. Last, we have given some hints on how this unifie@rcelona, ES.

approach can be exploited at the software development angh mens. A. and Colomina. I.. 2004. The Network Ap-

data processing levels. proach versus the State-Space Approach for strapdown in-

We are currently developing an experimental software pro?r::'earngnga?tg ?;a\g;?uert;yé'?:\iira%Zg%m;rtlzdstoézz IICIﬁ
totype that implements the concepts presented in this PLons - GGSMZyOOZ Porto. PT 4 P
per. Further research will be related to the numerical so- ' o

lution of SDEs for geomatic applications and to their op-Teunissen, P., 2001. Dynamic data processing. Delft Uni-
timization in terms of speed and memory/disk storage reyersity Press, Delft, NL.

guirements.
Xu, G., 2003. GPS theory, algorithms and applications.
Springer-Verlag, Berlin, DE.
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