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ABSTRACT

This paper deals with the state and with promising directions of automated object extraction for digital photogrammetric
workstations (DPW). A review of the state of the art shows that there are only few success stories. Therefore, important
areas for a practical success are identified. A solid and most important powerful theoretical background is the basis. Here,
we advocate particularly statistical modeling. Testing makes clear which of the approaches are best suited and how useful
they are for praxis. A key for commercial success is user interaction, an area where much work still has to be done. As the
means for data acquisition are changing, new promising application areas such as extremely detailed three-dimensional
(3D) urban models for virtual television or mission rehearsal evolve.

1 INTRODUCTION

Digital photogrammetric workstations (DPW) (Heipke,
1995) have been introduced in the market on a larger scale
at the middle / end of the nineties and have become the
standard for photogrammetric processing. While tasks
with a high redundancy such as orientation have reached
a high degree of automation and robustness, this is only
partially the case where the redundancy is not so high such
as for the generation of digital surface models (DSM) or
digital elevation models (DEM). For the latter two, laser-
scanning has become an attractive alternative.

While it was a matter of a few decades to highly automate
the above tasks, the situation is much more difficult for au-
tomated object extraction. There are only few (semi-) auto-
mated systems which are used with success in the market.
(Baltsavias, 2004) cites most prominently the systems for
building extraction InJect of INPHO GmbH (G̈ulch et al.,
1999) and CC-Modeler of CyberCity AG (Grün and Wang,
2001). Additionally, the systems for road update and ver-
ification ATOMIR (Zhang, 2004) and WIPKA-QS (Gerke
et al., 2004) are on the verge of becoming operational.

This paper addresses reasons for this deficit, but also points
on issues we think are important to improve the situation
and introduce object extraction on a larger scale in practi-
cal applications.

Legend has it, that in the 1950ies scientists from the field of
artificial intelligence thought, that the solution of the vision
problem was a matter of a graduate student project. This
estimation then shifted from five years to twenty years and
then to much much longer. Today, there is a large body
of knowledge in different fields as diverse as psychology
(Kosslyn, 1994) and the use of geometry in computer vi-
sion (Hartley and Zisserman, 2000), but still we might be
only at the beginning of understanding the basic problems.

There is still progress not only in the high level understand-
ing, i.e., interpretation, area, but also in the basic under-
standing of the image function. E.g., (Köthe, 2003) has
shown that the well known operator (Förstner and G̈ulch,
1987) does not take into account the frequency doubling

implicit in the squaring of the Hessian matrix (some peo-
ple also call it the structure tensor). The SIFT opera-
tor of (Lowe, 2004) offers scale and rotation invariant
features which can be robustly matched under affine dis-
tortion, noise, and illumination changes. (Pollefeys and
Van Gool, 1999, Pollefeys et al., 2002) have shown that
it is possible to fully automatically reconstruct the pose
and calibration of images of a camera of which the only
thing known is, that it is perspective. They also demon-
strated the importance of redundancy in matching, an is-
sue recently propagated by (Gruber et al., 2003) for ro-
bust DSM / DTM generation by means of digital aerial
cameras. In (Nistér, 2003) a direct solution for the five-
point relative orientation problem is given. Finally, the
test of (Scharstein and Szeliski, 2002) on stereo matching
has sparked a large number of new approaches for match-
ing, using, e.g., the powerful graph cut technique (Kol-
mogorov and Zabih, 2001), or cooperative disparity esti-
mation (Mayer, 2003).

This paper rests on a recent survey (Baltsavias, 2004)
which summarizes important points for the practical use
of object extraction. We will not repeat the contents
of this survey, but rather deepen some points, yet giv-
ing enough overview of the area to make this paper self-
contained. We are mainly concerned with aerial imagery
and laser-scanner data. Although focusing on the former
two sources, we also deal with satellite imagery and other
data such as hyper spectral data or terrestrial video se-
quences and laser-scanner data. To limit the scope, we do
not consider radar data.

The prerequisite for productive object extraction is model-
ing (cf. Section 2), which in our case comprises also the
strategy, data sources including data from geographic in-
formation systems (GIS), statistics with and without ge-
ometry, and learning. While a lot of basic scientific work
ends at this point, there is a recent tendency to evaluate the
performance of the approaches, possibly also in compari-
son with each other, in different tests. We think that testing
as presented in Section 3 is a must for bringing object ex-
traction into praxis as it not only makes clear which mod-
els and strategies are superior to others, but it also shows
what is possible with object extraction. After a success-



ful test, the next step is to design the user interaction in
semi-automated systems. We discuss the state of the art
and several issues in Section 4. As all technical develop-
ments are nothing without markets, we give in Section 5
an idea about future markets and what other areas, partic-
ularly visualization from computer science, envisage. The
paper ends up with conclusions.

2 MODELING

Modeling is the key issue for the performance of any ap-
proach for automated or also semi-automated object ex-
traction. Basically, modeling consists of knowledge about
the objects to be extracted. Additionally, in most cases it
is necessary to analyze their mutual spatial and topologic
relations as well as their relations to additional objects,
which a customer might not be interested in to extract, but
which give important clues for the recognition of an object.
E.g., even though one is just interested into roads in city
centers, one will only find them, when one knows, where
the cars are (Hinz, 2003).

The modeling of the objects is the key issue. But instead
of analyzing the assets and drawbacks of individual ap-
proaches, as, e.g., in (Mayer et al., 1998, Mayer, 1999), we
will in the remainder of this paper concentrate on a num-
ber of issues we consider as important to improve object
extraction for DPW. Overall it is our firm believe, that only
by a detailed modeling of many objects and their relations
of the scene, it will be ultimately possible to mostly reli-
ably extract objects from imagery, laser-scanner data, etc.

2.1 Strategy and Multiple Scales

Even though the objects and their relations are the neces-
sary core of modeling, experience shows, that the sequence
of operations employing the knowledge about the objects
and their relations is a, often even the key factor for an ef-
ficient, but also powerful extraction. E.g., it is well known
that markings are an important clue to find roads. Un-
fortunately, in images with a ground pixel size of about
0.25 m the markings very often correspond to very faint
bright lines. When trying to extract them in open rural
space one will in most cases extract millions in the fields
and meadows leading to an infeasible grouping problem.
On the other hand, one can first produce hypotheses for
roads in the form of lines in images of a reduced resolu-
tion, i.e., images in a higher level of an image pyramid.
Then one verifies the roads in the form of directed homo-
geneity such as in (Baumgartner et al., 1999). Inside the
generated hypotheses for roads the markings can be ex-
tracted and grouped reliably, giving the hypotheses a high
evidence for being actually roads.

We term the basic concepts behind a sequence of opera-
tions controling the extraction the “strategy”. Ideally, there
exist objects

• which are easy to extract,

• can be extracted reliably, and

• which have a large positive influence on the interpre-
tation of the whole scene.

The idea is to find cues for objects which allow to focus
the attention to specific areas, such as hypotheses for roads
to extract markings (cf. above). Unfortunately, this kind of
objects does not always exist and if so, they are not always
easy to identify.

In the above example on roads, scale plays an important
role. Coarse to fine approaches have long been used in
orientation determination and in image matching (Heipke,
1995). For linear objects it was shown in (Mayer and Ste-
ger, 1998), that by means of changing scale from fine to
coarse by means of linear scale-space (Lindeberg, 1994),
one can often eliminate interfering objects such as cars and
trees together with their shadows from roads. Other means
are irregular pyramids, as, e.g., implemented in eCognition
of Definiens GmbH (Benz and Schreier, 2001). A com-
parison of different means is given in (Blaschke and Hay,
2001).

Our experience is, that a multi-scale approach is in many
cases useful. Depending on the type of object, smoothing
with the linear scale-space, eliminating interfering details
by means of gray-scale morphology (Köthe, 1996), or a
combination of both such as in (Kimia et al., 1995) is most
suitable.

2.2 Data Sources and GIS Data

DPW have included in recent years means to deal with high
resolution satellite imagery such as IKONOS or Quick-
bird together with aerial imagery, possibly digital, e.g.,
from Leica‘s ADS 40 (Fricker, 2001), Vexcel‘s Ultracam
(Leberl et al., 2003), or Z/I imaging‘s DMC (Hinz et al.,
2001).

To use data which comprise explicit information suitable
for the problem can be a very efficient means to make
extraction more robust and reliable. These are most im-
portantly color, or more generally spectral data, as well
as three dimensional (3D) data. (McKeown et al., 1999,
Mikhail, 2000) show the advantages of using aerial hyper-
spectral data allowing for reasoning about the materials of
the objects. Both make also use of DSM.

For 3D, highly reliable data from laser-scanners are the
data source of choice. Early experiments with the extrac-
tion of buildings from laser-scanner data where done by
(Weidner and F̈orstner, 1995). Recently, laser-scanner data
are more and more fused with aerial imagery. For it, the
establishment of a common reference frame plays an im-
portant role to arrive at rich features (Schenk and Csathó,
2002). Work such as (Rottensteiner, 2003) uses addition-
ally to the integration with aerial imagery sophisticated
segmentation methods and a consistent model estimation.
In (Straub, 2003) DSM data from laser-scanners partially
together with reflection properties in the infrared are used
for the extraction of individual trees.



A very important source often neglected in more theoret-
ical work are GIS data. (Brenner, 2000) use two dimen-
sional (2D) polygons from which they generate straight
skeletons in conjunction with laser-scanner data to effi-
ciently and reliably extract buildings. In (Gerke et al.,
2004) a two stage process is employed to verify given road
data. After extracting reliable roads in the first stage using
strict parameters, topologic information is used to restrict
the further analysis so that relaxed parameters can be used
leading to a more complete verification and therefore to a
higher efficiency. (Zhang, 2004) employ color and stereo
data together with extensive modeling, comprising, e.g.,
context, occlusions, and shadows, making heavy, yet intel-
ligent use of the GIS data, leading to an impressive perfor-
mance.

Even though the above papers show the potential of using
GIS information, it is essential to keep in mind, that one
cannot rely absolutely on it, as it might be outdated and
unprecise and therefore lead to wrong conclusions. There
is always a trade-off to be made between accepting wrong,
because changed objects, and rejecting many correct, be-
cause unchanged objects. Therefore, even when using ad-
ditional information from GIS, in most cases approaches
are needed which model reality so deeply, that they can ex-
tract the objects at hand even under complex circumstances
as, e.g., (Zhang, 2004) demonstrates it.

2.3 Statistical Modeling

The deficits of a mainly deterministic modeling, for in-
stance based on semantical networks, e.g., (Niemann et
al., 1990), have been known for a long time. There have
been heuristic attempts by adding for instance believe val-
ues, but more sound ways of including statistical modeling
have been used only recently, for instance Bayesian net-
works in (Growe et al., 2000) or (Kim and Nevatia, 2003).
The work on dynamic Bayesian networks (Kulschewski,
1999) has been interesting in terms of modeling objects
and their relations. Though, manually generated ideal data
were used, and thus the feasibility of the approach to cope
with real world, noisy, and unreliable data is hard to judge.

Until recently, semantical modeling was also lacking the
capability to visualize the actual contents of the knowledge
modeled. The quality of the modeling, e.g., by a semanti-
cal network, could only be judged by looking at interpre-
tation results and it was not clear how much a component
contributed to the results.

By the advent of reversible Jump Markov Chain Monte
Carlo (RJMCMC) (Green, 1995) there is a means for sta-
tistical modeling which can also be used for simulation.
The jumps in RJMCMC make it possible not only to use
distributions for the parameters of objects and relations,
but also to introduce new objects or relations and to delete
them. The latter is the reason why the jumps are called
reversible: For every jump generating a new object there
needs to exist a backward jump, allowing to eliminate the
object. Because of this, RJMCMC has the following out-
standing features:

• The modeling is extended in a sound way to deal with
the uncertainty of objects as well as their relations
even when it is not known beforehand, which and how
many objects exist.

• It is possible to sample into the distribution allowing
to simulate objects and their relations according to the
model. Thus, one can check from the outcome, if
the given model really describes what it is supposed
to describe. I.e., in stark contrast to most modeling
schemes, one can check the model without analyzing
given data.

That the ideas of RJMCMC are practically feasible and
meaningful was shown by work on facade interpretation
(Dick et al., 2002), road extraction (Stoica et al., 2004),
and vegetation extraction (Andersen et al., 2002). The
former two demonstrate that one can produce realistically
looking facades or roads, respectively, by starting from a
few basic primitives, such as a window and a door, or a
road piece, and then sampling into the distribution. For the
roads and the vegetation, sampling is done for the extrac-
tion in conjuction with simulated annealing, avoiding local
minima, but also resulting in a very high complexity of the
approach.

Another issue of statistical modeling is self-diagnosis.
(Förstner, 1996) introduced the “traffic light” paradigm.
Results which are correct (green) are distinguished from
certainly incorrect results (red) and results, which might be
correct, but should be checked (yellow). The idea is that a
calling routine will get back information if it can rely on
a result (green), if the result might be correct (yellow), or
if there was no meaningful result (red). Self-diagnosis is
based on statistical modeling. The more one knows about
the deterministic and stochastic structure of the problem,
the more reliable self-diagnosis will be. (Gerke et al.,
2004) have built their approach for road verification on top
of the traffic light paradigm.

2.4 Geometry and Statistics

An area of statistics linked to problems often geometri-
cal in nature is concerned with the large number of blun-
ders in the data, the vision community always has to deal
with, especially when using matching algorithms. This has
sparked the development of techniques which approach the
problem differently from how most photogrammetrists do
this. Especially popular is the random sample consensus,
or short RANSAC approach of (Fischler and Bolles, 1981)
and its variants such as the geometric information crite-
rion (GRIC) (Torr, 1997). The basic idea is to take a larger
number of random samples with the minimum number of
observations necessary to solve the problem. All these
samples lead to solutions which are then checked against
the rest of the observations. Finally, the solution is taken,
which is in correspondence with the largest portion of ob-
servations. This technique is extremely useful for applica-
tions such as the estimation of the epipolar geometry (Hart-
ley and Zisserman, 2000), for aero-triangulation (Schmidt



and Brand, 2003), or to find planes in a large number of
3D points (Bauer et al., 2003).

Computer vision has understood many of the geometric
problems of the imaging process over the last decade very
well. Early results are summarized in (Faugeras, 1993),
while the state of the art is given by (Hartley and Zis-
serman, 2000, Faugeras and Luong, 2001). In the last
years a focus has been on geometric algebras. An impor-
tant ingredient is Grassman-Cayley Algebra as proposed
by (Faugeras and Papadopoulo, 1997). Recently, (Rosen-
hahn and Sommer, 2002) have extended the scope of geo-
metric modeling significantly, allowing, e.g., to deal with
articulated objects linearly. (Heuel, 2001) has presented
work where traditional statistics is linked with geometric
algebras making it possible to propagate stochastic infor-
mation.

2.5 Learning

From a practical, but also from a theoretical point of view
automatic learning, i.e., the automatic generation of mod-
els from given data or even experience, is of big impor-
tance as it avoids the tedious manual process of model
generation. The latter is one of the most important rea-
sons, why an automated extraction of objects with a wider
variety of appearances does not seem to be feasible yet.

For learning one has to distinguish between very different
degrees ranging from the mere adaptation of parameters to
the fully automatic generation of models for objects such
as buildings including their parts, their structure, and their
geometry, as, e.g., in (Englert, 1998).

Unfortunately, learning is, after standard textbooks have
been introduced a long while ago (Michalski et al., 1984,
Michalski et al., 1986), still not advanced enough to deal
well with real world problems as complex as object extrac-
tion. Yet, this is not a surprise as object extraction is a
large part of the overall vision problem which is even af-
ter a lot of research by extremely skilled humans not really
understood.

Also for learning statistics might come to help. Hid-
den Markov Models (HMM) have made possible a break-
through in the interpretation of written and spoken text.
Instead of describing words and their relations structurally
(grammar) and semantically, it was found for many ap-
plications enough just to analyze the statistical dependen-
cies of very few neighboring words based on HMM (Ney,
1999). Similar ideas have been introduced also into im-
age processing, but the much higher complexity makes
progress much more difficult.

Finally, concerning another popular means also used for
learning, namely artificial neural networks, we refer to the
discussion in a recent survey on statistical pattern recog-
nition (Jain et al., 2000). There it is stated, that “many
concepts in neural networks, which were inspired by bio-
logical neural networks, can be directly treated in a prin-
cipled way in statistical pattern recognition.” On the other

hand, it is noted that “neural networks, do offer several ad-
vantages such as, unified approaches for feature extraction
and classification and flexible procedures for finding good,
moderately nonlinear solutions.”

3 TESTING

A key factor for the practical use of a technique in many
areas is thorough testing. Yet, this is only useful after hav-
ing obtained a profound theoretical understanding of the
problem. There are different issues, where testing can help
significantly:

• It becomes evident what the best approaches can
achieve and therefore, what the state of the art is.

• The strengths but also the weaknesses of compet-
ing approaches become clearly visible and the whole
area can flourish by focusing on promising directions,
abandoning less promising ones, and by identifying
unexplored territory.

• Testing usually gives a large push to all people in-
volved. By trying to outperform other approaches one
learns much about the possibilities but also the limits
of one’s owns approach.

Unfortunately, it is not always easy to define what to ac-
tually test. This is most critical for practical issues, such
as the effectiveness of semi-automated approaches com-
pared to the manual approaches. It depends on many fac-
tors some of them needing lots of efforts for optimization
if the real potential of an approach is to be obtained. But
also for automated approaches there is a large number of
factors which influence the test and by this also which ap-
proaches perform well and which not. For roads, e.g., the
preferred characteristics of the terrain plays an important
role while for buildings, the situation is even worse. There,
approaches exist, assuming at least 4-fold image overlap,
while others rely on laser-scanner data only, both possibly
modeling different types of buildings, e.g., flat roofs versus
polyhedral objects.

Our experience shows that for many applications two basic
measures are suitable for testing, namely “correctness” and
“completeness” (Heipke et al., 1997). Other people use
different names for these concepts, but what we mean is the
percentage of extracted object information which can be
matched to given ground truth data (correctness), as well
as the percentage of ground truth data that can be matched
to the extracted information (completeness). As one can
see, the matching of the object information to ground truth
data is an important issue. Road axes can be seen to match
as long as they are inside the actual area of the road or in-
side a buffer generated from specifications for the precision
of the acquisition. For buildings it is more complicated as
one can match ground truth data and extracted information
in 2D and in 3D. Usually, the computation is done in image
space (pixels) or 3D voxel space (Shufelt, 1999). To sep-
arate orientation errors from object extraction errors, in-
dividual objects can be optimally transformed before this



computation by means of matching. Depending on the ap-
plication, another possibility is to consider a valid match
to be achieved as long as ground truth data and extracted
object information have any overlap.

For approaches relevant for DPW, testing must always be
done against real world data, and not against simulated
data. The question if ground truth data should be gathered
from the 3D reality, or if ground truth data should be man-
ually digitized from the image used also for the automated
interpretation is from our point easy to answer: If the goal
is to evaluate the whole production chain, the former is ap-
propriate. In many cases one just wants to know how much
worse than a human the automated system is. Then, bench-
marking against given manually digitized ground truth data
is the way to go. To avoid a bias from an operator, one can
match against the results of more than one operator such as
in (Martin et al., 2004).

Together with Emmanuel Baltsavias of ETH Zurich
we have recently set up a test on “Automated ex-
traction, refinement, and update of road databases
from imagery and other data” (http://www.bauv.unibw
muenchen.de/institute/inst10/eurosdr) under the umbrella
of EuroSDR (European spatial data research; formerly
known as OEEPE). On one hand, we want to learn the data
specification needs of important data producers, mainly na-
tional mapping agencies (NMA) and their customers. On
the other hand, existing semi- and fully-automated systems
for road extraction will be evaluated based on high quality
image data against given, manually digitized ground truth
data.

4 USER INTERACTION

To limit the scope, we do not deal with multi-spectral
classification, which is well understood and for which
powerful commercial products such as ERDAS IMAGINE
from Leica Geosystems or ENVI from Research Systems
Inc. are available. Closer to our intentions is eCognition of
Definiens GmbH as it deals with objects, not pixels. Be-
cause it aims more at similar applications as the former two
products assuming larger ground pixel sizes than DPW, we
will not treat it here either.

For general purpose DPW as well as GIS, automated func-
tionality for object extraction is very limited. According to
(Baltsavias, 2004), the only more widely known systems
actually useful for practice because offering the most au-
tomation are the systems InJect of INPHO GmbH (Gülch
et al., 1999) and CC-Modeler of CyberCity AG (Grün and
Wang, 2001). Though, both are limited with this respect,
that they are dedicated to building extraction only.

(Baltsavias, 2004) points out, that it is clear why full au-
tomation is not feasible today, but asks “why are important-
for-the-practice semi-automated approaches so rare?” We
will give some ideas why this is the case, but we will also
point on ways how to change it.

Basically, as pointed out above, automated object extrac-
tion is extremely difficult and therefore error-prone. Only

a limited number of the approaches developed over the
last two decades has been developed so far that they work
for a larger number of data sets and are ready for testing
(cf. Section 3). But even if there was a larger number
of approaches with reasonable performance in real world
tests, there is another issue which makes the preparation of
an approach for practice even more problematic than the
usual 1 : 10 : 100 relation between proof of concept : sta-
ble prototype : product level: This is the dependence of the
user interaction on the performance level and the strategy
of object extraction in the system.

This means, that to build a highly effective interactive sys-
tem, the interaction needs to be tailored to a fixed level of
automation. If the level of automation improves, it is not
too unlikely, that the interaction of the system will have
to be considerably different, implying larger changes for
the software, but also possibly for the production chains of
the customers. Seen the other way around more positively,
(Baltsavias, 2004) recommends to design the control in-
cluding human interaction to build systems that are useful
for practice.

A reaction to the difficulties of fully-automated object ex-
traction is a restriction to problems where the computer
directly assists the user in real-time. This is the case for
InJect but only partly for CC-Modeler. For roads, this
idea has been promoted early, e.g., by (Grün and Li, 1994,
Heipke et al., 1994), but nowadays it seems that roads are,
e.g., in open rural areas, so easy to extract, that it is a good
idea to do it fully-automated. On the other hand, in urban
areas, but also in shadows or at complex crossings, they are
so difficult to extract, that only fully-automated non-real-
time-processing can deal with them today.

For practically relevant systems, we believe, that the hu-
man has to be in the loop. We also think that in many cases
it is beneficial to use one or two automated off-line pro-
cesses, probably preceded or interrupted, but in any case
followed by manual interaction. The generation of work-
flows defining the offline-phases, but also very importantly
the information to be given to the automated procedure by
a user interaction preceding it, is essential for the overall
performance.

There are several steps needed to develop a system use-
ful for practice, to be embedded into a DPW. The basis
are thorough theoretical understanding and testing. For an
efficient user interaction, the key is an appropriate trade-
off between completeness and correctness / reliability. It
is usually more costly in terms of user interaction time to
eliminate complex failures. Therefore, it is a good idea, to
use as a basis for human interaction a version where the
completeness is still high, but where very few complicated
errors, especially in terms of topology occur.

A related issue is self-diagnosis. In this context it is not the
same as in statistical modeling as it makes use of additional
knowledge about the strengths and weaknesses of human
interaction. For a semi-automated system it is extremely
important that the correct objects (green) are actually cor-
rect with a very high probability, so that they do not have to



be checked any more. For the “yellow” results, the situa-
tion is more complicated. It should be avoided to offer the
operator a lot of objects, which are plainly wrong. Also
results with complex topologic errors, which might take
more time to heal than to acquire the whole feature manu-
ally, should not be presented to the operator. Helpful might
be, though, to offer a number of choices, one of which is
with relatively high probability correct.

An efficient semi-automated system should comprise real-
time tools, which help to improve the results obtained fully
automatically. The best way, yet needing also the most ef-
fort to implement and again depending on the current state
of automated systems, is to make use of the results of au-
tomated extraction.

Finally, testing, this time on a very practical level, comes
into play again. Only by customizing the system for spe-
cific customers working on real data will make clear the
strengths but also weaknesses of the whole complex chain
of (semi-) automated object extraction approaches. The
latter includes models and strategies as well as their in-
tegration with suitable work-flows and real-time tools for
user interaction. The overall goals are maximal efficiency
and, often even more important, minimal cost.

Because of the large costs, the high risks, the dependence
on in-depth knowledge, as well as on specific production
environments to be tuned for, practical semi-automated ob-
ject extraction is and will be in many cases first developed
in cooperation of academia and data producers, especially
NMA. Only after reasonable success and especially versa-
tility will have been demonstrated, the main DPW devel-
opers will probably join in. Yet, even the above coopera-
tion of academia and NMA on a larger scale would be a
large achievement, because as (Baltsavias, 2004) notes, at
academia there is often a “lack of practical spirit.”

5 APPLICATION AREAS

The traditional market for DPW consists of the acquisi-
tion of 3D topographic information, such as buildings and
roads. DPW have included means to efficiently handle
high resolution satellite imagery together with aerial im-
agery, but also multi- and hyperspectral as well as laser-
scanner data. Yet, to our knowledge there is not a strong
tendency to integrate also tools to handle terrestrial im-
agery or close-range laser-scanner data. We think that this
is a deficit and we will explain why as well as which addi-
tional application areas we see especially concerning veg-
etation in the remainder of this section.

That close range data is not considered in DPW is in con-
trast to a recent issue of the IEEE Journal of Computer
Graphics and Applications focusing on 3D reconstruction
and visualization (Ribarsky and Rushmeier, 2003). The
paper starts with the statement “We have entered an era
where the acquisition of 3D data is ubiquitous, continuous,
and massive.” Highly detailed 3D city models from high
resolution terrestrial images, dense video sequences, and

terrestrial laser-scanner data are seen to be useful for vir-
tual television, tourism, but also mission rehearsal for fire
fighting or security and rescue scenarios.

Even though there is one photogrammetric paper (Rotten-
steiner, 2003) on building extraction from laser-scanner
data also in conjunction with aerial imagery in the above
IEEE journal issue, the survey on large-scale urban model-
ing (Hu et al., 2003) shows, that the awareness of the work
done in photogrammetry is not too big. As usual, this can
be only changed by submitting papers in this area, but also
by going to the particular conferences.

Recently, there is a large interest into producing highly de-
tailed 3D city models. One of the first and largest projects
in this area is the city-scanning project at MIT (Teller,
1999). Two of the most advanced approaches using im-
ages only are (Dick et al., 2002) and (Werner and Zisser-
man, 2002). (Dick et al., 2002) use advanced statistical
modeling in the form of RJMCMC (cf. Section 2.3) allow-
ing for the reconstruction of complete models from partial
samples of the object. (Werner and Zisserman, 2002) show
what can be achieved assuming that an object is made up
of planes (facades or roofs), which are partially vertically
oriented, have some parallel structures in front of them
(columns) or behind them (windows, doors), and which
can be symmetrical (roofs of dormer window).

Terrestrial laser-scanners can be used for very complex his-
toric sites (Allen et al., 2003). Other approaches combine
terrestrial and aerial imagery as well as laser-scanner data
to produce 3D models with a good fidelity seen from the
top but also from the ground (Früh and Zakhor, 2003).

An area where not too much research has been done is the
extraction of vegetation outside forests, especially in cities.
While it is useful information for city administrations, it is
extremely important for the generation of realistic visual-
izations. (Bacher and Mayer, 2000) use the shadow pro-
jection of the tree in an aerial image together with the fact,
that the vertical trunk of the tree points to the nadir point.
In (Andersen et al., 2002) RJMCMC is used to find trees in
aerial laser-scanner DSM employing knowledge about the
sensing process as well as the spatial interaction of indi-
vidual trees modeled by a Markov process. (Straub, 2003)
model the shape of trees to extract them from aerial laser-
scanner DSM possibly together with reflection properties
in the infrared.

Even less work on vegetation extraction has been done in
the close range. In (Shlyakhter et al., 2001) the hull of
the tree is determined from its silhouette in several im-
ages. The 3D medial axis is computed for the hull and
from it a representation based on an L-system (Mĕch and
Prusinkiewicz, 1996) is derived. By this means one is able
to derive a tree model with which one cannot only deal
with occlusions, but which can also be animated, e.g., to
simulate wind, and which can be adapted to the seasons.
And, the model corresponds closely to the actual tree at
the given position.



6 CONCLUSIONS

We have presented a number of issues we think are impor-
tant to make automated object extraction a part of DPW.
These are naturally the models and strategies of the auto-
mated processes. To improve them, a thorough testing is
needed, promoting also competition between approaches,
making clear what way should be taken. Most importantly,
though, one should start, or at least start to think about how,
to integrate the semi-automated systems into DPW to build
efficient systems for practice. Finally, we have shown that
automated object extraction offers new possibilities such
as highly-detailed 3D models in cities including new ob-
jects such as vegetation, which can be animated, e.g., by
wind.
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