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ABSTRACT: 
 
The increasing demand for a fast, efficient and low cost algorithm for extraction of 3D urban features was the motive behind this 
work. In this paper we present a new technique to reconstruct buildings with detailed roofs in urban areas using airborne laser 
scanning altimetry data. We have tried to show that dense airborne laser scanning data is sufficient for detailed 3D reconstruction of 
urban features such as buildings. This concept is based on local statistical inferences. Least squares moving surface analysis with 
variable window sizes and shapes of laser-derived points was the key in determining building roof details. The consistency of the 
data with those surfaces determines how they will be modelled. After obtaining the roof facet orientation and approximate location, 
the roof boundary will be extracted by intersecting those facets. Consequently a complete wireframe of buildings is constructed. 
Results from an actual dense airborne laser data set collected over the Purdue campus are presented in the paper. 
 
 

1. INTRODUCTION 

3D city models are the final outcome of many photogrammetric 
applications. In this paper, the approach of reconstructing 3D 
building descriptions from LIDAR data is discussed. This 
approach can be applied to any DEM data regardless of its 
source. However, DEM accuracy plays a major role in defining 
the performance of this approach  
 
With the availability of many sources of data such as 
conventional imagery, SAR imaging, IFSAR DEMs, and 
LIDAR DEMs, there are many avenues open to derive terrain 
and feature data in urban areas. Through much research, it has 
been shown that laserscanning data has the potential to support 
3D feature extraction, especially if combined with other types of 
data such as 2D GIS ground plans (Maas, 1999; Brenner and 
Haala, 1999; Weidner and Förstner, 1995). Despite the fact that 
LIDAR data is attractive in terms of cost per high quality data 
point, the quantity of the data makes a challenge for storage and 
display (Vosselman, 1999). Acquiring 3D object descriptions 
from such data is a difficult problem and many approaches have 
been tried to solve it. Several of them have succeeded with 
some limitations. The principle idea of this research is to detect 
and reconstruct buildings form laser altimetry data exclusively.  
 
In earlier work, (Alharthy and Bethel, 2002), we presented an 
algorithm to detect building footprints using LIDAR data. The 
building detection procedure described includes detecting and 
excluding other natural features such as trees. Many 
segmentation techniques such as thresholding determined by 
histogram analysis, the use of 2D GIS data, and multispectral 
inference have been tested together with LIDAR heights to 
determine building outlines (Brunn and Weidner, 1997). Using 
the second strategy, 2D GIS ground maps give the building 
footprints.  
 
After obtaining building outlines itself, the raw data points in 
each building polygon will be counted and labeled accordingly. 
Processing point sets in each polygon will provide the necessary 
characteristics to rebuild the roof surface.  In addition a 
refinement step to get precise roof details is presented. This step 
utilizes the roof planar parameters to partition roof surfaces into 

homogenous roof facets. The refinement procedure for roof 
segments starts with detecting homogenous roof surfaces and 
segmenting them based on their geometrical surface parameters. 
Roof outlines are extracted and roof planar facet breaklines are 
then determined and refined. After connecting extracted roof 
planes, a complete wireframe of processed buildings will be 
formed and a 3D view of them will be shown. 
 
2. ESTIMATION OF GEOMETRIC PARAMETERS 

FOR MOVING SURFACES 

Several algorithms have been suggested to extract roof faces 
using range data (Brenner, 2000; Brenner and Haala, 1999; 
Brunn and Weidner, 1997; Brunn, 2001; Vosselman, 1999; and 
many others). Surface normal segmentation is one of the major 
ones. However normal vectors tend to be very noisy due to the 
variability in the LIDAR points. In this work, a new technique 
to reconstruct buildings is presented. Least squares moving 
surface analysis with variable window sizes and shapes of laser-
derived points was the key in determining building roof details. 
The consistency of the data with those surfaces determines how 
they will be modelled. 
 
2.1 Least squares moving surfaces  

A grid with a designed spacing (one meter is used with the test 
data here) is overlaid on the irregular LIDAR points in each 
building outline as shown in figure 1, where the small green 
crosses represent the irregular scattered LIDAR points. Then a 
window is moved through the grid cell by cell in both x and y 
directions. In each step, the LIDAR points are counted inside 
the window and if they exceed a certain limit in number, a plane 
fitting procedure is performed. The reweighted least squares 
adjustment procedure is used to estimate a unique set of plane 
parameters for the fitted points (Mikhail and Ackermann, 1976). 
In addition to the basic plane parameters, slope in x, slope in y, 
and height intercept, the RMSE of the fitted data over the given 
window is determined as well, in order to evaluate the 
soundness of the recovered parameters. Those parameters will 
be recorded at the center cell “pixel” of the window in order to 
use them in roof facet segmentation and reconstruction. 
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Figure 1: Moving windows for plane fitting over the irregular 

LIDAR points. 
 
2.2 Key factors in designing moving surfaces algorithm 

The grid spacing and fitting window size are two critical factors 
in this procedure. In case the data density is high, the grid 
spacing is based on the desired detail level and accuracy of the 
extracted roof facets. The reason is that grid spacing “cell size” 
defines the minimum precision that could be reached in 
breaklines between roof segments. However small cell size does 
not always yield fine details, especially if the data density is 
low. In addition to that, the smaller the cell size the higher the 
cost of computation. So in general, the data density sets the 
effective minimum limit for the cell size while the desired level 
of detail and accuracy defines the maximum limit. In this work 
and according to the available data with a density of 
approximately one spot height per square meter, the grid 
spacing “cell size” was one meter in both x and y directions. 
This spacing seems to be effective even though it is somewhat 
large. However, the main goal of this work is to test the 
suitability of LIDAR data for roof details reconstruction rather 
than their positional accuracy. 
 
The other key factor is the moving window size used in plane 
fitting. The main factor that influences the window size is the 
data density since it controls the number of points inside each 
window. The window should be large enough to contain enough 
point observations to reliably estimate a unique set of plane 
parameters through the reweighted least squares adjustment. 
The number of points should exceed the minimum requirement 
in order to have redundancy in the adjustment. The redundancy 
helps to accommedate the inconsistency between data points 
and strengthen the soundness of the estimated parameters. In 
general the denser the data the smaller is window that can be 
used since there will be enough data to estimate the plane 
parameters. 
 
During the plane fitting procedure, the estimated plane 
parameters are recorded at the center of the moving window. 
However, when gaps occur in data which consequently means 
not enough points fall within that window, the fitting procedure 
will not be applied and zeros for the parameters (slope in x, 
slope in y, and height intercept) will be assigned to that window 
center. In addition to that, a high RMSE will be assigned since 
the parameters are not valid. This high value is utilized in the 
best fitting search by giving an indication of bad fitting on that 

cell. After completing the plane fitting procedure and recording 
results, a best fitting algorithm is applied. In general, this 
algorithm minimizes the fitting error in each cell by assigning it 
to the plane which has the minimum RMSE among all planes 
containing this point (Alharthy and Bethel, 2002). Results of 
this procedure are used in the segmentation as discussed below.  
 
 
3. SEGMENTATION OF PLANAR ROOF FACETS 

BASED ON THE ESTIMATED GEOMETRIC 
SURFACE PARAMETERS 

In this research, the roof planar segments were extracted 
utilizing the estimated geometrical plane parameters resulting 
from the previous step. Starting from a small set of “seed” cells, 
region growing by a cell (pixel) aggregation technique was used 
to construct large roof facets. Steps of this procedure are 
discussed below. 
 
3.1 Region growing segmentation by cell aggregation  

Region growing is an approach for image segmentation, in 
which neighboring pixels are examined and added to a region if 
they have common characteristics. Those characteristics or 
parameters form the membership criteria (descriptors), based on 
which the decision will be made to include or exclude the cell. 
The region growing technique starts from defined seeds, which 
are known to be the center of the class (roof segment) and 
consists of a group of cells or “pixels” which are strongly 
homogenous. Those cells carry almost the same parameter 
values and the cost function between them is small. The key 
factor in this algorithm is the design of the membership criteria 
“cost function” and its computation. The way this technique is 
used in this work is similar to typical clustering or classification 
techniques, in which pixels are given the same label in a 
parameter space based on some similarity measures. However 
connectivity is required between pixels here unlike in general 
clustering algorithms. In this work starting seeds were defined 
based on the resulting RMSE from the plane fitting procedure. 
Low RMSE means excellent fitting and consequently good 
consistency among cells. The membership criteria and cost 
function used in aggregation are discussed below. However 
prior to that some preprocessing steps were performed on the 
estimated parameters that form the parameter space to fit the 
needs of the application. 
 
3.1.1  Preprocessing steps to form the segmentation search 
space 
 

There were three basic independent parameters (slope in x, 
slope in y, and height intercept) assigned at each cell inside 
each processed building polygon. Based on roof shape and 
direction complexity, one, two, or the three parameters could be 
used to form the parameter space and define the membership 
criteria for the region growing technique. As a preprocessing 
step, parameter magnitude range consistency was imposed over 
those parameters in order to make the parameter space uniform. 
Based on the knowledge of building roof facets, typical slope in 
both directions (x, y) does not exceed the value of one. 
Accordingly, the slope values were set to be with a range of ±1. 
Values out of this range are discarded since they are not 
realistic. The slope might have a high response during the 
fitting procedure due to the fact that the processed window may 
contain data points that lie in between two planar surfaces and 
do not belong to any. For example, at two discontinuous 
adjacent roofs with different heights, the laser beam might hit 
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the wall between those two roofs. In such circumstances, the 
best fitting procedure will assign those points to one of the 
adjacent roofs even though in reality they do not belong to any 
which would result in high slope values. 
 
Moreover, the height intercept also needs to have range limits 
as the other two factors. This scaling step is to make the 
parameter space homogenous. As in the slope parameters, a few 
spikes in the estimated height response were recorded. Unlike 
the slope case, limits on the height intercept cannot be predicted 
since roof height varies within the same building with a wide 
range. First a histogram of the height intercept of the processed 
area was constructed. Then values out of the range ± k� (k can 
take any value from 0 to 2 based on the shape of the histogram 
and the outliers values) will be discarded since they don’t seem 
to be valid and they are a result of points on edges as discussed 
above. This step centers the mean value of the parameter in the 
new range and reforms the spread of the data. Then the resulting 
values are scaled down to have the range from –1 to +1 as in the 
other two parameters. The trimming and scaling procedure are 
shown in equation (1) and (2). Figure 2 shows color-coded 
image of H of the same building before and after trimming and 
scaling. 
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where  H : height intercept 
 Ht : trimmed value of H 
 Hts : trimmed-scaled value of H 
 � : mean value of H inside a building polygon  
 � : standard deviation of H inside a building polygon  
 
 

      
Figure 2: Height intercept color-coded image before and after 

the trimming and rescaling procedure. 
 

3.1.2 Membership criteria (cost function) 
 

The membership criterion between two cells to define whether 
they belong to the same roof segment or not is the Euclidean 
distance in the parameter space between the two points. If the 
cost function between the center of the seed (cell i) and the 
processed cell (cell j) is less than a defined threshold of the 
membership criteria, then they belong to the same roof segment. 
However, at the beginning as is known in the region growing 
segmentation, the candidate cell or pixel should share an 
adjacent boundary with the growing region. 

 
3.1.3 2D parameter space 
 

For simple gable roofs, slope in x and slope in y can form a 
satisfactory parameter space for the roof features. This is due to 
the fact that gable roof pair segments have well defined reverse 
slopes as shown in figure 3(a). The 2D search space of the same 
building is shown in figure 3(b) where its first axis X is the 
slope in x and the second axis Y is the slope in y.  Figure 3(c) 
shows the raw result of the region growing segmentation 
procedure and the labeled roof segments in the parameter space. 
As shown in the search space, some pixels are not labeled (red 
crosses, figure 3(c)) since they don’t belong to any class based 
on their parameters. However, those cells will be assigned to the 
nearest roof segment in term of position in the object space not 
in the search space as shown in figure 3(d). However, in a 
complex roof structure, these two parameters are not always 
capable of discriminating between all of the segments. Another 
parameter may be added as in the following section. 
 
3.1.4 3D parameter space 
 

In more complex roof structures, a third parameter is desirable 
to add to the parameter space to increase its information content 
and consequently detect a more complete and precise set of roof 
segments. Slope in x, slope in y, and height intercept form the 
3D parameter space and shape the membership criteria. This 
dimensional increment improves the seprablity between classes 
(roof segments regions) in the parameter space, which enhances 
the possibility to detect roof segments with same slope but with 
different heights. Figure 4 shows the procedure and results of 
the roof facet segmentation utilizing the estimated surface 
parameters resulting from the least squares moving surfaces. As 
it shown clearly below, the third vector (height intercept) 
enables the system to detect the four elevated rectangular 
structures in the lower part of the building; while in the 2D 
parameter space (slopes in x and y) the system was not able to 
detect them. 
 

    
(a)                                             (b) 

 

  
(c)                                               (d) 

Figure 3: (a) Estimated slope in y for a simple gable roof 
building, (b) 2D search space based on slopes in 
both x and y directions, (c) Roof classes results 
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without gap filling, (d) Roof classes results after gap 
filling and refinement. 

 

      
           (a) Aerial image                             (b) Slope in x 

 

      
(c) Slope in y                           (d) Height intercept 

 

     
(e) Preliminary Clustering result    (f) Refined clustering result 
 

       
(e) Raw segmentation results    (f) Refined segmentation result 
 

Figure 4: Roof facets clustering in 3D search space. 
 

4. EXTRACTION OF PLANE-ROOF POLYGONS 

In this section, the procedure of translating the irregular roof 
facet regions to typical vectorized polygons is discussed. This 
procedure contains many steps to get the desired 3D polygons 
of the roof. Extracted roof regions will be transferred to 2D 
polygons first through raster to vector conversion that includes 
line extraction, connecting, joining, trimming, and segment 
adjacency determination. The geometrical plane-roof 
parameters, inclination and height, are then estimated based on 
the irregular LIDAR points inside each polygon. This enables 
the configuration of 3D roof facet polygons. 
 

4.1 Extraction of plane-roof regions outlines 

As a result of the region growing segmentation, roof facet 
regions were segmented and labeled as shown in the above 
section. 
 

4.1.1 Simple roof structure 
 

Simple roof structures mean here that the breakline between 
roof segments is uncomplicated and is parallel to one of the two 
dominant directions of the building footprint. In such buildings, 
the polygon extraction algorithm that was discussed in 
(Alharthy and Bethel, 2002) is applied to obtain roof segments 
outlines. The only constraint to this algorithm is that it can only 
extract lines in the two dominant directions of the building. 
However, the algorithm was very useful since all intermediate 
steps such as line extraction, connecting, trimming, and polygon 
formation, are embeded in it. And its main advantage and 
strength is the ability to preserve the squaring property of the 
extracted polygons. In general, the performance of this 
algorithm was excellent. Results of this step which show the 
extracted polygons (black lines) overlaid on the segmented roof 
regions are shown in figure 5. 

      
Figure 5: Extracted roof segments polygons 

 
4.1.2 Complex roof structure 
 

In complex roofs, breaklines between roof segments are not 
limited to be parallel to the dominant directions of a building, 
instead they might take any direction and roof segments might 
be in any shape. Based on that, the previous algorithm of 
polygon extraction would not work here. So, a modified 
prismatic algorithm was used to refine the segmentation results. 
A data driven model was used to connect and generalize these 
roof planar surfaces in order to extract standard roof polygons. 
 
The approach is a modified version of an approach that was 
presented in a report in 1995 by U. Weidner, Institute of 
Photogrammetry, Bonn University, Germany. The approach 
treats each region segment individually. It starts with the 
boundary points by sorting them in clockwise mode starting 
from the upper left point as shown in figure 6(a). In addition to 
its position (x,y), each region boundary point will be given two 
labels, the first one tells to which roof segment this point 
belongs, and the second label tells its order among the boundary 
points of the segment. Now points will be considered as the 
polygon vertices that make polygons in vector format. In order 
to minimize the number of vertices, unnecessary points will be 
deleted. Then the procedure of eliminating discretization noise 
continues by testing the significance of each point in shaping 
the polygon. First, in order to keep only significant points and 
delete points on straight lines, all points with altitude close to 
zero will be eliminated. In previous similar approaches in 
(Douglas and Peucker, 1973; Weidner, 1995), the computed 
altitude was used directly as a criterion of point significance. 
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Consequently, points will be eliminated from the point set if 
their correspondening altitude is less than a fixed threshold. 
However, in order to suit the needs for standard roof polygons 
in this work, a modification was introduced to this criterion. 
The computed altitude was divided by the base of the processed 
triangle. This increases the probability of keeping corner points 
and minimizes the discretization noise resulting from the 
imperfection of region segmentation since the point elimination 
procedure is applied in a recursive way. The recursive mode 
comes from the fact that the elimination will start gradually 
from zero to the fixed threshold value. This prevents damaging 
the start point of elimination. If the elimination starts with high 
threshold directly, the start part and the arc after it will be 
damaged severely. Extracted polygons from the same example 
shown in figure 6 and 7 where they are overlaid over the roof 
segmentation results. 

      
(a) Ordered border points.          (b) Extracted roof polygons 

Figure 6: Complex roof polygons extraction. 
 
As shown in figure 6(b), the extracted polygons are isolated and 
not connected even though they belong to the same building. 
First, vertices located within a close proximity to each other 
were grouped together and this procedure starts with the 
external vertices. Since the building footprint outer primitive 
was defined precisely, those outer primitives were enforced in 
the extracted polygons to define the building geometrical 
borders. Another step was taken to enforce the alignment 
between nodes which appear to be in a line. This was done by 
computing the distance between each node and the closest line 
and if this distance is less than the prefixed threshold, the node 
will be shifted to that line. For interior nearby vertices, they 
were grouped together at an average location of their position.  
 

       
Figure 7: Connected roof polygons. 

 
5. BUILDING WIREFRAMES 

For each roof polygon, the plane-roof geometrical parameters 
are estimated by applying a robust 3D regression method on the 
irregular LIDAR data points inside each polygon. The 
reweighted least squares adjustment is used to estimate those 
parameters (inclinations in both directions x and y and height 
intercept) through plane fitting. The fitting includes all points 
inside each polygon collectively instead of the moving surfaces, 
i.e. each and every point will contribute to the adjustment and 

consequently in estimating the parameters. The point in polygon 
technique was used to obtain all data points inside the polygon 
in order to use them in the estimation. Due to the existence of 
outliers in the data and miss-located LIDAR points (being 
assigned to a roof segment to which it does not belong), in 
addition to data uncertainty, the reweighted procedure during 
the adjustment was used to diminish their influence on the 
results since weights are assigned based on each observational 
error in each of the adjustment iteration. The estimation of the 
plane-roof geometrical parameters transfers their polygons from 
2D space to 3D space. 
After finalizing the 3D polygons of the roof segments, the 3D 
coordinates of their vertices are computed based on the 
geometrical parameters of each segment. As a final refinement 
step, vertex heights within small close proximity will be 
clustered in order to have typical closed building wireframes. A 
thick plane will be dropped through each building and heights 
in close proximity will be combined. Also to get the building 
elevations, the terrain height was obtained for each building 
from a LIDAR derived DTM. This enables the reconstruction of 
building side polygons. The final result is the constructed 
wireframe of buildings as shown in figure 8 and 9. 
 

 
Figure 8: Reconstructed 3D view of the building processed in 

figure 4. 

 
Figure 9: Reconstructed 3D view of the building processed in 

figure 7. 
 

6. DISCUSSION 

The aim of this work is to design a simple and fast method to 
reconstruct buildings in urban areas using LIDAR data only, 
which can be useful in many applications. We restricted the 
procedure to not require any other source of data other than the 
LIDAR heights. This was done intentionally to avoid the 
limitation of availability of other sources of information in some 
areas. Sources such as ground plans, imagery and multispectral 
data are not available for every desired site. The presented 
algorithm of detailed building extraction is very useful and 
effective in reconstructing large areas and it shows satisfactory 
results when the data was not so dense (one spot height per 
square meter only). More dense data might improve the 
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extraction procedure, especially the roof details. However, some 
difficulties were encountered and they are discussed below.  
 
Although the segmentation procedure shows successful results, 
it might fail to segment roof regions in some areas. Areas where 
the roof segment is not smooth or its size is not large enough to 
contain enough LIDAR points to estimate reliable geometrical 
parameters of the segment are some examples which might lead 
to inaccurate roof segments. Significant existence of small 
structures over a small roof region if added to the original noise 
in LIDAR data may cause the production of noisy parameters 
during the plane fitting procedure and consequently unreliable 
segmented regions. However, in such cases, increasing the data 
density might alleviate this obstacle to a certain extent. Another 
example of segmentation failure occurs where adjacent trees are 
extended over a large part of the roof facet that causes an 
occlusion where not all laser pulses can reach the building roof. 
This situation can be avoided by a good planning for the survey 
time where there are no leaves which would minimize 
occlusion. 
 
In roof polygon extraction, the performance of the simple and 
complex roof polygon extraction was successful especially with 
large roof regions as shown in figures above. Roof polygons 
were extracted and successfully connected. However, some 
nodes might be shifted from their true position during the 
joining and connecting of the roof planar segments especially 
with complex buildings. On the other hand, the performance of 
the planar roof connecting algorithm deteriorates in the 
presence of very small close by roof regions. This is due to the 
fact that polygon vertices may be so close to each other that 
they incorrectly forced to coincide during the connection 
procedure. 
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