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ABSTRACT: 
 
This paper explores a novel approach to the extraction of spatial objects from the laser-scanning data using an unsupervised 
clustering technique. The technique, namely self-organizing maps (SOM), creates a set of neurons following a training process based 
on the input point clouds with attributes of xyz coordinates and the return intensity of laser-scanning data. The set of neurons 
constitutes a two dimensional planar map, with which each neuron has best match points from an input point cloud with similar 
properties. Because of its high capacity in data clustering, outlier detection and visualization, SOM provides a powerful technique for 
the extraction of spatial objects from laser-scanning data. The approach is validated by a case study applied to a point cloud captured 
using a terrestrial laser-scanning device. 
  
 

1. INTRODUCTION 

Laser-scanning has been proven to be as an effective 3D data 
acquisition means for extracting spatial object models such as 
digital terrain models and building models and it has been 
widely used nowadays in geospatial information industry 
(Ackermanm 1999). However what the laser-scanning can 
acquire is a digital surface model, which captures all points 
from treetops, buildings and ground surface depending on the 
circumstance. For many practical applications, we often expect 
spatial object models such as digital terrain models (DTM) of 
the bare earth surface and 3D building models. To this end, 
various research efforts have been made over the past years in 
an attempt to processing the original captured datasets for the 
derivation of various spatial objects. For instance, in order to 
get a DTM of the bare earth surface, we have to remove those 
non-terrain and undesired points. 
 
This process of deriving spatial objects involves a range of 
operations such as filtering, interpolation, segmentation, 
classification, modelling and possible human interaction if no 
complete automatic way is reached (Tao and Hu 2001). Most 
filtering algorithms are targeted to the derivation of DTM, thus 
assumptions on the spatial distributions of points or geometric 
characteristics of a point relative to its neighbourhood in a 
terrain surface are used to construct various filtering strategies. 
For instance, through using TopScan, Petzold et al. (1999) used 
the lowest points found in a mowing window to create a rough 
terrain model. And it is used to filtering out those points higher 
than a given threshold. Then repeat the procedure several times 
with smaller sizes of moving window, and finally lead to a 
DTM. Kraus and Pfeifer (1998) used an averaging surface 
between terrain points and vegetation points to derive residuals 
of individual points, and then use the residuals to determine the 
weights of individuals to be selected or eliminated. Maas and 
Vosselman (1999) adopted approaches based on the ideas of 
moment invariants and the intersection of planar faces in 
triangulated points for extracting building models. The slope-
based filter (Vosselman 2000) considers an observed fact that a 
large height difference between two nearby points is unlikely to 

be caused by a steep slope in the terrain. These algorithms 
together with many others as reviewed in a recent comparison 
study (Sithole and Vosselman 2003) are proven to be effective 
and efficient in the studies, noting that they sometimes require 
interpolation of a point cloud into regular grid format in order 
to carry out the post-processing. When it is too complex to 
distinguish different object points, additional information is 
needed for classification or to achieve better results (e.g. Haala 
and Brenner 1999, McIntosh and Krupnik 2002). However, 
these filtering algorithms are all based one way or another on 
supervised classifications with prior knowledge or assumptions 
about different spatial objects. The supervised classification 
solutions show various constraints in the sense of efficiency, 
e.g. sensitivity to varying point densities, limited applicability 
for certain kinds of spatial objects or under a certain 
circumstance, and difficulty in dealing with stripe etc.  
 
The supervised classification solutions rely much on the human 
understanding or prior knowledge of the point geometric 
characteristics of spatial objects. However, it is very difficult in 
reality to get a true understanding, in particular when many 
objects are involved in a point cloud. It also depends on our 
specific task: e.g. to derive one single object or all objects with 
one point cloud. It is probably an easy task to derive one object 
rather than to distinguish all objects from an input point cloud. 
For the case of single object, we can investigate the point cloud 
and try to figure out the characteristics of its point distribution 
and further design an appropriate algorithm. Furthermore, many 
assumptions about the point characteristics do not always hold 
true, and they depend on the circumstances of laser-scanning. 
When come to the situation where all objects should be derived, 
we believe unsupervised clustering seems a more appropriate 
way.   
 
One of the major reasons why unsupervised methods are so 
important in the post-processing is that it is very difficult to 
assume some characteristics of a certain object. Instead of 
figuring out the assumption, unsupervised methods put these 
characteristics aside and adopt a simple assumption, i.e. same 
objects should have the same similarities in terms of their xyz 



 
 

coordinates and intensity. This assumption seems to apply to all 
kinds of circumstance. In this paper, we attempt to use self-
organizing maps (SOM) (Kohonen, 2001), an unsupervised 
clustering technique to make a classification of points with a 
point cloud. We adopt SOM training algorithm to group all 
points into different categories according to their xyz 
coordinates and intensity. Through the trained SOM – a two 
dimensional grid of neurons, the similarity of points can be 
interactively explored and visualized. Thus we are able to 
distinguish different points belonging to different objects. 
 
As a well-developed technique, SOM has found many 
applications in various fields such as data classification, pattern 
recognition, image analysis, and exploratory data analysis (for 
an overview, see Oja and Kaski 1999). In the domain of GIS, 
Openshaw and his colleagues have used the approach in spatial 

data analysis to carry out the classification of census data 
(Openshaw 1994, Openshaw et al. 1995). It has been applied to 
cartographic generalization for building typification (e.g. 
Højholt 1995), street selection (Jiang and Harrie 2004), and line 
simplification (Jiang and Nakos 2003). All these studies rely on 
the SOM’s ability in data clustering and pattern recognition. 
This paper will look at how it can be used for filtering laser-
scanning data in deriving spatial object models from laser-
scanning datasets. The remainder of this paper is structured as 
follows. Section 2 introduces the basic principle and algorithm 
of SOM. Section 3 presents a SOM-based approach for deriving 
different clusters within a laser scanned point cloud. Section 4 
presents a case study for validation of the approach. Finally 
section 5 concludes the paper and points out future work. 
 

 
 

2. SELF-ORGANIZING MAP  

SOM is a well-developed neural network technique for data 
clustering and visualization. It can be used for projecting a large 
data set of a high dimension into a low dimension (usually one 
or two dimensions) while retaining the initial pattern of the 
dataset. That is, data samples that are close to each other in the 
input space are also close to each other on the low dimensional 
space. In this sense, SOM resembles a geographic map 
concerning the distribution of phenomena, in particular 
referring to first law of geography: everything is related to 
everything else, but near things are more related to each other 
(Tobler 1970). Herewith we provide a brief introduction to the 
SOM; readers are encouraged to refer to more complete 
descriptions in literature (e.g. Kohonen 2001).  
 
2.1 Basic principle 

Let’s represent a d-dimensional dataset as a set of input vectors 
of d dimensions, i.e. },...,{ 21 nxxxX = , where n is the size of 

the dataset or equally the number of input vectors. The SOM 
training algorithm involves essentially two processes, namely 
vector quantization and vector projection (Vesanto 1999). 
Vector quantization is to create a representative set of vectors, 
so called output vectors from the input vectors. Let’s denote the 
output vectors as },...,{ 21 kmmmM = with the same dimension as 

input vectors.  In general, vector quantization reduces the 
number of vectors, and this can be considered as a clustering 
process. The other process, vector projection, aims at projecting 
the k output vectors (in d-dimensional space) onto a regular 
tessellation (i.e., a SOM) of a lower dimension, where the 
regular tessellation consists of k neurons. In the vector 
projection each output vector is projected into a neuron where 
the projection is performed as such, “close” output vectors in d-
dimensional space will be projected onto neighbouring neurons 
in the SOM. This will ensure that the initial pattern of the input 
data will be present in the neurons.  
 
The two tasks are illustrated in figure 1, where both input and 
output vectors are represented as a table format with columns as 
dimension and rows as ID of vectors. Usually the number of 
input vectors is greater than that of output vectors, i.e. kn � , 
and the size of SOM is the same as that of output vectors 
without exception. In the figure, the SOM is represented by a 
transitional color scale, which implies that similar neurons are 
being together. It should be emphasized that for an intuitive 
explanation of the algorithm, we separate it as two tasks, which 
are actually combined together in SOM without being sense of 
one after another.   
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Figure 1: Illustration of SOM principle 
 
2.2 The algorithm 

The above two steps, vector quantization and vector projection, 
constitute the basis of the SOM algorithm. Vector quantization 
is performed as follows. First the output vectors are initialized 
randomly or linearly by some values for its variables. Then in 
the following training step, one sample vector x from the input 
vectors is randomly chosen and the distance between it and all 
the output vectors is calculated. The output vector that is closest 
to the input vector x is called the Best-Matching Unit (BMU), 
denoted by mc: 
 

||}{|||||| min i
i

c mxmx −=− ,          [1] 

where ||.||  is the distance measure. Second the BMU or 
winning neuron and other output vectors in its neighbourhood 
are updated to be closer to x in the input vector space. The 
update rule for the output vector i is: 
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where )(tx is a sample vector randomly taken from input 
vectors, mi(t) is the output vector for any neuron i within the 
neighbourhood Nc(t), and )(tα  and )(thci

 are the learning rate 

function and neighbourhood kernel function respectively. 
 
The algorithm can be described in a step-by-step fashion as 
follows.  
 
Step 1: Define input vectors in particular their multiple 
variables that determine an attribute space. 
 
The input vectors are likely to be in a table format as shown in 
Figure 1, where d variables determine a d-dimensional attribute 



 
 

space. Based on the input vectors space, an initialized SOM will 
be imposed for training process (c.f. step 3).  
 
Step 2: Define the size, dimensionality, and shape of a SOM to 
be used. 
 
The size is actually the number of neurons for a SOM. It can be 
determined arbitrarily, but one principle is that the size should 
be easy enough to detect the pattern or structure of SOM 
(Wilppu 1997). The number of neurons can be arranged in a 1- 
or 2-dimensional space (dimensionality). Three kinds of shape 
are allowed, i.e. sheet, cylinder or toroid, but usually sheet as 
default shape. 
 
Step 3: Initialize output vectors m randomly or linearly. 
 
At the initialisation step, each neuron is assigned randomly or 
linearly by some values for the d variables. Thus an initial SOM 
is imposed in the input vectors space for the following training 
process.  
 
Step 4: Define the parameters that control the training process 
involving map lattice, neighbourhood, and training rate 
functions. 
 
The number of neurons defined can be arranged in two different 
map lattices, namely hexagonal and rectangular lattices. 
However, hexagonal lattice is usually preferred because of 
better visual effect according to Kohonen (2001). 
Neighbourhood function has different formats such as ‘bubbs’, 
‘gaussian’, ‘cutgauss’ and ‘ep’ (see Vesanto et al. 2000, pp. 10), 
but gaussian function is usually adopted and it is defined by: 
 

22 2/)( tcid
ci eth σ−=               [3] 

 

where tσ is the neighbourhood radius at time t, cid is the 

distance between neurons c and i on the SOM grid. It should be 
noted that the size of the neighbourhood Nc(t) reduces slowly as 
a function of time, i.e. it starts with fairly large neighbourhoods 
and ends with small ones (see figure 2).  
 
The training rate function can be linear, exponential or inversely 
proportional to time t (see Vesanto et al. 2000, pp. 10). For 
instance, )/1001/()( 0 Ttt += αα is the option we adopted in the 

following case study, where T is the training length and 0α  is 

the initial learning rate. Usually the training length is divided 

into two periods: t1 for the initial coarse structuring period and 
t2 for the fine structuring period.  
 
Step 5:  Select one input vector x, and determine its Best-
Matching Unit (BMU) or winning neuron using equation [1]. 
 
Although Euclidian distance is usually used in equation [1], it 
could be various other measures concerning ‘nearness’ and 
‘similarity’. Depending on the form of data measurement, other 
measures are allowed as long as they represent the distance 
between input and output vectors.  
 
Step 6: Update the attributes of the winning neuron and all 
those neurons within the neighbourhood of the winning neuron, 
otherwise leave alone (c.f. equation [2]). 
 
Step 7: Repeat steps 5 to 6 for a very large number of times 
(training length) till a convergence is reached.  
 
The convergence is set like this, ∞→=+ tfortmtm ii ),()1( . In 

practice, the training length in epochs is determined by the size 
of SOM (k) and the size of training data (n), for instance for 
coarse period 

n
k

t
×= 4

1

.  

 
After the above steps, all output vectors are projected on to a 1- 
or 2-dimensional space, where each neuron corresponds to an 
output vector that is the representative of some input vectors. A 
2-dimensional hexagonal map lattice grid is shown in Figure 2 
where each hexagonal cell has a uniform neighbourhood.   
 

a ten-by-ten (one hundred neurons) lattice space

winner neuron
or BMU

neighbouring
neurons at t3

neighbouring
neurons at t2

neighbouring
neurons at t1

 
 
 
Figure 2: The characteristics of a 10x10 SOM (t1<t2<t3 with 

)(thci
 in equation 3) 

 
3. SOM-BASED CLUSTERING ANALYSIS FOR LASER 

SCANNED POINT CLOUDS 

 
3.1 Principle and overall procedure 

Laser scanned point clouds are usually defined in a four 
dimensional space with xyz coordinates and the return intensity. 
For a given point cloud, all points constitute input vectors 
which can be used for clustering analysis in order to distinguish 
different points belonging to different objects. Depending on 
the size of input cloud, an appropriate SOM will be decided 
together with other parameter settings. Once all these are 
determined, a SOM will be derived to represent the pattern or 
structure of a point cloud. The SOM is organised in a grid in 
which nearby neurons are more similar to those which are 

widely separated. With the SOM, various clusters can be 
identified and they in essence represent different sets of points 
with a certain similarity in terms of their coordinates and the 
intensity. The process of the clustering analysis can be 
described as follows. For a given point cloud, all the points 
constitute input vectors in a four dimensional space. This space 
is defined by three coordinates and the return intensity. These 
vectors then are used to train a SOM as described in the above 
section. With the SOM, points with similar attributes will 
correspond to neurons that are grouped together. Various 
clusters can be identified from the SOM, and finally the 
derivation of various spatial object models is based on these 
clusters.  
 
From a more practical perspective, the points and their 
corresponding attributes are used for creating input vectors in 
Matlab. Then training process is performed on SOM Toolbox 



 
 

with Matlab 6 (Vesanto et al. 2000). Although the number of 
output vectors (neurons) of a SOM can be arbitrarily 
determined, usually we choose a number that is smaller than 
that of the input vectors. Through the training process, each 
point is supposed to have a BMU from the set of neurons within 
the SOM. It helps to set up a linkage between a SOM and the 
corresponding point cloud. The specific procedure for setting 
up such a linkage in ArcView GIS platform is as follows 
(Figure 3): 
 

• Create a polygon theme in which each polygon has a 
hexagonal shape, representing a neuron with output 
vectors as attributes in a table (SOM table)  

• Create a link table (LINK table) with two fields, 
namely BMU and point ID 

• Link the SOM table and LINK table (note fields 
SOM-ID and BMU are equivalent)  

• Link the LINK table and NETWORK table through 
the common field street-ID 

  
Through the above procedure, a linkage that is set up between a 
SOM and corresponding point cloud will help to select points 
belonging to different spatial objects.  
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Figure 3: Linkage between a SOM and point cloud 
 
 
3.2 An interactive environment for clustering and selection 

Based on the above procedure, an interactive environment for 
clustering and selection can be built in a GIS platform. The 
trained SOM is imported into a GIS to setup a linkage to the 
point cloud that is represented as both 2D theme and 3D scene. 
In order to detect various clusters with the SOM, a unified 
distance matrix between a neuron and its neighbouring neurons 
(Ultsch and Siemon 1990) is computed. The distance matrix 
reflects the level of similarity between a neuron and its 
neighbouring neurons. With color scales for representing the 
distance matrix, we can easily detect clusters, i.e. those neurons 
tied closely. From the view entitled as SOM4029 in figure 4, we 
note that those neurons with light colors are supposed to be 
clusters, while those neurons with dark colors are neurons that 
are far from various centres of clusters. With the same figure, a 
cluster is selected with yellow, and the corresponding set of 
points is highlighted in both 2D view and 3D scene, from which 
we note the points are those from forest rather than from the 
ground.  
 

 
 

Figure 4: An interface with three connected visual components: 
SOM, 2D view and 3D scene of a point cloud 

 
 

4. A CASE STUDY 

To validate the approach, we carried out a case study applied to 
a dataset that consists of 9072 points (figure 5). The dataset was 
a part of a larger dataset captured using a terrestrial laser 
scanner by the GIS institute at the University of Gävle. The 
reason why we choose the dataset is that the GIS institute has 
already manually filtered the dataset. Different spatial objects 
such as clay-road, stones, spruce and ground are extracted. Thus 
it provides a base to validate the model.  
 
Using a heuristic way, we decided a SOM with the size of 

2940× to train the dataset. The process is performed in the way 
as follows with reference to the description in section 2. The 
1160 neurons are initialised by randomly giving some values of 
xyz coordinates and the return intensity; and each of the 
neurons compares to the individual points with the point cloud 
to determines its best match unit using equation [1]; Then the 
winning neurons and its neighbourhood are adjusted their 
values of xyz coordinates and the intensity according to 
equation [2]. Details on parameter settings for the training 
process are shown in table 1. Once a pre-determined 
convergence is reached, the training process is finished with a 
trained SOM. The trained SOM is supposed to retain the initial 
structure of the point cloud. Figure 6 is the component 
visualizations of the SOM, and the smooth color transitions 
reflect the fact that similar neurons are being closer than those 
dissimilar.     
 
 
 
 
Table 2: Parameter settings for the SOM training  
 

Parameter Value 
Size (m) 1160 
Dimensionality 2 
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Neighbourhood Gaussian 
Learning rate (α ) )/1001/()( 0 Ttt += αα  

Initial learning rate (
0α ) 0.5 for the coarse period 

0.05 for the fine period 
 

Training length in epochs 
(T) 

0.51 epochs for the coarse 
period 
2.05 epochs for the fine 
period 

Initial neighbourhood 
radius (

0σ ) 

 

20 

Final neighbourhood radius 5 for the coarse period 
1 for the fine period 
 

 
 

 
 

Figure 5: The original point cloud consisting of 9072 points 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6: Component visualizations of the SOM: (a) x 

coordinate, (b) y coordinate, (c) z coordinate, and (d) intensity 
 

 
 

Figure 7: Five clusters detected from Umatrix of the SOM 
 
In order to detect different spatial objects, we derive a unified 
distance matrix (U-matrix) between the adjacent neurons 
(Ultsch and Siemon 1990). Figure 7 illustrates the distance from 
each neuron to its neighbouring neurons. We can note those 
neurons that are surrounded by darker colours tend to be 
clusters. We tried to select those points that best match to the 
clusters in the SOM, and it ends up with 5 meaningful clusters 
as indicated in figure 7. The cluster 0 match to the stones quite 
well, while the rest four clusters match to clay-road. Figure 8 
illustrates those points associated with clusters 1-4 (a) and 
points representing clay road (b). Visual inspection suggests the 
model is a useful tool for filtering scanning datasets. In the 
meantime, cautious should be taken for the model, as other 
spatial objects such as spruce and ground are not clearly shown 
with the clusters in the umatrix of the SOM. This suggests 
further work is needed with the training process, probably by 
introduction of a weight among xyz coordinates and return 
intensity.  
 

 
(a) 

 
 

(b) 
 

Figure 8: Points associated with detected clusters 1-4 (a) and 
points representing clay road 

 
 

5. CONCLUSIONS 

This paper explores a new approach to filtering laser-scanning 
dataset for the extraction of spatial objects based unsupervised 



 
 

clustering technique. It presents an advantage in the sense that 
there is no prior knowledge is needed for such learning 
processes, i.e. data samples group themselves in terms of 
similarity. We develop an interactive environment integrated a 
SOM view, 2D and 3D views of the dataset, thus it facilities 
detections of clusters associated with different spatial objects. 
Despite the preliminary nature of the case study, it does 
illustrate the powerfulness of unsupervised methods in general 
and SOM in particular in extracting spatial objects from a laser-
scanning dataset. It is important to note that SOM training 
process is much dependent on the parameter settings as reported 
in table 1. This issue deserves further research, in particular in 
terms of how the parameter settings have impact on the 
extraction of spatial objects from a point cloud.  
 

ACKNOWLEDGEMENTS 

The author would like to thank Mikael Östlund from the GIS 
institute at the University of Gävle who provides the datasets for 
the case study.  
 
 

REFERENCES  

Ackermanm, F. (1999). Airborne laser-scanning - present status 
and future expectations. ISPRS Journal of Photogrammetry and 
Remote Sensing, 54: 64-7. 

Axelsson P. (1999), Processing of Laser Scanner Data – 
Algorithms and applications, ISPRS Journal of 
Phtotogrammetry & Remote Sensing, 54, pp. 138 – 147. 

Haala N. and Brenner C. (1999), Extraction of buildings and 
trees in urban environments, ISPRS journal of photogrammetry 
& remote sensing, 54, pp. 130 – 137. 

Højholt P. (1995). Generalization of build-up areas using 
Kohonen-networks, Proceedings of Eurocarto XIII, 2-4 
October, Ispra, Italy. 

Jiang B. and Harrie L. (2003), Selection of streets from a 
network using self-organizing maps, ICA Generalization 
Workshop, Paris, 28 – 30 April 2003 (a revised version of this 
paper is to appear in Transactions in GIS, Blackwell Publishers, 
Vol. 8, No.3) 

Jiang B. and Nakos B. (2003), Line simplification using self-
organizing maps, a working paper presented at ISPRS workshop 
on spatial analysis and decision making, 3 – 5 December 2003, 
Hong Kong.  

Kohonen T. (2001), Self-Organizing Maps (third edition), 
Springer, Berlin, Heidelberg, New York.  

Kraus K. and Pfeifer N. (1998), Determination of terrain models 
in wooded areas with airborne laser scanner data. ISPRS 
Journal of Photogrammetry & Remote Sensing, 53:193-203.  

Maas H. and Vosselman G. (1999), Two algorithms for 
extacting building models from raw laser altimetry data, ISPRS 
journal of photogrammetry and remote sensing, 54, pp. 153 – 
163. 

McIntosh K. and Krupnik A. (2002), Integration of laser-
derived DSMs and matched image edges for generating an 
accurate surface model. ISPRS Journal of Photogrammetry &     
Remote Sensing, 53(3):167-176. 

Oja E. and Kaski S. (editors. 1999), Kohonen Maps, Elsevier. 

Openshaw S., Blake M. and Wymer C. (1995), Using 
Neurocomputing Methods to Classify Britain's Residential 
Areas, (html paper), available at 
http://www.geog.leeds.ac.uk/papers/95-1/ (accessed on 
2002-11-15). 

Openshaw, S. (1994), Neuroclassification of spatial data, in 
Hewitson, B. C. and Crane, R. G. (eds), Neural Nets: 
Applications in Geography, Dordrecht: Kluwer Academic 
Publishers, 53-70. 

Petzold B., Reiss P., and Stössel W. (1999), Laser-scanning - 
surveying and mapping agencies are using a new technique for 
the derivation of digital terrain models. ISPRS Journal of 
Photogrammetry & Remote Sensing, 54(2-3):95-104.  

Sithole G. and Vosselman G. (2003), Report: ISPRS 
Comparison of Filters, Department of Geodesy, Faculty of Civil 
Engineering and Geosciences, Delft University of Technology, 
available at 
http://www.geo.tudelft.nl/frs/isprs/filtertest/Report05082003.pd
f (accessed on 2003-11-12) 

Tao C. V., Hu Y., 2001: “A review of post-processing 
algorithms for airborne LIDAR Data”. Proceedings ASPRS 
conference April 23-27, 2001. St. Louis Missouri. CD-ROM, 
14 pages. 

Tobler W. R. (1970), A Computer Movie Simulating Urban 
Growth in Detroit Region, Economic Geography, 46, pp. 234-
240. 

Ultsch A. and Siemon H. P. (1990), Kohonen’s self organizing 
feature maps for exploratory data analysis, In Proc. INNC’90, 
int. neural network conf., page 305-308, Dordrecht, 
Netherlands, Kluwer. 

Vesanto J. (1999), SOM-based data visualization methods, 
Intelligent data analysis, Elsevier Science, Volume 3(2), pp. 
111-126. 

Vesanto J., Himberg J., Alhoniemi E. and Parhankangas J. 
(2000), SOM toolbox for Matlab 5, Report A57, Helsinki 
University of Technology, Libella Oy, Espoo. 

Vosselman, G., 2000. Slope based filtering of laser altimetry 
data, International Archives of Photogrammetry and Remote 
Sensing, Volume XXXIII, Amsterdam, pp. 935-942. 

 


