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ABSTRACT

A method for the automatic detection of roads from airborne laser scanner data is presented. Traditionally, intensity
information has not been used in feature extraction from LIDAR data because the data is too noisy. This article deals
with using as much of the recorded laser information as possible thus both height and intensity are used. To extract roads
from a LIDAR point cloud, a hierarchical classification technique is used to classify the LIDAR points progressively into
road or non-road. Initially, an accurate digital terrain model (DTM) model is created by using successive morphological
openings with different structural element sizes. Individual laser points are checked for both a valid intensity range and
height difference from the subsequent DTM. A series of filters are then passed over the road candidate image to improve
the accuracy of the classification. The success rate of road detection and the level of detail of the resulting road image both
depend on the resolution of the laser scanner data and the types of roads expected to be found. The presence of road-like
features within the survey area such as private roads and car parks is discussed and methods to remove this information
are entertained. All algorithms used are described and applied to an example urban test site.

1 INTRODUCTION

1.1 Motivation

Road extraction from remotely sensed data is a challeng-
ing issue and has been approached in many different ways
by Photogrammetrists and digital image processors. Some
of the methods are quite complex and require the fusion of
several data sources or different scale space images. The
goal of this paper is to suggest an extraction method that
will provide results equivalent to other methods but re-
lying solely on the acquired LIght Detection And Rang-
ing (LIDAR) data. Research on automated road extraction
has been fuelled in recent years by the increasing use of
geographic information systems (GIS), and the need for
data acquisition and update for GIS (Hinz and Baumgart-
ner, 2003). Existing road detection techniques, often re-
quire existing data and or semi-automatic techniques (Hat-
ger and Brenner, 2003) and produce quite poor detection
rates.

This paper presents a simple and accurate method for the
automatic detection of roads from LIDAR data or what
is sometimes referred to as airborne laser scanner (ALS)
data. Section 2 describes the background of road extrac-
tion including previous road detection methods from pho-
togrammetry and satellite data. Section 3 describes how
our new hierarchical classification technique is used to pro-
gressively classify the LIDAR points into a road image.
The technique uses as much of the LIDAR information as
possible, such as height and intensity. A full description
of the steps involved is given and the algorithm is applied
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to an actual urban data set. Results from the data set are
discussed in Section 4 whilst conclusions and future work
are examined in Section 5.

1.2 The Test Data

LIDAR data from Fairfield in Sydney, Australia, was ini-
tially collected with an approximate point density of 1 point
per 1.3 m2.

Figure 1: The Fairfield Test Area.

The Fairfield data set is very interesting because of its di-
verse nature. Within the 2km x 2km area, the land usage



changes quite dramatically. Fairfield is an urban area, how-
ever there are some rural-like parts with a heavily treed
creek area running through the centre of the image. There
are also both residential and industrial urban areas present.
The industrial regions have larger buildings with many car
parks and private roads whilst the residential regions have
a much smaller average building and block size.

2 BACKGROUND

Road extraction from High-Resolution Airborne SAR data
was performed in (Huber and Lang, 2001), by using opera-
tor fusion. A road was characterised by a central homoge-
nous region adjacent to two homogenous regions on either
side of the road. A method for the automatic extraction
of roads from multi-spectral satellite imagery is proposed
by (Wiedermann and Hinz, 1999). The extraction strat-
egy consists of finding the union of lines extracted from
all available channels thus exploiting the nature of a multi-
spectral sensor. A graph network is then constructed to
derive the best paths and hence the road network itself.

The extraction of roads by varying the scale space of an im-
age is another common approach. Extraction of roads from
1m-resolution satellite images was preformed by (Lee et
al., 2000), by varying the scale space and applying a wa-
tershed algorithm before knowledge extraction was per-
formed based on gray levels and shape cues. Urban road
networks are extracted from aerial imagery by (Hinz and
Baumgartner, 2003). Scale-dependent models are explic-
itly formulated at both fine and coarse scales in order to
extract both detailed and global information.

In (Heipke et al., 1997), three different road extraction
techniques were evaluated. The LINE algorithm extraction
is based on differential geometry, the TUM-G algorithm is
based on the extraction of lines in an aerial image of re-
duced resolution using the approach of (Steger, 1996), and
the extraction of edges in a higher resolution image. The
TUM-S algorithm is similar to the TUM-G extraction ex-
cept it uses ”snakes” in the form of ribbon-snakes to the
verify roads.

There have been several attempts to extract roads from LI-
DAR data but most require a form of data fusion to com-
plete the task. In (Hatger and Brenner, 2003), LIDAR data
is used in conjunction with existing database information
to estimate the road geometry parameters. In (Rieger et al.,
1999), roads were extracted from LIDAR data in forested
areas. By detecting the road, breaklines could be generated
and used to enhance the quality of the digital terrain model
(DTM) produced. A combination of line and point feature
extraction was then used to extract the final lines.

Traditionally, the intensity of the returned laser beam is
registered by most LIDAR systems but this information
has typically not been used for feature extraction. Unfor-
tunately, given the footprint size (e.g. 20 - 30 cm) and an
average point density of 1 to 2 metres the intensity image is
under-sampled and very noisy (Rottensteiner et al., 2003,

Vosselman, 2002). In (Akel et al., 2003), the authors dis-
cuss a method for extracting a DTM in urban areas by ini-
tially estimating the DTM from the road network present.
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Figure 2: The Classification Work Flow.S1, S2 andS3 are
explained in section 3.1.

Road models used by the previously mentioned authors are
varied. (Heipke et al., 1997) bases his extractions on lines
and road edges, (Huber and Lang, 2001) on homogenous
regions and (Lee et al., 2000) on grey levels and shape
cues.

The presented work flow algorithm detects a road model
based on a continuous network of image pixels. Each road
pixel has met a series of criteria, namely, LIDAR points
lie on or near the DTM and have a certain intensity and
normalised local point density. The image pixels appear as
visible thick lines which form a road network containing
all public roads. From the resultant image, existing image
processing techniques can be used to extract information



such as centreline, edge and width.

The present paper limits the amount of data to only a subset
of the original LIDAR points based on the intensity data,
the closeness to the DTM, the LIDAR point density and
the continuity of roads. By considering all of these crite-
ria, it is possible to extract roads within a surveyed area
effectively. By using the intensity and height information
present in LIDAR data, a method is proposed for extracting
roads from stand-alone LIDAR data.

3 EXTRACTING ROADS

3.1 Classification Work-Flow

To extract roads from a LIDAR point cloud, a hierarchi-
cal classification technique is used to progressively classify
the LIDAR points into road or non-road. The work-flow is
described by Figure 2. For the purpose of this paper, we
will describe any LIDAR data pointpi as being defined
by,

pi = (lpx, lpy, lpz, lpi), (1)

wherelpx, lpy, andlpz represent the last pulse laser strike
3D coordinates andlpi represents the intensity of the last
pulse strike. LetS represent the set of all laser points col-
lected, i.e.

S = {p1,p2, ...,pN} , (2)

wherep1,p2, ...,pN are the individual LIDAR points.

As described in Figure 2, the first step in the hierarchical
classification method is to sample the last pulse LIDAR
data into a regular grid with minimal filtering to produce
a last pulse digital surface model (DSM). A DTM is then
created from the last pulse DSM by morphological grey
scale opening using a square structural element. By pro-
gressively changing the size of the structural element and
removing non-terrain type objects a DTM was obtained
and displayed in Figure 3 (Rottensteiner et al., 2003).

By making the assumption that roads lie on or near the
DTM, which is true except for elevated roads, bridges and
tunnels, it is possible to disregard all LIDAR points that lie
outside a given tolerance of the DTM (Akel et al., 2003).
The creation of the subset is defined by (3).

S1 =
{
pi ∈ S : |pilpz

− DTM| < ∆hmax
}

, (3)

wherepilpz
is the last pulsez coordinate ofpi, DTM is the

value of the smoothed DTM at locationpi and∆hmax is the
maximum allowable difference between thepilpz

and the
DTM.

Figure 3: The Generated Fairfield DTM.

To help visualise the effect of the filtering, figure 4 dis-
plays an intermediate result showing the position of all ex-
isting points after applying (3). All non-terrain type objects
(buildings and trees) have been removed and are displayed
by areas of white whilst the strips of darker areas show
areas of swath overlap, i.e. where there is a higher point
density.

LIDAR points are then selected if their last pulse inten-
sity values are between the acceptable range for the type of
road material being detected (in this case bitumen). Even
though the intensity values returned by the scanning unit
are noisy, road material is typically uniform along a sec-
tion of road. By searching for a particular intensity range
it is possible to extract all LIDAR points that were on the
road along with some other false positive (non-road) de-
tections. If more than one type of road material is to be de-
tected, two separate subsets should be obtained depending
on the road material characteristics from (4). The union of
the two resultant subsets should be taken to form the inten-
sity filtered setS2. Equation 4 describes how the LIDAR
points are filtered on their intensity to create a new subset
of points

S2 =
{
pi ∈ S1 : imin < pilpi

< imax
}

, (4)

whereimin and imax are the minimum and maximum ac-
ceptable LIDAR intensities at pointpi.

From the road model defined in Section 2, roads are de-
picted as a continuous network of pixels which form thick
lines. Due to the nature of roads, a circle around an arbi-
trary road pointp will have at least a quarter of the circle
lie on the road itself, provided the circles diameter is less
than the road width. This is the worst case scenario and
typically we would expect between a half and all the circle
to lie on the road. By testing all points against a chosen



Figure 4: The points on the DTM.

minimum normalised local point density a new subset of
points,S3, is described as

S3 = {pi ∈ S2 : | {pj ∈ S2 : ‖pi − pj‖2 < d} | > ρmin} ,
(5)

whered is the maximum distance frompi, which can be
any value less than or equal to half of the road width,ρmin

is the minimum normalised local point density required
and‖pi − pj‖2 is the Euclidean distance frompi to pj .

An image is now created from theS3 subset. The image
pixel size should loosely approximate the original average
LIDAR point density. A binary image is created on an Is-
Point/NotPoint basis. i.e. if there is a LIDAR point in
subsetS3 that lies within the pixel it is TRUE otherwise it
is FALSE. A morphological closing with a small structural
element of 3 pixels was performed to remove any small
gaps in the road detection. Gaps can be caused by creating
a smaller image pixel size than the original LIDAR point
density or by single (isolated) reflections on vehicles and
other objects on the road.

The resultant binary image now contains all public roads,
private roads, car parks and some noise. The most obvious
problem is car parks. Due to the industrial nature of the
test data an attempt to remove some car parks was made.
Unfortunately, it is very difficult to distinguish a car park
from a road. Both are designed to have vehicle traffic thus
have similar textures and properties. Some car parks (not
all) are very wide and thus by defining a maximum accept-
able road width prior to processing it is possible to remove
larger car parks from the current binary image.

A label image is then created from the binary classification
by connected component analysis. Labelled road regions

Figure 5: The road candidate points after intensity filtering.

that are very small in area are removed during the label
image creation thus removing most of the noise present.
These areas are assumed to be non-roads due to the contin-
uous nature of road networks. The area of each individual
label is checked against the area of its minimum bound-
ing rectangle (MBR). As roads are a network of connected
long thin objects the ratio of the two areas in the case of a
diagonal road or road network will be very small. In the
extreme case of detecting a single north-south or east-west
road the ratio should not exceed a percentage based on the
minimum side length of the MBR. For example, if the min-
imum side length of the MBR is 5 times the road width
20% would be the maximum threshold. Thus a thresh-
old based on the ratio of areas is defined. Labels that do
not meet this criterion are removed. As a morphological
closing has been performed previously, the neighbouring
patches of roads should now be connected into a continu-
ous road structure. Figure 6 displays the final road classi-
fied image.

4 RESULTS

Figure 6 shows the resultant road detection from the sug-
gested work flow. Ground truth data was obtained by man-
ually digitising an orthophoto of the test area, (Figure 1)
into road and non road areas. The guideline used during
digitising was that public roads were to be classified as
roads but car parks and private roads (driveways and roads
leading to car parks) were not. The resultant ground truth
image is shown in Figure 7. A visual comparison of the
ground truth and binary classified data shows that there are
still quite a number of car parks and small roads present.
Road information such as centreline, edge and width can
easily be obtained from the resultant classification by using
existing image processing techniques. For example, the
road centrelines have been detected using the phase coded



disk (PCD) approach discussed in (Clode et al., 2004). The
centreline pixels have been displayed in Figure 8.

4.1 Accuracy

The accuracy of any road extraction technique can be sum-
marised by contemplating the completeness and correct-
ness of the detected road network. In order to evaluate
extraction results the quality measures completeness, cor-
rectness and quality as defined in (Heipke et al., 1997) are
examined. For comparison purposes, the road extraction is
classified as true positive (TP), false negative (FN) or false
positive (FP) on a pixel by pixel basis.

Figure 6: The resultant work flow road network.

Figure 7: The public road ground truth model.

Completeness, sometimes called recall, is the ratio of the

correctly extracted records to the total number of relevant
records within the ground truth data, as defined in (6),

Completeness=
TP

TP + FN
. (6)

Correctness, sometimes called precision, is the ratio of the
number of relevant records extracted to the total number of
relevant and irrelevant records retrieved, as defined in (7),

Correctness=
TP

TP + FP
. (7)

Quality is defined by

Quality =
TP

TP + FP + FN
. (8)

Table 1 shows the results obtained from the work flow road
extraction method when applied to the Fairfield test data.

Completeness Correctness Quality

Work flow 0.86 0.69 0.62

Table 1: Work Flow Accuracy Results

Unfortunately, the work flow classification method can not
be directly compared to other algorithms on the same area
as data and information was not available. This makes a
conclusive comparison difficult. In (Heipke et al., 1997)
and (Wiedermann and Hinz, 1999) accuracy estimates were
produced for the road extraction techniques used. Tables 2
and 3 show the results obtained from (Heipke et al., 1997)
and (Wiedermann and Hinz, 1999) respectively.

From the published results it can be seen that the overall
quality of the work flow is in the range of the better al-
gorithm of (Heipke et al., 1997) and between the qualities
achieved by (Wiedermann and Hinz, 1999). The difference
in the quality figures for Site 1 and Site 2 of the algorithm
from (Wiedermann and Hinz, 1999) illustrates the impor-
tance of comparing the extraction methods on the same test
site before any conclusive comparison can be made. The
correctness (and thus the quality) of the work flow classifi-
cation method will improve in non-industrial areas.

Completeness Correctness Quality

Lines 0.63 0.42 0.34
TUM-G 0.47 0.78 0.42
TUM-S 0.66 0.87 0.60

Table 2: Accuracy Results of Heipke et al. 1997

Completeness Correctness Quality

Site 1 0.77 0.98 0.76
Site 2 0.61 0.94 0.59

Table 3: Accuracy Results of Weidemann and Hinz, 1999

As the extraction of the roads is partially based on the
DTM generation of the surveyed area, elevated roads and



bridges can be a problem. This can be clearly seen in fig-
ure 9 which is an enlarged portion from the top left hand
corner of figure 6. Passing horizontally through the mid-
dle of figure 9(a) is a row of trees delineating a creek. The
road to be detected in the image runs approximately north-
south. At the intersection of the road and the creek there is
a bridge which has clearly not been detected in the binary
classification image seen in figure 9(b).

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

This paper describes an effective and simple method for the
detection of roads from LIDAR data using a hierarchical
rule based system. The accuracy of the method has been
shown to be on par with the better algorithms published.
Results from this method can be expected to be equal to the
quoted accuracies or better in non-industrial or commercial
areas. The presence of many car parks and private roads
has reduced the achieved correctness value due to the high
presence of FP extractions.

Figure 8: Centrelines.

(a) Bridge crossing the creek (b) Missing road section.

Figure 9: Elevated road problem

5.2 Future Work

Improvements on the detection method are sought whilst
the automatic extraction and vectorisation of the raw LI-
DAR data into approximate road straight, curve and spiral
design primitives is a high priority.
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