
 LIDAR DATA SEGMENTATION AND CLASSIFICATION BASED ON 
OCTREE STRUCTURE 

 
Miao Wang a , Yi-Hsing Tseng b 

 
Department of Geomatics, National Cheng Kung University, No.1 University Road, Tainan 701, Taiwan, R.O.C.  

a monsterr@seed.net.tw 
b tseng@mail.ncku.edu.tw 

 
 
KEY WORDS: Lidar, Laser Scanning, Feature Extraction, Organization, Segmentation, Classification  
 
 
ABSTRACT: 
 
Lidar (or laser scanning) has become a viable technique for the collection of a large amount of accurate 3D point data densely 
distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant 
spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic. The sub-
randomly distributed point cloud should be segmented and classified before the extraction of spatial information and the first step in 
the processing of the spatial data extraction is an organization of the lidar data. This paper proposes a new algorithm to split and 
merge the lidar data based on the octree structure. After the process a lidar data set can be segmented to 3D plane clusters and 
classified by the plane attributes derived from each 3D plane, such as area, gradient, intensity etc. Some example and analysis of 
practical data set will be performed for segmentation and classification using the proposed methods here. The test result shows the 
potential of applying this method to extracting spatial information from lidar data. 
 
 

1. INTRUDUCTION 

Lidar (or laser scanning) has become a viable technique in 
recent decades. The ability of collecting a large amount of 
accurate 3D point data densely distributed on the scanned 
object surface has brought us a new research topic (Ackermann, 
1999). The inherent 3D nature of the sub-randomly distributed 
point cloud contains abundant space information and can be 
further extracted for digital elevation model generation, 3D 
building model reconstruction, and trees detection (Haala and 
Brenner, 1999; Maas and Vosselman, 1999; Priestnall, et al., 
2000; Vosselman and Dijkman, 2001). To explore valuable 
spatial information from lidar data becomes an active topic. 
 
Lidar data record 3D surface information in detail. To explore 
valuable spatial information from the huge amount of 3D data is 
difficult and time consuming. Segmentation is generally 
prerequisite for spatial feature extracting. Most segmentation 
techniques were developed from 2.5D grid data or image data 
(Masaharu and Hasegawa, 2000; Geibel and Stilla, 2000). Sub-
randomly distributed point cloud is transformed into a grid data 
set through an interpolation procedure to apply an image-based 
segmentation and Classification (S/C), but some important 
spatial information may be lost (Axelsson, 1999; Gamba and 
Casella, 2000). Eventually, new S/C methods suitable for lidar 
data are needed for practical application. 
 
An octree-structure-based split-and-merge segmentation method 
for organizing lidar point cloud into clusters of 3D planes is 
proposed here. The method is hierarchically splitting the point 
cloud set on the octree structure until the points contained in 
each sub-node are coplanar, or say distributed in a 3D plane or 
less than 3 points. The neighbouring 3D planes with similar 
attribute are merged after splitting to form larger planes. 
 
The segmented 3D planes than can be classified according to 
the attributes derived from each 3D plane. The proposed 
method would suitably work for airborne lidar data as well as 

ground-based laser scanning data. Some results on both kind of 
lidar are presented in this paper finally. 
 

2. OCTREE-STRUCTURE-BASED SEGMENTATION 

The principle of the method is to segment point cloud into 3D 
planes. A split and merge segmentation based on the octree 
structure (Fig. 1.a) is developed. 
 
2.1 Split process 

The split process starts from the whole data set as a root node. 
The data set space will be divided into 8 equal sub-spaces, if the 
data set could not pass the distance and area threshold. The split 
generates 8 sub-nodes (Figure 1.b) representing the split spaces. 
Each sub-node will be split continuously until the scan points 
contained in the split space of the sub-node are distributed close 
to a 3D best-fit plane or less than 3 points. 
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Figure 1.  Octree structure (a) divided sub-spaces (b) the tree 
representation 
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2.2 Calculating best-fit planar of point cloud 

The best-fit plane in each sub-node is determined using least-
squares estimation, i.e., minimizing the squares sum of the 
distances from points to the fitting plane. In the 3D Euclid 
space, a 3D plane can be formulated as follows: 
 
 0=+++ DCzByAx     (1) 

The distance ( id ) from the ith point ),,( iiii zyxP  to the plane 
can be expressed as: 
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Then, the best-fit condition of minimizing the squares sum of 
the distances will be: 
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 Eq. (2) is non-linear, so that it needs initial approximation 
values of the unknown parameters (A, B, C, D) for the 
calculation of least-squares estimation. To solve this problem, 
we use a two-stage calculation to determine the unknown 
parameters. 
 
At first stage, a 3D plane is formulated as a slope-intercept form, 
which has 3 types as Eq. (4): 
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To avoid the situation of obtaining infinite numbers for a and b 
parameters, which slope-intercept form is suitable can be 
predetermined according to the distribution ranges of the point 
cloud. Figure 2 shows the idea. The outer frames in Fig. 2 
represent the sub-node spaces, and the inner frames represent 
the distribution ranges of the point cloud. The decision can be 
done by checking the minimum distribution range. For example, 
if x dimension has the minimum distribution range, then the 
first type is the choice. 
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Figure 2.  The ideas of selecting a suitable slope-intercept form. 

 
Because the slope-intercept form is linear, the parameters can be 
calculated without the need of iteration. The least-squares linear 
regression can be applied to determine the plane parameters. 

For example, if the slope-intercept form, cbzayx ++= , is 
used, the matrix form of the observation equations can be listed 
as follows: 
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The parameters are then solved as: 
 

 LAAAX TT 1)(ˆ −=     (6) 
 
The calculation in this stage actually is to minimize the squares 
sum of the x ranges from points to the fitting plane rather the 
perpendicular distances. After the parameters are determined, 
the x range residuals can be calculated. Split will proceed 
continuously if there is a residual larger than the preset 
threshold, otherwise rigorous calculation of the second stage 
will be triggered. 
 
Eq. 2 is applied for the rigorous calculation. Given the solution 
in the first stage as the initial approximation, the rigorous 
adjustment is performed iteratively. Following the use of the 
slope-intercept form, Eq. 2 can be reformed as: 

 
( )

222)1(
,,

ba

cbzayx
cbaFd iii

ii
++−

+++−
==

  (7) 
 
The observation equations can be obtained by linearizing Eq. 7: 
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In Eq. 8, the parameters cba ∆∆∆ ,,  are increments of unknown 
parameters. The increments will be added into the previous 
approximations until the calculated increments get to very small. 
The best-fit plane is determined if the computation converges. 
The distance residuals can be calculated after the parameters are 
solved. Again, split will proceed continuously if there is a 
residual larger than the preset threshold, otherwise a plane is 
formed.  
 
2.3 Area of the point cloud on a fitting plane 

The point cloud in a sub-space may not distribute evenly on the 
sub-node. In order to find a suitable node size corresponding to 
the distributing of point cloud, area of the point cloud is 
checked for further splitting. For example, area of unbalanced 
distributing points in Figure 3 is smaller than the area of face of 
sub-node. Split can proceed further, until the area of 
distributing points on each fitting plane is larger than a preset 
threshold. 
 

 
Figure 3. An example of unbalanced distribution of points 

 
Point cloud of each best plane in sub-node is than searching its 
boundary and building its TIN for visual purpose. Figure 4 is 
the example of source lidar points cloud before split. Figure 5 a, 
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shows the result of split node border. Figure 5.b, c shows the 
best-fit plane of each split sub points set by its border and TIN 
respectively. 
 

 
 

Figure 4. An example of source lidar point cloud. 
 

 
(a) 

 
(b) 

 
(c) 

Table 5. Result of splitting (a) node border (b) best-fit plane 
border (c) best-fit plane TIN  

2.4 Merge process 

A merge process is than performed after splitting to reunite 
similar neighbouring planes. Each node in octree structure has 
26 equal or larger neighbouring nodes at most. The octree 
structure allows us to find neighboring planes easily (Samet, H., 
1990). When a neighboring plane is found, the merge process 
will first check whether their normal vectors are similar. Figure 
6.a shows the idea of checking normal vectors. However, one 
may find planes in different layers having similar normal 
vectors (Figure 6.b). To solve this situation, additional check of 
the node relation is needed. After two neighboring planes are 
found similar, the rigorous calculation will be triggered again to 
recalculate the parameters of the merged plane and to ensure the 
merge availability. After the merge process, the original lidar 
points cloud was segmented into clusters of 3D planes. Each 
merged 3D plane can be recorded as 4 plane parameters (A, B, 
C, D) and its border points. A TIN (Triangular Irregular 
Network) of each plane is also generated for visualization use. 
Figure 7 a, b, shows the result of merged plane in the form of 
border and TIN. It is obviously that the 4 separated ground 
planes in Figure 5.b was merged into a larger plane successfully 
in Figure 7.b. after the merge process. 
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Figure 6. Similarity of two neighboring nodes A and B (a) 
available for merge (b) not available for merge 

 

 
(a) 



 

 4 

 
(b) 

Figure 7 Result of merged plane (a) border (b) TIN 
 

3. CLASSIFICATION 

A classification can be performed based on the attributes of the 
extracted 3D planes. In the time of preparing this paper, we 
have not developed a well classification method yet. However, 
simple classification results based on plane attributes such as 
area, average height, gradient, average intensity, shape, 
orientation and symmetry shows the potential of the feature-
based classification. Figure 8a, b, shows the results of plane 
classification by area and gradient respectively.  

 

 
(a) 

 
(b) 

Figure 8. Results of plane classification by (a) area and (b) 
gradient 

 
Some classification examples of both airborne lidar and ground-
based laser scanning data are shown in next section. 
 

4. EXAMPLES AND ANALYSIS 

The proposed method can be applied to both airborne and 
ground lidar data. However, the thresholds used in the program 
should be adjusted to fit different data sets according to the 
different scanning accuracy. Our test data include an airborne 
lidar data set collected in Hsinchu, Taiwan with Leica ALS40 
and a ground lidar data set obtained in The Eastern Gate of 
Hsinchu City with Optech ILRIS-3D laser scanner. Table 1 lists 
the basic data attributes and the thresholds applied in the tests. 

 
  ALS40 ILRIS-3D 

Scan Date April 14 ,2002 February 16, 2004 

Scan Area Hsinchu The Eastern Gate of 
Hsinchu City 

Scan Accuracy 30 cm 0.7 cm 
Point density About 2.3pt/� About 907pt/� 

Point cloud size 515,991 464,563 
Distance 
threshold 1m 0.05m 

Area threshold 1/4 node face area 1/4 node face area 
Angle threshold 3� 3� 

 
Table 1. Information of examples 

 

4.1 Airborne lidar example 

Figure 9.a shows a set of point cloud of airborne lidar covering 
an area of 500 x 500 m2. Most of the points distribute densely 
over the ground surface and top of buildings, and points scatter 
on side wall of buildings are fewer. Figure 9.b shows the border 
of best-fit planes after the split process. Table 2 lists the 
computation time, the parameters of the octree structure, and the 
statistic data of extracted planes. In this case, 96.7% of the total 
points were used to form planes, the rest are scattered points 
which cannot be used to form planes. Figure 9.c shows the 
border of merged process. The stadium ground to the west is 
merged from pieces of planes. Figure 9.d, e, f, shows the results 
of merged plane classified by area, gradient, average intensity 
respectively. In Figure 9.e, vertical planes (building wall) and 
horizontal planes (building roof and ground) can be classified 
by their gradient.  

 

 
(a) 

 
(b) 
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(c) 

 
 (d) 

 
(e) 

 
(f) 

Figure 9. Airborne lidar example (a) point cloud (b) results after 
split (c) results after merge (d) classify by area (e) classify by 

Gradient (f) classify by average intensity 
 

Computation time for split process 25.48 sec. 
Computation time for merge process 403.132 sec 

Number of the total octree layers 9 
Number of the total leave nodes 42090 

Extracted planes and % of the total points 
used 30013, 96.7% 

Number of nodes have less than 3 points 12077 
 

Table 2. Airborne laserscan information 

 

4.2 Ground lidar example 

Figure 9.a shows the original point cloud of the ground lidar 
example. Extracted planes shown in Figure 9.b containing 
98.7% of the total points. Figure 9.c shows the results after the 
merge process. Figure 9.d, e, f, shows the results of merged 
plane classified by area, gradient, average intensity respectively. 
In Figure 9.e horizontal planes and vertical planes of the stairs 
in front of the Gate can be classified obviously. Wall and roof 
of the Gate and ground plane can be classified too. 
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(e) 

 
(f) 

Fig . 9. Ground lidar example (a) point cloud (b) results after 
split (c) results after merge (d) classify by area (e) classify by 

Gradient (f) classify by average intensity 
 

Computation time for split process 24.27 sec. 
Computation time for merge process 360.96 sec. 

Number of the total octree layers 10 
Number of the total leave nodes 19803 

Extracted planes and % of the total points used 10944, 98.7% 
Number of nodes have less than 3 points 4323 

 
Table 3. Ground laserscan information 

 
5. CONCLUSIONS 

Sub-randomly distributed point cloud of lidar data needs an ad 
hoc segmentation method for the extraction of spatial 
information. This paper proposes an octree-based split-and-
merge segmentation method to divide lidar data into clusters of 
3D planes and can apply to bath airborne and ground lidar data. 
The thresholds designed in the algorithm can be adjusted to fit 
different data sets. We expect this segmentation method can be 
a stepping stone and applying to the other application of lidar 
data. For example: 
� 3D Feature extraction and coordinate measurement --- 

3D spatial geometric properties (line and point)can be 
explore by intersection of the extracted 3D planes. 

� Building reconstruction --- extracted 3D features can be 
analysis to reconstruct the building models. 

� Classification – Attributes derived from 3D planes can be 
used to classify different meaningful information of 
planes. 

� Data filtering and compression --- points were not used 
to form planes can be filtered out and densely distributed 
on a plane can be express by the 4 plane parameters and 
boundary to reduce data size. 

 

Further study is needed to improvement and modification the 
proposed method to fit various applications of both airborne 
and ground based lidar data. 
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