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ABSTRACT:  
 
Automated and reliable 3D city model acquisition is an increasing demand. Automatic road extraction from dense urban areas is a 
challenging issue due to the high complex image scene. From imagery, the obstacles of the extraction stem mainly from the difficulty 
of finding clues of the roads and complexity of the contextual environments. One of the promising methods to deal with this is to use 
data sources from multi-sensors, by which the multiple clues and constraints can be obtained so that the uncertainty can be 
minimized significantly. This paper focuses on the integrated processing of high resolution imagery and LIDAR (LIght Detection 
And Ranging) data for automatic extraction of grid structured urban road network. Under the guidance of an explicit model of the 
urban roads in a grid structure, the method firstly detects the primitives or clues of the roads and the contextual targets (i.e., parking 
lots, grasslands) both from the color image and lidar data by segmentation and image analysis. Evidences of road existing are 
contained in the primitives. The candidate road stripes are detected by an iterative Hough transform algorithm. This is followed by an 
procedure of evidence finding and validation by taking advantage of high resolution imagery and direct height information of the 
scene derived from lidar data. Finally the road network is formed by topology analysis. In this paper, the strategy and corresponding 
algorithms are described. The test data set is color ortho-imagery with 0.5 m resolution and lidar data of Toronto downtown area. The 
experimental results in the typical dense urban scene indicate it is able to extract the roads much more reliable and accurate by the 
integrated processing than by using imagery or lidar separately. It saliently exhibits advantages of the integrated processing of the 
multiple data sources for the road extraction from the complicated scenes.  
 
 

1. INTRODUCTION 
 
Automatic road extraction from remotely sensed imagery has 
attracted much attention for the last few decades. In this issue, a 
great number of research papers were published both in 
geospatial and computer vision communities. In general, road 
extraction consists of four steps (Gruen and Li, 1995): road 
sharpening, road finding, road tracking, and road linking. In the 
earlier research (Bajcsy and Tavakoli, 1976; Nevatia and Babu, 
1980), some line detection algorithms were presented for 
extracting the roads from remotely sensed imagery. There is not 
much high-level knowledge involved in the methods for road 
finding. To process gaps bridging, road tracing and handle the 
complicated image scenes, more sophisticated strategies should 
be used for more reliable extraction. Knowledge or rule based 
methods or similar methods based on hypothesis-verification 
(Mckeown and Delinger, 1988; Tonjes, R., and S. Growe, 1998; 
Trinder and Wang, 1998) had been used for handling the issue 
of linear feature alignment and fragmentation. Optimal route 
search algorithms were frequently employed as semiautomatic 
road extraction. The optimization can be realized by dynamic 
programming (Gruen and Li, 1995; Bazohar and Cooper, 1998), 
snakes (Trinder and Li, 1995; Gruen and Li, 1997; Tao et. al., 
1998; Agouris et. al. 2001) and Kalman filtering (Vosselman 
and de Knecht , 1995). Furthermore, contextual information 
supported methods (Stilla, 1995; Baumgartner et.al. 1999) were 
applied to extract road more reliably. Actually we can also find 
many strategies (Bazohar and Cooper, 1998; Couloigner and 
Ranchin 2000; Laptev et. al 2000; Katartzis, et.al., 2001, Hinz 
and Baumgartner; Hu and Tao, 2003; Hu and Tao, 2004) which 
attempt to combine the methods or use the specific techniques 
in order to deal with different scenarios in image scale, 

complexity and road type etc. However, automating road 
extraction is still challenging as the involved problems of 
intelligent image understanding are too complicated to be 
solved straightforward. Most of the methods applied to extract 
roads from open or rural areas were successful to some extent 
due to the relative simple image scene and road model. For the 
extraction of roads in dense urban areas, especially from high 
resolution imagery, there are primary obstacles which lead to 
unreliable extraction results: complicated image scene and road 
model, furthermore, occlusion caused by high buildings and 
their shadows. In other words, the lack of information, 
especially three-dimensional information is the principle 
difficulty in obtaining the road information with high reliability 
and accuracy in the urban scenes.  
 
Airborne lidar (Light Detection And Ranging) is a relatively 
new data acquisition system complementary to traditional 
remote sensing technologies. Lidar data contains plenty of scene 
information, from which most ground features such as roads and 
buildings are discernible. Roads have homogeneous reflectivity 
in lidar intensity and the same height as bare surface in 
elevation. Lidar range data is able to improve the analysis of 
optical images for detecting roads in urban areas (Hofmann, 
2001). But the use of range data requires that the urban areas be 
relatively flat. Some researchers (Zhang et al., 2001; Alharthy 
and Bethel, 2003; Hu, 2003) used the height information 
derived by subtracting the DTM from the DSM to reason if a 
region is on the ground and to compensate the missing 
information in classification of aerial images. In cases when 
shadows or buildings occlude road segments, their shape can be 
well detected due to the height information. Lidar intensity data 
has good separability if the wavelength of the laser is suitable 



for ground materials. The relative separations between ground 
features (i.e., asphalt road, grass, building and tree) have been 
compared using intensity data. It is found that the separabilities 
are very high for road vs. grass and road vs. tree (Song et al., 
2002). In many cities, road networks are arranged in a grid 
structure in urban areas. These grid roads are mainly composed 
of parallel and orthogonal straight roads with respect to the 
main orientation of the network. The existence of streets can be 
detected much more easily from the arrangements than from 
imagery in which the highly complicated image content and 
lack of information lead to high complexity of direct extraction 
of the street network. It is recognized that the simple geometry 
and topology relations among grid streets may be used to 
improve the reliability of road extraction results significantly. 
As mentioned above, instead of using imagery, using lidar data 
can be easier to extract the road primitives in built-up areas, 
while imagery can also be used for additional information for 
verification and accurate extraction. Many clues of road 
existence can be obtained from high resolution imagery.  The 
motivation of this paper is to explore the strategy and 
methodology of integrated processing of lidar data and high 
resolution imagery in order to obtain reliable road network 
information from the dense urban environment. In the followed 
section, the case study data is introduced and the overall 
strategy of the processing is given. The third section describes 
the road extraction methods by using of these two source of 
information, including road area segmentation, road clue 
detection and verification, fusion of the clues from the two data 
sources. The case study result is presented and conclusion 
remarks are then given. 

 

2. OVERVIEW OF INTEGRATED PROCESSING OF 
LIDAR AND HIGH RESOLUTION IMAGERY FOR 

ROAD EXTRACTION 

 

2.1 Data of the Case Study Area 

In early 2002, Optech International, Toronto completed a flight 
mission of acquiring the lidar data of Toronto urban area using 
its ATLM 3200. The lidar dataset provided is around downtown 
region. The roads in the study area are coated with asphalt with 
pebbles or concrete. The first and last returns lidar range and 
intensity data were collected. The dataset contains about 10.6 
million points and has a density of about 1.1 points/m2. We 
generate the DTM using the last-return lidar range data, and 
also obtain the height data by subtracting the DTM from the 
range data (Hu, 2003). The height data contains height 
information that has removed the retain relief relative to the 
bare Earth, and puts all the ground features on a flat reference 
plane. Figure 1 (a) and (b) shows the first-return intensity data 
and the height data. The high resolution imagery is obtained 
from ortho-rectified aerial image of the same area. The image 
resolution is 0.5m. To do integrating processing, it is re-
sampled into 1m resolution and is manually registered with the 
lidar data in geometry. Figure 1 illustrated the lidar data of the 
area. Figure 1 (c) shows an image window of the high resolution 
imagery. Its size is 1024 by 1024 pixel. Considering the 
computational cost, we carry out our extraction in this selected 
area, which demonstrates typical scene of dense urban area. It 
contains buildings with great height, roads (streets) and many 
kinds of typical ground objects (parking lots, grass land, trees, 
vehicles etc.).  It is feasible to testify our method.  

 

 
 
2.2 PROCESSING WORKFLOW 
 
Figure 2 illustrated the workflow of the integrated processing 
for road network extraction from the dense urban environment. 
The strategy is based on an observation to the scene in which 
the major clues of road existence should be from lidar data from 
which the height data enables it eliminate the principle 
difficulties in occlusion of the roads. So firstly the lidar data are 
used to obtain the candidate road stripes, because in the build-
up area the dense building arrangement demonstrates grid 
structure and the grid road network can be perceived easily from 
the structure rather than from optical imagery due to the 
occlusion. The segmented road and open areas could be further 
segmented by using of the results of classification of the optical 
imagery. The grass lands and tree areas are extracted from the 
image by pixel based classification. The open areas extracted 
from the lidar data contain road stripes and parking lot areas. 
Possible parking areas are extracted by morphologic operation 
of the segmented lidar data. To verified and differentiate the 
road stripes and the parking areas, clues from shape analysis 
and vehicle detection are involved. The vehicle detection is 
fulfilled in the high resolution optical imagery. The information 
of verified roads and parking areas is used for formation of the 
road grid.  
 
In the next section, the methods of integrated processing are 
briefly described.  
 
 
 

(a) Lidar intensity data (b) Lidar height data 

(c) High resolution aerial imagery 

Figure 1. Lidar data and imagery used for road extraction  



 

 
 

3. INTEGRATED PROCESSING 
 
3.1 Segmentation of lidar data and high resolution imagery 
 
We separate roads from trees, buildings and grasslands with 
minimum misclassification fusing the intensity and height data. 
In reflectivity, the spectral signature of asphalt roads 
significantly differs from vegetation and most construction 
materials. The reflectivity rate of asphalt with pebbles is 17% 
for the infrared laser, and no other major materials have a close 
reflectivity rate. In height, pavements are attached to the bare 
surface and appear as smooth ribbons separating the street 
blocks in a city.  
 
It can be easily found that integrating intensity and height data 
may produce reliable road detection results. On the one hand, 
the intensity provides the spectral reflectivity, which can help 
identify most roads even if the objects coated by the same 
material are also included. On the other hand, the height data 
can help identify most non-building and non-forest areas even if 
those low open areas such as grasslands are also included. 
Using height information, the built-up areas with higher 
elevations than their surroundings will be safely removed; while 
using the (first-return) intensity information, the vegetated areas 
are easily removed. In detail, compared to roads, grasslands 
have different intensity although they have low elevation, trees 
have different values in both intensity and height, and buildings 
have high structures with elevation jumps although they may be 
coated rainproof asphalt.  
 
After segmentation of the lidar data, the possible road areas and 
other areas are converted to a binary image. Figure 3 shows the 
segmented data. Parking lots are kept because of same 
reflectance and low heights as roads, and bridges and viaducts 
are removed because of their large heights.  
 

From the true colour high resolution imagery, the grass lands 
and tree areas can be separated from the open areas. First, 
because the roads and parking areas are covered and coated by 
concrete or rainproof asphalt, the saturation of the pixels of the 
areas is low while in the grass lands and tree areas it is high and 
the hue tends to be ‘green’. So using a threshold the grass lands 
and tree areas can be separated from the low saturation areas. 
Subtracting the grass lands and tree areas, we can obtain the 
areas containing candidate road stripes and parking areas.  
 

 
 
 
3.2 Extract Road Stripes by Iterative Hough Transform  
 
The streets demonstrate ribbon features in geometry. We used a 
modified Hough transfer method to directly detect the candidate 
stripes of the streets from the segmented lidar data – the binary 
image. Hough transformation is frequently used for extracting 
straight lines. When we treat a ribbon as a straight line with the 
width of the street, traditional Hough transfer can be used for 
the detection of the streets. Figure 4 shows the Hough space 
after once transfer. The space is formed using the straight line as 
given by: 
 θθρ sincos yx +=   (1) 

where θ  is the angle of the line’s normal with the x-axis; ρ  is 
the algebraic distance from the origin to the line.  
 
Instead of detecting the peak points in the transfer space, we 
detect the ‘maximal bars’ as pointed out in Figure 4. To detect 
all possible ribbons, first step is to determine the primary 
direction of the street grid. The parallel ribbons and ribbons 
with right angle crossing to them are also extracted. The 
extraction is conducted directly from the segmented binary 
image on contrast to extraction from ‘thinned’ ribbon, and the 
width can be estimated roughly by the bar width (the difference 
of ?). We iteratively carry out the Hough transform. In each step 
of transform, we only detect a maxima response in the Hough 
space, and then the extracted stripe pixels are removed from the 
binary image. This will reduce the influence of multiple peaks 
in the transform space. The iteration will be terminated by the 
trigger criteria of the maxima that indicates the length of the 
stripe.   
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Figure 2. Workflow of integrated processing 
for road extraction from urban areas 

Vehicle detection  

 

Figure 3. Extracted open areas (white) 
containing road stripes and other areas 



 
 
3.3 Verification of road stripes and parking areas 
 
The detected primary streets by Hough transform are possible 
streets and just straight line equations (parameters). To form a 
real street ‘grid’, we should identify the candidates and remove 
some wrong segments. The first step is to overlay the straight 
lines onto the binary image. For each line, break it to be 
segments where it transverses building areas. It can be fulfilled 
simply by the binary image. Thereafter, each verified line 
segment is adjusted by geometric correction —  to move it to be 
in the street centre where the dual distance between it and the 
building edge is equivalent.  
 
We judge that the short segments going through the big open 
areas are with low possibility of being a part of the street and 
high possibility of being a parking area. To verify a parking area, 
we employ the vehicle clue to confirm the area. The vehicles are 
extracted by a pixel based classification method. Some samples 
of vehicles are provided by manual digitization, and they are 
used for learning the pixel intensity value of the vehicles. The 
possible pixels of the vehicles in the road and parking areas are 
shown in green and blue colours in the Figure 5 (a).  In the 
study, the open areas contain roads and parking lots. We assume 
a region with nearly squared shape and big area has high 
possibility of being parking lots. A morphologic operation is 
applied to the binary image to detect the big open areas. In 
Figure 5 (b), the highlighted areas are possible open areas rather 
than roads, but the roads could go though the area. Combining 
the analysis result of shape and vehicle clue from lidar data and 
the optical imagery, we compute the ‘score’ of an open area of 
being a parking lot. The high score indicates the high possibility 
of being parking lot. By computing the length of the segment 
which goes through the parking area, the segments mostly lie in 

the parking areas are removed. As shown in the Figure 5 (b), the 
short segments circled will be removed because they are most 
likely gong through the parking areas.  
 
 

 
 
3.4 Road Topology  
 
The road topology is formed by intersecting the road segments 
extracted from the previous steps, as shown in Figure 6.  
 
 
 

 
 

Figure 5. Road stripes and parking areas 
verification 

(a) Vehicles are clues of parking areas 

(b) Verified road stripes displayed on the image 

? 

Indicating parallel 
ribbons 

? 

Figure 4. Road stripe detection by Hough 
transform from segmented lidar data 

(a) Visualized Hough transform space 

(b) Detected road stripes displayed on the image 

Figure 6. Road grid formation  



4. CONCLUSIONS 
 
We develop a road extraction method using lidar data and high 
resolution optical images. The method tackles the problem of 
extracting grid roads in urban areas with dense buildings. Using 
lidar data, the difficulty of resolving the occlusion of roads in 
optical images is eliminated. It demonstrates the potential and 
power of using lidar data to extract information from 
complicated image scenes. To obtain more reliable results, 
image analysis (to detect contextual objects: grasslands, parking 
lots, vehicles etc.) for contextual information extraction is 
integrated into the whole procedure. It greatly improves the 
final results in correctness and accuracy. The work described in 
this paper clearly indicates that involving multiple source of 
information will definitely improve the extraction results in the 
complicated scene. Future work will include testing the method 
using more datasets and developing algorithms of adaptive 
threshold determination in the multi-step processing, which will 
be a challenging work. 
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