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ABSTRACT

In this paper, we present work on automatic road extraction from high resolution aerial imagery taken over urban areas. In order to
deal with the high complexity of this type of scenes, we integrate detailed knowledge about roads and their context using explicitly
formulated scale-dependent models. The knowledge about how and when certain parts of the road and context model are optimally
exploited is condensed in the extraction strategy. To exploit information from multiple views, a fusion strategy for road objects (e.g.
lanes) has been developed. It is based on internally computed quality measures and embedded in the system’s concept of self-diagnostic
extraction algorithms. The analysis of the final results shows benefits butalso remaining deficiencies of this approach. We give an
outlook on the utilization of the approach in applications related with traffic monitoring in urban areas.

1 INTRODUCTION

From a practical point of view, research on automatic road extrac-
tion in urban areas is mainly motivated by the importance of geo-
graphic information systems (GIS) and the need for data acquisi-
tion and update for GIS. This demand is strikingly documented in
the survey on 3D city models initiated by the European Organiza-
tion for Experimental Photogrammetric Research (OEEPE, now
called EuroSDR) a few years ago (Fuchs et al., 1998). Applica-
tions of road data of urban areas include analyses and simulations
of traffic flow, estimation of air and noise pollution, street main-
tenance, etc.

From a scientific perspective, the extraction of roads in complex
environments is one of the challenging issues in photogrammetry
and computer vision, since many tasks related to automatic scene
interpretation are involved. Factors greatly influencing the scene
complexity are, for instance, the number of different objects, the
amount of their interrelations, and the variability of both. More-
over, each factor—and thus the scene complexity—is related to
a particular scale. To accommodate for such factors, techniques
like detailed semantic modelling, contextual reasoning, and self-
diagnosis have proven to be of great importance over the past
years. It is clear that these techniques must be integral parts of an
extraction system to attain reasonably good results over a variety
of scenes.

Before describing the details of how our approach tries to cope
with these challenges we briefly review work on automatic road
extraction with emphasis on approaches dealing with urban envi-
ronments (Section 2). In Section 3, we present underlying ideas
and basic components of our road and context model. The ex-
traction strategy is outlined in Section 4, illustrated by results of
intermediate steps. Special focus is thereby on fusing road ob-
jects extracted in multiple overlapping images. In Section 5, a
numerical evaluation of the results currently achievable with our
system is given followed by a discussion of the advantages and
remaining deficiencies of the proposed approach. We conclude
the paper with an outlook on future work (Sect. 6).

2 RELATED WORK

Compared to the relatively high number of research groups focus-
ing their work on road extraction in rural areas, only a few groups

work on the automatic extraction of roads in urban environments
(see articles in (Gr̈un et al., 1995, Gr̈un et al., 1997, Agouris and
Stefanidis, 1999, Baltsavias et al., 2001)). Most of the past and
current efforts in road extraction rely on road models that describe
the appearance of roads in rural terrain rather than in settlements.
However, throughout all the different approaches, some issues
have proved to be essential: By integrating a flexible, detailed
road and context model one can capture the varying appearance
of roads and the influence of background objects such as trees,
buildings, and cars in complex scenes (Baumgartner et al., 1999,
Ruskońe, 1996, Strat and Fischler, 1995). The fusion of different
scales helps to eliminate isolated disturbances on the road while
the fundamental structures are emphasized (Mayer and Steger,
1998). This can be supported by considering the function of roads
connecting different sites and thereby forming a fairly dense and
sometimes even regular network. Hence, exploiting the network
characteristics adds global information and, thus, the selection of
the correct hypotheses becomes easier (Fischler and Heller, 1998,
Price, 2000, Wiedemann and Ebner, 2000). Last but not least,
another important point is the integration of self-diagnosis tech-
niques. They are used to evaluate the reliability of hypotheses
of both low level features and higher level objects, which in turn
facilitates decisions that inherently appear during the extraction
process (Hinz and Baumgartner, 2002, Tupin et al., 1999, Tönjes
et al., 1999).

3 MODEL

3.1 Road Model

The road model illustrated in Fig. 1 a) compiles knowledge about
radiometric, geometric, and topological characteristics of urban
roads in form of a hierarchical semantic net. The model rep-
resents the standard case, i.e., the appearance of roads is not
affected by relations to other objects. It describes objects by
means of ”concepts”, and is split into three levels defining dif-
ferent points of view. The real world level comprises the objects
to be extracted: The road network, its junctions and road links,
as well as their parts and specializations (road segments, lanes,
markings,...). These concepts are connected to the concepts of
the geometry and material level via concrete relations (Tönjes et
al., 1999). The geometry and material level is an intermediate
level which represents the 3D-shape of an object as well as its



(a) Road Model (standard case) (b) Local Context Model

Figure 1: Model for roads and their context.

material describing objects independently of sensor characteris-
tics and viewpoint (Cĺement et al., 1993). In contrast, the image
level, which is subdivided into coarse and fine scale, comprises
the features to detect in the image: Lines, edges, homogeneous
regions, etc. Whereas the fine scale gives detailed information,
the coarse scale adds global information. Because of the abstrac-
tion in coarse scale, additional correct hypotheses for roads can
be found and sometimes also false ones can be eliminated based
on topological criteria, while details, like exact width and posi-
tion of the lanes and markings, are integrated from fine scale. In
this way the extraction benefits from both scales.

3.2 Context Model

The road model is extended by knowledge about context: So-
called context objects, i.e., background objects like buildings or
vehicles, may hinder road extraction if they are not modelled ap-
propriately but they can substantially support the extraction if
they are part of the road model. We define global and local con-
text:

Global context: The motivation for employing global context
stems from the observation that it is possible to classify seman-
tically meaningful image regions—so-called context regions—
where roads show typical prominent features and where certain
relations between roads and background objects have a similar
importance and characteristics. Consequently, the relevance of
different components of the road model and the importance of
different context relations (described below) must be adapted to
the respective context region. In urban areas, for instance, rela-
tions between vehicles and roads are more important since traffic
is usually much denser inside of settlements than in rural areas.
We distinguish urban, forest, and rural context regions, which are
extracted by a texture-based segmentation (see (Baumgartner et
al., 1999, Hinz et al., 2001)).

Local context: We model the local context with so-called con-
text relations, i.e., certain relations between a small number of
road and context objects. In dense settlements, for instance, the
footprints of buildings are almost parallel to roads and they give
therefore strong hints for road sides. Vice-versa, buildings or
other high objects potentially occlude larger parts of a road or
cast shadows on it. A context relation ”shadow”, for instance,
can tell an extraction algorithm to choose modified parameter
settings. Also vehicles occlude the pavement of a lane segment.
Hence, vehicle outlines as, e.g., detected by the algorithm pre-
sented in (Schlosser et al., 2003) can be directly treated as parts

Figure 2: Model for grouped markings:
Components used forextraction Components used forevaluation

. Orientation difference of pairs of
markings and gaps: limited

. Lengths of markings and gaps: con-
stant within group

. Gap length: limited . Overall curvaturës: low

. Length of group: lower bound . Height variation ofs: low

of a lane. In a very similar way, relations to sub-structures and
the integration of GIS-axes—though not used here—can be mod-
elled. Figure 1 b) summarizes the relations between road objects,
context objects, and sub-structures by using the concepts ”Lane
segment” and ”Junction” as the basic entities of a road network.

3.3 Model for Self-Diagnosis

In order to enable the computation of internal quality measures
during extraction, the criteria (i.e. model components) defining
an object are divided into two different types. Model compo-
nents of the first type are used to extract an instance of an object
and the components of the second type serve for evaluating its
quality. For guaranteeing an unbiased evaluation, model com-
ponents belonging to different types should be independent from
each other. Figure 2 illustrates this for the case of grouped mark-
ings: Components listed in the left column are used to create a
group of markings. The parameters listed in the right column are
computed from each marking group and matched to predefined
evaluation functions according to fuzzy-set theory. The fuzzy ag-
gregation of all matches yields a confidence value indicating the
reliability of the extracted object. A description of all involved
evaluation models can be found in (Hinz and Baumgartner, 2002).



4 EXTRACTION AND FUSION OF ROAD OBJECTS

4.1 Extraction of Road Objects — Overview

The extraction strategy inheres knowledge about how and when
certain parts of the road and context model are optimally ex-
ploited, thereby being the basic control mechanism of the ex-
traction process. It is subdivided into three levels (see Fig. 3):
Context-based data analysis comprises the segmentation of the
scene into the urban, rural, and forest area and the analysis of con-
text relations. While road extraction in forest areas seems hardly
possible without using additional sensors, e.g., infrared or LI-
DAR sensors, the extraction in rural areas may be performed with
the system of (Baumgartner et al., 1999). In urban areas, extrac-
tion of salient roads includes the detection of homogeneous rib-
bons in coarse scale, collinear grouping thin bright lines, i.e. road
markings, and the construction of lane segments from groups of
road markings, road sides, and detected vehicles. The lane seg-
ments are further grouped into lanes, road segments, and roads.
During road network completion, finally, gaps in the extraction
are iteratively closed by hypothesizing and verifying connections
between previously extracted roads. Similar to (Wiedemann and
Ebner, 2000), local as well as global criteria exploiting the net-
work characteristics are used. Figures 4 and 5 illustrate interme-
diate steps of extraction and Figs. 6 and 7 show typical results.
For details regarding the extraction we refer the reader to (Hinz
et al., 2001, Hinz and Baumgartner, 2002). The system described
there extracts roads from a single image and uses a DSM and
views from other images to circumvent occlusions. In contrast,
the new version extracts roads from all available images and fuses
them in object space. The next section focuses on this particular
issue.

Figure 3: Extraction Strategy.

Figure 4: Examples of intermediate steps during road extraction.

4.2 Fusion of Road Objects

To exploit information from multiple views, an appropriate fu-
sion strategy has been developed, which is especially suitable for
complex environments like urban areas. It can be characterized
by following features: 1) It is based on objects, i.e., parts of the
road network such as lane segments and road segments 2) It is
carried out in object space 3) It is embedded in the system’s con-
cept of self-diagnostic extraction algorithms. From a method-
ological viewpoint, the novelty of this approach mainly relates to
the incorporation and use of self-diagnosis algorithms for fusion.
The first two points, however, accommodate the special proper-
ties of urban scenes and are thus of no minor importance. In the
following comments on each point are given:

Ad 1) Fusion is based on objects because, as mentioned above,
aerial images of urban areas show very high complexity. If fusion
would be based on low level image primitives like raw gray val-
ues or edge structures, either an extremely accurate DSM must
be given (effectively a 3D city model) or the fusion algorithm has
to cope with many ambiguities and many conflicting hypothe-
ses that occur when matching primitives over different images.
Hence, our philosophy is to stay in 2D as long as possible and
to extract objects of large extent and high semantics in each im-
age separately. Matching such kind of objects over images is
much easier and the requirements on a DSM can be relaxed sig-
nificantly. In the case of our road extraction system, the ob-
jects which are subject for fusion are lane segments extracted in
each available image. These are constructed in previous process-
ing steps from groups of markings (i.e., thin bright lines) and
(anti-)parallel road sides (i.e., grayvalue edges) while constrain-
ing them to enclose a homogeneous region or alternatively a ve-
hicle (Hinz et al., 2001, Schlosser et al., 2003).

Ad 2) The main reason for performing fusion in object space is
its natural way in treating each image with equal importance and
not preferring any image a priori. Thus a dependence of the fi-
nal results on the processing order of the images can be avoided.
As a side effect, objects extracted in images of different resolu-
tions may be combined easily and all necessary parameters can
be passed in real-world values.

Ad 3) The fusion algorithm is embedded in the system’s concept
of self-diagnostic extraction algorithms. The idea behind this ap-
proach is that each module used during extraction should attach
its result with a confidence value indicating the quality how well
the job has been done. Our approach to define evaluation crite-
ria from which the confidence values can be calculated is to split
up the components of the underlying object models into two dif-
ferent types. Model components of the first type are used for
extracting an instance of an object and the components of the
second type serve as criteria for evaluating the quality of the ex-
tracted instance. For guaranteeing an unbiased evaluation, model
components belonging to different types should be independent
from each other. In order to evaluate a certain object, pre-defined
fuzzy functions are used. Since the road model underlying our



Figure 5: Lanes extracted in different images (a,b) and their superimposition (c) calculated using DSM (d: grayvalue coded DSM).

system is designed in a hierarchical way (roads consist of lanes
which again consist of markings and road sides, etc.), the confi-
dence measure of each object are used in three different ways:

a) Confidence propagation: Confidence values of lower level ob-
jects (e.g., groups of markings and road sides) are combined us-
ing the principles of fuzzy-set theory and propagated to the next
level of the model hierarchy (e.g. lanes).

b) Autonomous evaluation: According to our model for self-
diagnosis, at each level, object knowledge not used for extrac-
tion or evaluation at lower levels is incorporated, e.g., each lane
should have a parallel counterpart (one lane roads are not con-
sidered). Note that this evaluation is independent of propagated
confidence values (therefore ”autonomous”).

c) Consistency check: The score of autonomous evaluation of a
higher level object are used to test the consistency of lower level
objects. Consider, for instance, a hypothesis of a two-lane road
segment (i.e., the higher level object) of which the first lane is ex-
tracted correctly but the other one is extracted only in fragments,
e.g., due to inhomogeneities of the pavement. The latter lane
hypothesis has consequently a low rating through autonomous
evaluation, however, from the higher level point of view, there is
strong evidence that this particular hypothesis is correct. Hence,
such a hypothesis would pass the consistency check and is kept
for further processing. In general, this means for the implementa-
tion that a hypothesis—regardless of its autonomous evaluation—
is kept as long as the next level in the model hierarchy is com-
pletely processed and evaluated.

Implementation: This concept is also applied and implemented
for fusion of road information from multiple views. Lanes are
extracted in each image separately (see Fig. 5) and projected on
a fairly accurate DSM (grid size and accuracy ca. 2m). In case
of overlapping lanes, the lane having the best (propagated) con-
fidence value is selected first and its mutual overlap with other
lanes is computed. The score for autonomous evaluation of such
a lane is calculated from the overlap ratios of lanes extracted in
other images including weights for their deviation in position and
direction. After deleting redundant parts of lanes the lane with the
second highest confidence value is selected, and so forth. Thus a
unique set of fused lanes is achieved. In the next hierarchy level,
road segments are constructed from the fused lanes, i.e., parallel
and collinear lanes are merged. Note, that the individual lanes of
a road segment may be fragmented as long as a parallel lane pro-
vides a connection from one lane fragment to another fragment.
The average degree of fragmentation of a road segment serves as
consistency check for the fused lanes, i.e., lanes are rejected if
not enough evidence is given for grouping them into larger road
objects.

Tests with less accurate DSMs have shown that the use of lanes
as objects to be fused may lead to matching ambiguities. Hence,
an alternative version of the system (Hinz, 2003) uses the object
”road segment”—an object with more semantics (see the model
hierarchy in Fig. 1 a)—for fusion.

5 EVALUATION OF THE RESULTS AND DISCUSSION

Figures 6 and 7 illustrate the final result of road extraction in two
parts of the Zurich Hoengg dataset (Baltsavias et al., 2001). As
can be seen, major parts of the road networks have been extracted
in spite of the high complexity of the scenes. The system is able to
detect shadowed road sections or road sections with rather dense
traffic (see e.g. Fig. 7 a and b). The results have been evaluated
by matching the extracted road axes to manually plotted reference
data. Table 1 summarizes the numerical values according to the
definition of (Wiedemann, 2003). As can be seen, we achieve
a completeness of more than 75% and a correctness of about
95% regarding the extracted road axes that could be linked into a
network. Also the evaluation of the network characteristics yields
satisfying results since for all evaluation criteria (detour/shortcut
factor, topological completeness, topological correctness) values
close to the optimum are reached.

Evaluation criteria Data set I: Data set II:
Completeness [%] 76.6 81.6
Correctness [%] 98.8 95.0
RMS-Error [m] 1.3 2.5
Mean detour factor [ ] 1.04 1.05
Mean shortcut factor [ ] 0.95 0.95
Topological completeness [%] 100.0 84.0
Topological correctness [%] 96.2 100.0

Table 1: External Evaluation of extracted road axes.

However, it must be noted that some of the lane segments have
been missed or have been linked incorrectly (Fig. 7 b). This is
most evident at complex road junctions and crossings in both im-
age parts, where only spurious features for the construction of
lanes have been extracted. Another obvious failure can be seen at
the right branch of the junction in the central part of Data Set II
(Fig. 7 a). The tram and trucks in the center of the road have been
missed since our vehicle detection module is only able to extract
vehicles similar to passenger cars. Thus, this particular road axis
has been shifted to the lower part of the road where the imple-
mented parts of the model fit much better. As a consequence, the
RMS-value drops down from acceptable 1.3m in Data Set I to
poor 2.5m in Data Set II. The interested reader may be referred to
the much more exhaustive evaluation carried out in (Hinz, 2003).

In summary, the results indicate that the presented system extracts
roads even in complex environments. An obvious deficiency ex-
ists in form of the missing detection capability for vehicle types
as busses and trucks. However, the main bottleneck of our sys-
tem is the (still) weak model for complex junctions. Hence, be-
sides the aforementioned improvement of verifying connection
hypotheses, one of our next steps will be directed towards the
modelling and reliable detection of road junctions. As a final re-
mark regarding the percentages of correctness and completeness
we would like to mention that, in spite of the definitely encour-
aging results, it would be unfair to disregard the fact that these
percentages can be achieved only due to the expertise of the sys-
tem developers in setting the parameters correctly (as it is surely



(a) External evaluation of road axes.

(b) External evaluation of lanes.

Figure 6: External Evaluation of Data Set I: Reference matching
extraction (bold); missed reference (thin).

true for every experimental fully-automatic system at present). In
this field, we are still at the stage of fundamental research and
there are still many questions left open and still many steps to go
so that a state of maturity is reached to envisage a transition to
operational use.

6 OUTLOOK — BEYOND ROAD EXTRACTION

In the last section of this paper, we will show that results like
those obtained above can give valuable support for other applica-
tions. We exemplify this by two complementary approaches for
monitoring traffic in urban areas. The first approach uses optical
data similar to that used for road extraction, while the second one
is designed to extract vehicles from thermal infrared data. In con-
trast to most related work on car detection, both approaches rely
upon local as well as global features of vehicles.

6.1 Car Detection in Optical Imagery

To model a vehicle for high resolution optical data, a 3D-
wireframe representation is used that describes the prominent ge-
ometric and radiometric features of cars including their shadow
region. The radiometric part of the model is adaptive because,
during extraction, the expected saliencies of various edge features

(a) Data Set II: Reference matching extraction (bold); missed reference (thin).

(b) Detailed views of extracted lanes.

Figure 7: Extraction and evaluation of Data Set II.

are automatically adjusted depending on viewing angle, vehicle
color, and current illumination direction. The extraction is carried
out by matching this model ”top-down” to the image and evaluat-
ing the support found in the image. On global level, the detailed
local description is extended by more generic knowledge about
vehicles as they are often part of vehicle queues. Such groupings
of vehicles are modelled by ribbons that exhibit the typical sym-
metries and spacings of vehicles over a larger distance. To make
use of the supplementary properties of local as well as global
features, the algorithms for vehicle detection and vehicle queue
detection are run independently first. Then, the results of both are
fused and queues with enough support from the detailed vehicle
detection are selected and analyzed for rectangular blobs to re-
cover vehicles missed during the previous steps (see Fig. 8 a). De-
tails regarding the implementation of this approach can be found
in (Hinz, 2004b).

Typical problems are posed by cars that are not part of a queue
and whose sub-structures (hood, windshield, etc.) give not
enough evidence for a successful detection. However, the inte-
gration of intermediate or final results of road extraction helps es-
pecially to find such cars, since the road information around a car
now supplements the (missing) evidence of a car’s sub-structures.
Figures 8 b) and c) show an example of extracting a car between
the ends of two lane segments.

6.2 Car Detection in Thermal Imagery

Compared to optical data, thermal imagery has generally a lower
resolution and usually a worse noise level because of the higher
sensitivity of the scanner. However, thermal sensors show also a
number of advantages—most notably their night imaging capa-
bility and their potential to derive temperature and temperature
differences of objects, thus allowing for inferences about the cur-
rent activity of objects even if they are not moving. For these
reasons, thermal imagery has become a very attractive alternative
for monitoring vehicle activity.



(a) Extracted queue of cars (without road information).

(b) Connection (black) between extrac-
ted lanes (white) as region of interest.

(c) Extracted car (incl. substructures)
within region of interest.

Figure 8: Extraction of cars in optical imagery.

Since vehicles appear only as small, elliptical, dark or bright
”blobs” in these images (resolution about 1m), many other ob-
jects in urban areas exhibit a very similar appearance. Thus, a
reasonable good system for vehicle detection from thermal im-
agery must make use of additional information. Knowledge about
the appearance of cars as repetitive patterns in dense traffic situ-
ations or in filled parking lots provides such additional informa-
tion. This kind of knowledge is used in the example shown in
Fig. 9 (Details regarding the methodology of the approach can be
found in (Hinz, 2004a)).

However, as can be also seen from Fig. 9, each car that is too far
away from another car has been rejected during generating ve-
hicle queues from the individual car hypotheses. To detect also
isolated cars with high confidence, information about the road —
or even better: the lane a car is driving on—needs to be included.
Unfortunately, this information is almost impossible to extract
from thermal imagery itself, since road sides are rarely visible
therein (see Fig. 9). But clearly, road data from an external source
are appropriate means to deliver the necessary information, and
the road extraction system described above is able to serve as
such a source. What is more, since it extracts not only road axes
but also lanes, even the current state of the system will poten-
tially be better suited for this particular application than common
map data. Further developments and tests will show whether this
expectation will be met.
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