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ABSTRACT: 
 
Image fusion deals with the integration of remote sensing images from various sensors, with multi-spectrum and high-spectrum, 
multi-angle viewing and multi-resolutions, aiming at achieving improved image quality to better support improved image 
classification, monitoring and etc. The main goal of this paper is to introduce a new approach to fuse panchromatic image and 
multi-spectral images by complex wavelet. First, the theoretical basis of complex wavelet is described together with its key 
properties(e.g. approximate shift invariance, good directional selectivity, perfect reconstruction(PR),limited redundancy and efficient 
order-N computation). Secondly, the new method for fusing remote sensing images based on complex wavelet is proposed. Finally 
experiment results show that the fusion method based on complex wavelet transform is remarkably better than the fusion method 
based on classical discrete wavelet transform. 
 

1.  INRTRODUCTION 

Image fusion deals with multi-sensors, multi-spectrum, 
multi-angle viewing and multi-resolutions remote sensing 
images from various, with, aiming at achieving improved image 
quality to better support improved image classification, 
monitoring and etc. Fused image will enhance reliability and 
speed of feature extraction, increase the usage of the data sets, 
and extend remote sensing images’ application area. There have 
been a lot of research efforts on image fusion, and many fusion 
methods have been proposed. However, these image fusion 
methods are not enough and cause some difficulties for image 
analysis and application. 
 
The advantages of wavelet transform is that it can analyze signal 
in time domain and frequency domain respectively and the 
multi-resolution analysis is similar with Human Vision System. 
The Discrete Wavelet Transform (DWT) in its maximally 
decimated form established by Mallat (S G Mallat, 1989) is 
widely used in image processing now. If we fuse a high 
resolution panchromatic image and a multi-spectral image by 
DWT, the fused image can conserve more spectral 
characteristics of the multi-spectral image. So the fusion method 
based on DWT is frequently used and become one of main 
fusion methods. But the DWT has two main disadvantages (N. 
Kingsbury, 1998a):  
� Lack of shift invariance. This means that small shifts in 

the input signal can cause major variations in the 
distribution of energy between DWT coefficients at 
different scales. 

� Poor directional selectivity for diagonal features, because 
the wavelet features are separable and real. 

 
Nick Kingsbury has introduced the Dual-Tree Complex 
Wavelet Transform (DT CWT), which has the following 
properties (N. Kingsbury, 1998a): 
� Approximate shift invariance; 
� Good directional selectivity in 2-dimensions (2-D) with 

Gabor-like filters also true for higher dimensionality: 
m-D); 

� Perfect reconstruction (PR) using short linear-phase 
filters; 

� Limited redundancy: independent of the number of scales: 
2:1 for 1-D ( 1:2m  for m-D); 

� Efficient order-N computation - only twice the simple 
DWT for 1-D ( m2  times for m-D); 

 
The CWT has shown good performance in image restoration 
and denoising (A. Jalobeanu , 2000; Nick Kingsbury�1998b; 
Peter de Rivaz�2001), motion estimation (Julian Magarey�
1998), image classification (Serkan Hatipoglu, 1999), texture 
analysis (Javier Portilla, 1999; N. Kingsbury, 1998; Serkan 
Hatipoglu, 1999), image enhancement (Nick Kingsbury�1998b), 
image matching (JIANG Han-ping , 2000).  
 
In this paper, we propose a image fusion method based on CWT 
multi-resolution analysis. Experiment results show that the 
quality of fusion image based on CWT is better than fusion 
image based on DWT. 



2.  THE 1-D DUAL-TREE COMPLEX WAVELET 

TRANSFORM 

It is well-known that the real biorthogonal wavelet transform 
can provide PR and no redundancy, but it is lack of shift variant. 
Then Kingsbury (Julian Magarey�1998;N. Kingsbury, 1998a ; 
Nick Kingsbury�1998b; Serkan Hatipoglu, 1999) has developed 
a dual-tree algorithm with a real biorthogonal transform, and an 
approximate shift invariance can be obtained by doubling the 
sampling rate at each scale, which is achieved by computing 
two parallel subsampled wavelet trees respectively. 
 
For one dimension signal, we can compute two parallel wavelet 
trees. There is one sample offset delay between two trees at 
level 1, which is achieved by doubling all the sample rates. The 
shift invariance is perfect at level 1, since the two trees are fully 
decimated. To get uniform intervals between two trees beyond 
level 1, there have to be half a sample delay. The term will be 
satisfied using odd-length and even-length filters alternatively 
from level to level in each tree. Because we use the decimated 
form of a real discrete wavelet transform beyond level 1, the 
shift invariance is approximate.  
 
The transform algorithm is described as following. Its process is 
illustrated by fig.1. 
1D COMPLEX WAVELET TRANSFORM: 
� At level 1, there is one sample offset between the trees. 
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� Beyond level 1, there must be half a sample difference 

between the trees.  
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Figure 1. The unidimensional dual tree complex wavelet 

transform 
The details 

Ad  and 
Bd  can be interpreted as the real and 

imaginary parts of a complex process 
BA iddz += . The essential 

property of this transform is that the magnitude of the step 
response is approximately invariant with the input shift, while 
only the phase varies rapidly (see (Nick Kingsbury�1998a) for a 
good illustration).(A. Jalobeanu , 2000) 
 
It is not really a complex wavelet transform, since it does not 
use any complex wavelet. It is implemented with real wavelets. 
Classical complex-valued wavelet transforms can provide appr- 
oximate shift invariance and good directionality, but PR and 
good frequency characteristics cannot be obtained using compl- 
ex filters in a single tree. At the same time, it is different from a 
real wavelet transform because of the variety of filters. At level 
1, the filter in tree A are odd-length filter, is same to tree B. 
Beyond level 1, the filters in two trees are different, and they are 
different between different levels in each tree. Hence the 
wavelet functions varies continuously from level to level, whic- 
h is quite different from the classical multi-resolution analysis. 
 
Reconstruction is performed independently in each tree, and the 
results are averaged to obtain 0a at level 1, for symmetry 
between the two trees. This is illustrated by the following 
algorithm and fig 2. 
1D INVERSE COMPLEX WAVELET TRANSFORM: 
� Level j  ( 0>j ): 
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Figure 2. The unidimensional dual tree inverse complex wavelet 

transform 



3.  THE 2-D DUAL-TREE COMPLEX WAVELET 

TRANSFORM 

For 2-D signals, we can filter separately along columns and then 
rows by the way like 1-D. Kingsbury figured out in (Nick 
Kingsbury�1998a) that, to represent fully a real 2-D signal, we 
must filter with complex conjugates of the column and row 
filters. So it gives 4:1 redundancy in the transform. Furthermore, 
it remains computationally efficient, since actually it is close to 
a classical real 2-D wavelet transform at each scale in one tree, 
and the discrete transform can be implemented by a ladder filter 
structure. 
 
The quad-tree transform is designed to be, as much as possible, 
translation invariant. It means that if we decide to keep only the 
details or the approximation of a given scale, removing all other 
scales, shifting the input image only produces a shift of the 
reconstructed filtered image, without aliasing. ( A. Jalobeanu , 
2000) 
 
The most important property of CWT is that it can separate 
more directions than the real wavelet transform. The 2-D DWT 
produces three bandpass subimages at each level, which are 
corresponding to LH, HH, HL, and oriented at angles of 0o , ±
45o, 90o. The 2-D CWT can provide six subimages in two 
adjacent spectral quadrants at each level, which are oriented at 
angles of ±15o , ±45o, ±75o. This is shown in fig 3. The strong 
orientation occurs because the complex filters are asymmetry 
responses. They can separate positive frequencies from negative 
ones vertically and horizontally. So positive and negative 
frequencies won’t be aliasing. The orientations of details is 
shown in fig 4. Fig 5 shows the transform of an isotropic 
synthetic image at level 3, which also contains details at 
different scales. The orientation selectivity is more clear under 
each scale in comparison with the classical wavelet transform. 
 
Since CWT has so many advantages, we consider use CWT to 
carry out image fusion instead of DWT. Then we design an 
image fusion method based on CWT in next section. 

4.  AN IMAGE FUSION APPRAOCH BASED ON CWT 

The DWT has already been used for image fusion ten years ago. 
Though image fusion approaches by wavelet transform have 
been improved to be adaptive to process varied images, two 
disadvantages (lack of shift invariance and poor direction 
selectivity) still exist. They have hampered the further 
application of wavelet transform in image fusion. 
 
The CWT is a good solution to this problem. It is approximate 
shift invariant. If the input signal shift a few samples, the fused 
image will be reconstructed without aliasing, which is useful to 
the not strictly registered images. Morover it can separate 
positive and negative frequencies and  provide 6 subimages 
with different directions at each scale. So the details of CWT 
can conserve more spatial information than DWT. The spatial 

 

Figure 3. 2-D impulse responses of the complex wavelets at 
level 4 (6 bands at angles from -75o to +75o) and equivalent 

responses for a real wavelet transform (3 bands) 

- N/ 2 N/ 2

- N/ 2

0

 

Figure 4. Directional selectivity of the frequency space 
corresponding to the complex wavelet transform 

 

    
Figure 5. Left : isotropic test image containing various scale 

information, right: magnitude ofits complex wavelet transform 
at level 3 showing both directional and scaling properties 

 
can conserve more spatial information than DWT. The spatial 
resolution of the fused image is more closer to the 
high-resolution image. PR, limited redundancy and high 
computation efficiency make it suitable for image fusion.  
 
We design an approach based on the quad-tree complex wavelet 
transform for fusing a low resolution multi-spectral image and a 
high resolution panchromatic image. First the registered 
multi-spectral image and panchromatic image are decomposed 
by complex wavelet respectively , then the approximate and 
detail parts of two images are fused according to some rule at 
each level, finally the fused image is reconstructed. This is 
illustrated by fig 6. The fusion procedure can be described 
detailedly as following: 
 
(1)Each band of the low resolution multi-spectral image and the 
high resolution panchromatic image are geometrically 
registered to each other. After geometrical rectification , the 
images have the same size. 
(2)The panchromatic image  is stretched tally with each band 
of multi-spectral images respectively according to the 
histogram.  
(3)Decomposed the histogram-specified panchromatic image 



and registered multi-spectral images with complex wavelet 
transform to form their multi-resolution and multi-directional 
descriptions. At the same time, the magnitudes of their complex 
wavelet transform are achieved. 
(4)Image fusion begins with the coarsest level, the low 
frequency parts are replaced by the corresponding parts of 
multi-spectral images respectively. The high frequency parts at 
each scale cannot be replaced directly by the high frequency 
parts of panchromatic image, since the high frequency parts of 
the multi-spectral image don’t only include spatial information, 
but also include spectral information. Considering that the 
complex wavelet transformation of the images can be 
interpreted as a complex process including real parts and 
imaginary parts and the magnitudes can show clear 
directionality, we fuse the high frequency parts according to the 
magnitudes. The details is illustrated in fig.6. 
 
The wavelet coefficients at point ),( ji  of real and imaginary 
parts in the high resolution image are denoted as ),( jiW H

R
 and 

),( jiW H
I

 respectively. The wavelet coefficients at point ),( ji   
of real and imaginary parts in the low resolution image are 
denoted as ),( jiW L

R
 and ),( jiW L

I
 respectively. The 

magnitudes at point ),( ji  in the high resolution image and the 
low resolution image are achieved respectively by 
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The wavelet coefficient ),( jiCW  at point ),( ji  in the fused 
image is obtained as following 
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And then, the inverse wavelet transformations are carried out 
for composing the new merged images at this level. 
(5)The replacement and composing procedure in (4) are carried 
out recursively at their top levels until the first level is processed. 
This results in three new images. 
(6) The three new produced images are compounded into one 
fused image. The fused image does not only contain the spectral 
information content of original multi-spectral images and the 
structure information content of panchromatic image, but also 
enhance the original spectral and spatial information.  

5.  EXPERIMENTS 

We chose two group images in experiments. One group includes 
a SPOT panchromatic image (acquired in 2002, ground 
resolution is 10 meters) and a Landsat7 TM multi-spectral 
image composed of 4th, 5th and 7th  bands (acquired in 2000, 
ground resolution is 30 meters). The other  
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Figure 6. Procedure of image fusion based on complex wavelet 
transform 

 
includes a IKONOS panchromatic image (ground resolution is 1 
meters) and a IKONOS multi-spectral image (ground resolution 
is 4 meters), they are both acquired in 2003. The two groups of 
images are shown in fig 7 and fig 9. They have been registered 
strictly at the same scale. We fuse the images with different 
methods including direct power average, high pass filter, 
Intensive-Hue-Saturation (IHS) transform, DWT, discrete 
wavelet packet transform (DWPT). These images are used to 
compare with the image fused by CWT. 
 
First we observe the fused images in fig 8 and fig 10. We find 
that (c) fully conserve spatial information of high-resolution 
image, but evident spectral distortion exist. The spatial 
resolution and spectral resolution of (a) and (b) have been 
improved limitedly. Then we find that the spectral 
characteristics of (d), (e), (f) are closer to the original 
multi-spectral image than other fused images. Among (d), (e) 
and (f), the spectral characteristic of (d) is closest to the original 
multi-spectral image, the spectral characteristic of (e) is similar 
with (f). Moreover, there is slight sawtooth in (d), (e) , but (f) is 
perfectly smooth and clear. The discrete wavelet transform, 
discrete wavelet packet transform and complex wavelet 
transform are all carried out at two levels, therefore we can put 
them together for comparison. 
 
Secondly we evaluate the performance of the fusion method 
based on complex wavelet transform using image quality 
indexes. The indexes we selected are average value, standard 
difference, entropy, average grads and fractal dimensions. 
Average value can show the distribution of the image grayscale 
in the rough. Standard difference and entropy can measure the 
information abundance in the image. Average grads shows 
exiguous contrast ,varied texture characteristic and definition of 
the image. Fractal dimensions can describe the abundance 
degree of texture characteristics and the variety of pixel value in 



the image. The statistics is shown in tab 1. 
 
Table 1 shows that average value of fig 8(d) is closest to fig 7(b), 
fig 8(e) and fig 8(f) are very close to fig 7(b), but fig 8(c) is 
greatly different from fig 7(b). This demonstrates that the 
spectral characteristic of fig 8 (d) is closest to fig 7(b), the 
spectral characteristics of fig 8 (e) and fig 8 (f) are similar with 
fig 7(b). There is evident spectral distortion in fig 8(c). The 
conclusion accords with our observation. The statistics of 
standard difference and entropy show that spatial resolution of 
all the fused images have been improved, fig 8(c) is the clearest, 
fig 8 (f) is next best. Average grads and fractal dimensions of fig 
8 (f) both are highest, since the details have been enhanced in 
fusion process, roads, bridges, airports, rivers and other objects 
are distinguished more easily. 
 
Table 2 shows the result similar with table 1. Standard 
difference, entropy, average grads and fractal dimensions of fig 
10 (f) all are highest, which shows obviously the details are 
enhanced. But the average value of fig 10 (f) is higher than other 
fused images except fig 10 (e), which demonstrates some 
distortions exist.  
 
In a word, though there is slight spectral distortion in the fused 
image based on complex wavelet transform, it’s spatial 
resolution and details texture have been enhanced remarkably. 
This demonstrates that the fusion method based on complex 
wavelet transform is better than the fusion method based on 
discrete wavelet transform and discrete wavelet packet 
transform. 

6.  CONCLUSIONS 

In this paper, first we introduce a dual-tree complex wavelet 
transform with approximate shift invariance, good directional 
selectivity, PR, limited redundancy and efficient computation. 
Then we carry out image fusion using CWT instead of classical 
DWT, design a image fusion approach based on CWT. 
Experiment results show that the fusion method based on CWT 
is better than the fusion method based on DWT and DWPT. 
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 Average Value Standard Difference Entropy Average Grads Fractal Dimensions 

SPOT panchromatic image 130.327910 40.038097 6.987931 12.564874 2.952943 

Landsat7 TM multi-spectral image 128.069414 23.931238 11.223637 4.046452 2.907271 

direct power average 123.700075 21.678290 10.764350 5.870725 2.943095 

high pass filter 123.699798 21.678528 10.764387 5.870922 2.943089 

IHS transform 126.661916 43.560041 12.659949 13.679566 2.947926 

discrete wavelet transform 127.556114 26.931699 11.492410 10.465421 2.956894 

discrete wavelet packet transform 136.432717 24.632584 11.243407 8.922076 2.962865 

complex wavelet transform 136.289744 28.501428 11.467674 12.921713 2.986830 

Table 1. Statistics of quality indexes for evaluating the images in fig. 7 and fig. 8 
 



 Average Value Standard Difference Entropy Average Grads Fractal Dimensions 

IKONOS panchromatic image 55.003892 47.292947 6.971110 15.709922 2.950696 

IKONOS multi-spectral image 54.959930 51.830456 12.012438 4.838858 2.881100 

direct power average 52.168844 47.320513 11.948496 8.952973 2.915515 

high pass filter 52.168796 47.320568 11.948493 8.952944 2.915515 

IHS transform 54.500514 48.905712 11.558431 15.861264 2.948176 

discrete wavelet transform 54.799508 54.022043 11.930620 15.345459 2.933445 

discrete wavelet packet transform 62.241697 53.722484 12.253056 15.819710 2.935812 

complex wavelet transform 62.211379 54.899634 12.175444 18.535382 2.949563 

Table 2. Statistics of quality indexes for evaluating the images in fig. 9 and fig. 10 
 

   

Figure 7. Left: SPOT panchromatic image, right: Landsat7 TM 
multi-spectral image composed of 4th, 5th and 7th  bands 

   

   

   

 
Figure 8. Fused images: (a) image fused by direct power 

average, (b) image fused by high pass filter, (c) image fused by 
Intensive-Hue-Saturation (IHS) transform, (d) image fused by 

discrete wavelet transform, (e) image fused by discrete wavelet 
packet transform, (f) image fused by complex wavelet transform 

   

Figure 9. Left: IKONOS panchromatic image, right: IKONOS 
multi-spectral image 

   

   

   

 
Figure 10. Fused images: (a) image fused by direct power 

average, (b) image fused by high pass filter, (c) image fused by 
Intensive-Hue-Saturation (IHS) transform, (d) image fused by 

discrete wavelet transform, (e) image fused by discrete wavelet 
packet transform, (f) image fused by complex wavelet transform 
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