
3D VISUALIZATION AND QUERY TOOL FOR 3D CITY MODELS

R. Dogana, S. Doganb, M. O. Altan c

aDirectorate of 12nd Region of Village Services, Samsun, Turkey - dogan_rukiye@hotmail.com

bOndokuz Mayis University, Engineering Faculty, Dept. of Geodesy and Photogrammetry, 55 139, Kurupelit, Samsun,
Turkey - (sedatdo@omu.edu.tr)

cITU, Civil Engineering Faculty, 80626 Maslak Istanbul, Turkey - oaltan@itu.edu.tr

Commission III, WG III/7

KEY WORDS: 3D, city, modelling, GIS, databases, photorealism, query, analysis

ABSTRACT

For 3D city management visualization, query and the analysis of 3D data related to cities are very important tasks. In this paper, we
present a tool (3D-City VAQS/ 3D-City Visualization Analyse and Query System) that can effectively visualize and query 3D city
models. We use relational database model to represent geometry and topology of 3D city data. We organize 3D data in layers and
themes and each theme has their own attribute tables. Our tool provides to query both geometry and attribute information of 3D data.
We use V3D data structure and implement it in a relational database.

1. INTRODUCTION

Use of 3D spatial information for modern city management
plays important role, especially for the tasks of spatial planning,
communication, emergency management etc. These tasks can be
realized easily and effectively by the 3D representations of the
spatial and thematic attribute information together with in a
geographic database. The generic idea of GISs is to incorporate
geometric and semantic information in one system and to
support analysis in both domains, (Zlatanova, 1999). A 3D GIS
should satisfy various spatial operations. These operations can
be summarized as follows: (Goodchild, 1987; Aronoff, 1995;
Zlatonova, 1999).

• Access to semantic properties of one type object,
• Access to both semantic and location information,
• Operations which create object-pairs. (e.g. buildings
in a given parcel that have one owner.)
• Operations analyse semantics of object pairs from
one or more types.
• Operations which create a new type of object from
existing objects.
• Retrieval operations. (e.g. what is the current
information about a particular building.)
• Query operations retrieve data which satisfies some
given conditions.
• Retrieval and query of semantic data.
• Integrated analysis of spatial and semantic data,
(classification, measurement, overlay operations.)
• Neighbourhood operations, (search, topographic
operations, contour generation etc.)
• Connectivity operations, (contiguity measurements,
buffering, networking etc.)
• Output formatting, (map annotation, text labels, etc.)

For the above operations, firstly the geometric and the
thematic characteristics of objects and their spatial
relationships should be integrated in a database.

Geometry defines the location and shape of the 3D objects
in space. On the other hand, topology allows to take into
account various relationships between the objects in the
space. Examples for these relationships can be given as
adjacency, inclusion, overlapping etc. Here, topology can
be considered as complement of the geometry.
Topological relations of objects are deduced from their
geometry. For example, in order to find adjacency of
objects, one should look at the geometry and find the
adjacent points, edges, facet surfaces etc. This operation
requires expensive searches, computations and
comparisons in the geometric domain. To overcome this
costly expensive operation processes, it is a good solution
approach to store topological relations in an explicit
form. Thus, for one time expensive operations are
performed and at the result of these operations, the
constructed or found topological relations are stored in to
a database for further query and analyse operations
without repeating the complex processes. Here, the
requirement of a database to be used for storing of the
topological relations, can be seen easily. But on the other
hand, to visualize 3D data on the computer’s graphics
hardware (on the screen), geometry of the spatial objects
should be presented to the graphic displays in the proper
rendering primitives, which are supported by OpenGL
standards. For the rendering of the 3D data, geometry
information should also be represented effectively in the
database.

Research in the GIS community is trying to work out a
conceptual model capable of integrating geometric and
thematic characteristics of objects and mutual spatial
relationships. These models can be considered as an
explicit description of cells (or objects), (Zlatanova,
1999). In the past, several methods for 3D object
description have been investigated. These models can be
grossly subdivided into wire-frame, B-Rep, VBR, cell-
decomposition, FBR, CSG, (Gruen and Wang, 1999).
Another efficient model is Molenaar’s 3D topological
vector structure, the formal data structure (FDS), (Gruen

and Wang, 1999; Molenaar, 1992). In the topological
model for geometric elements, are used as the elementary
data types of geometrical part, and the relationships
between geometric elements and object types are
determined by five rules. FDS is a complete vector
structure and shows powerful specifications for the
presentation of topology, position and shape. The
topology representation is benefical for topology queries
among the geometric elements of an object, but to
generate a FDS description of 3D objects is difficult,
because FDS requires topological definitions between
point and arc, arc and edge, edge and surface, edge and
edge, etc., (Gruen and Wang, 1999). To overcome this
situation, a modified facet model based on B-Rep, V3D
has been proposed in (Gruen and Wang, 1999). This data
model can be generated easily and is designed to adapt
images as well.

Our visualization and query tool for 3D city models,
presented in this paper depends on the V3D model. This
model can easily be represented by relational database
approaches by using relational tables. In the next chapter,
we give description of geometric and topological
modelling structure of objects in our tool which is still
under development.

2. IMPLEMENTATION OF DATA STRUCTURE IN
OUR 3D VISUALIZATION TOOL

In our tool, as being primitive geometric objects we use point,
line, surface and body objects (houseObject / solid object) as
defined in V3D model. A body object is decomposed into
surface objects (facets), a surface object is decomposed into line
(edge) objects and line object is decomposed into point (vertex)
objects hierarchically. And these are all defined as object
classes. We define a house object as follows:

struct houseObject{
 int houseId;
 int wallRed,wallGreen,wallBlue;
 int roofRed,roofGreen,roofBlue;
 float labelX;
 float labelY;
 float labelZ;
 Points* housePoints;
 CellArray *wallCells;
 CellArray *roofCells;
 PolyData *houseWalls;
 PolyData *houseRoofs;
 PolyDataMapper *houseWallMapper;
 PolyDataMapper *houseRoofMapper;
 Actor *houseWallActor;
 Actor *houseRoofActor;
 struct houseObject* nextHouse;
 struct houseObject* prevHouse;
 };

As seen in the structure definition, one house object contains all
of the geometrical and topological information implicitly as a
whole. In the structure, “Points” variable represents all of the
vertex points of a house with point ids and point coordinates.
“CellArray” variable represent all of the cells (faces) of the
house with cell ids. PolyData uses points and cells and forms
the houseObject in a polygonal model which is obtained with
the integration of the points and cells. As being optional it is

provided to construct the cell links with the member function of
the class PolyData. Thus, PolyData object will represent the
links of the cells (i.e. linking topology of the cells) too.
PolyDataMapper is used to prepare the PolyData for rendering
purposes. Actor is used to manage rendering operations of the
mapper such as rotation, scaling, coloring etc. Finally, actors
are rendered in the rendering window on the screen. At this
point, geometry and topolgy of the house object with its
geometric primitives haven’t been stored explicitly in a database
yet. But however, at this point, it is possible to render house
object and query some geometric properties of the
houseObject’s geometric primitives. For example, coordinates
and id number of a picked/selected point with mouse from the
render window, can be shown on the screen. As the same way, a
picked cell’s id and its point ids can be listed too, and so etc.
For the explicit storage of the topological relations between
edges, faces, etc., user should ask the software to “build
topology”. This will be explained in detail in the following
sections.

 “houseId” member variable is the id code of a house object.
This id number is used to link an object attribute table with
thematic information related to house object, (e.g. surface area,
volume of house, etc.). “labelX, labelY, labelZ” variables define
the center of gravity of the bounding box of the houseObject.
This label coordinate values are used for picking (selection)
operations on the screen and finding related record(s) in the
related attribute table(s). When one picks one or more house
objects on the screen, bounding box(es) of the picked object(s)
is/are returned with min and max coordinate values of the
corner points. And label coordinates of the selected objects are
computed and corresponding houseObject is searched in the
memory and when found, houseId of the found object is
handled. With this information, link between object geometry
and attribute tables is constructed. Label coordinates serve as
opposite work of houseId. In the house object structure, wall
and roof geometry and topology are defined seperately and
together. Thus, it is possible to make analysis and queries
related to roofs and in a flexible way. Color components are
used to represent the selection color of the house object. When
a house object is selected it changes color with selection color
defined by the user, and when unselected, it takes its original
color properties.

With the above structure, it is possible to selecet indivudial
parts of house, such as edges, faces, vertex points etc. Thus this
property facilitates the indivual queries of the decomposed cells.
Deletion of an existing part or adding new components are also
easy with this description. CellArray class instance variable
represents the definition of each facet cells and their topological
links.

In the memory, we organize all house objects in a double sided
binary tree. In Figure 1, we give the organisation of the house
objects in a binary tree model.

Figure 1. Organisation of house object in a binary tree

In Figure 1, each node of binary tree corresponds a house object
and each node shows where the previous and next houses are in
the memory, by using prevHouse and nextHouse pointers. With
these pointers, each nodes are linked each other for the fast
search tasks. In the above tree, a new house object can easily be
added at the end of the tree by allocating necessary memory and
linking this new memory area with the previous house object.

Now, we can give the detailed description of one individual
house object by defining both its geometry and topology. As
mentioned before, points, cell arrays, poly data, mappers and
actors are used. Mapper and actor is used for 3D visualization
purposes, in order to present the data to graphical environment
for rendering purposes and well known from computer graphics
and 3D visualization libraries such as OpenGL, and
visualization toolkit, (Scroeder, 1998). Relations between
points and cells are shown in Figure 2.

Coord ID

x
y
z

0

x
y
z

1

.

.

.

x
y
z

n-1

Figure 2. Implicit representation of geometry and topology

By using cell types, random access to each cell is provided.
Above structure can easily be converted to relational model in
our tool. For this purpose, from the main menu, “build
topology” command should be selected. In this case, the
topological relations of objects are written to relational tables.
3D City-VAQS, supports dBase and Paradox relational
database management systems. In Figure 3, firstly we give the
general representation of geometry and topology of 3D objects
used in 3D-City VAQS and then in Figure 4, we give the
relational database model representation.

Figure 3. General representation of geometry and topology

With the representation shown in Figure 3, it is possible
to manage the visualization tasks and database tasks in a
flexible manner (independing and depending to each
other). The box with number i in the figure represents the
houseObject entities in the binary tree of visualization
memory. This box wholly contains all of the member
variables of houseObject entity. At this stage, even if the
relational tables aren’t created, the operations which are
shown in the boxes with the numbers v, vi and vii are
ready and effectively can be performed in the 3D
visualization pipeline. I.e. this means, one can query the
geometry of houseObject’s geometric features such as
point coordinates, id of any cell (face, edge, surface etc.)
by picking on it with mouse on the render window. Here
at this stage, only the volume and area of the houseObject
can not be listed, since it requires additional volume and
area computations and these computations are performed
during the “building topology” process. Here, rendering
properties of the objects can also be changed. For
example; color, transparency, illumination conditions
such as light, shading, reflection etc. Again at this point,
only artificial textures can be mapped on to houseObject.
Photorealistic texture mapping requires computation of
texture coordinates, so photorealistic texture mapping can
not be performed at this stage. It can be performed after
building topology and with photogrammetric
computations for obtaining texture coordinates.

During topology building, object attribute table (OAT) is
created. Each column of the OAT represents one attribute
feature and each row represents one houseObject. In OAT
table, “InternalId”, “UserId”, “FacetArea” and “Volume”
items are created by the software automatically.

points

root

1st house
object with
member
variables

prev next

2nd house
object with
member
variables

prev next

end

ID

n

P0

P1

...

n

P0

type0

offset0

type1

offset1

....

typem-1

offsetm-1

nCells0

cells0

nCells1

cells1

....

nCellsn-1

cellsn-1

cell types cells links cells

Sh
ow

 q
ue

ry

re
su

lts

Picking

qu
er

y Pick

query results

Picking

VI

VII

II

IV

I

Geometry and
implicit topology

Attribute
information in

relational
database with
indexed tables

Attribute
information of

object attribute table
(can be indexed
another tables)

R
en

de
ri

ng
 p

ro
pe

rt
ie

s

Show geometry of
picked primitives

Texture
map

III

Topology in
relational

model
(explicitly

stored)

V

Texture image

“InternalId” item has values of the houseId of each
houseObject kept in the binary tree. With this item, OAT
is linked to geometric data. “UserId” is an empty item and
used by the user to link OAT to any other data table
which contains further attribute information about
houseObject such as owner of the house, type of house
etc. To manage relational database, 3D-City VAQS
provides a database management system module, which is
based on dBase and Paradox. Database management of
the tool is explained in the chapter 3, in detail. In spite of
OAT, optionally, attribute tables of the geometric
primitives of the houseObject can also be created. These
tables are also in relational database model. With
relational tables, geometric queries can be performed and
attribute information about each geometric primitive can
be associated. For example, one can want to associate
attribute information to individual faces of the house
rather than the whole houseObject. For instance, one can
want to know area of each faces (walls), chimney, roof
etc. In this case, optionally the procedures iii and iv in
Figure 3 can be performed. Thus a very effective and
flexible data association is provided for 3D GIS. The
operations of the relational model are based on V3D data
structure as explained in (Gruen and Wang, 1999). In
Figure 4, our relational data model representation is seen.

Figure 4. Relational data model representation

All tables in Figure 4 can be indexed and linked to each
other as shown in figure. These tables can be indexed and
linked to another new attribute table with attribute ids.
Meaning of the items of tables in Figure 4 are as follows:

CID: cell id, EID: Edge id, CAID: cell attribute id, PID:
point id, Code: point code (start point, end point), EAID:
edge attribute table, x,y,z: coordinates of a points with
point id, PAID: point attribute id, IntId: houseId, IMG:
texture image. Hotlink image item can also added to
object table as being optional by the user.

In the next chapter, we explain the database management
model of the 3D-City VAQS and in the chapter 4 we
briefly mention the data set which our tool uses.

3. DATABASE MANAGEMENT IN 3D-CITY VAQS

Our visualization tool provides a relational database
management system which uses dBase and Paradox files. For
topology generation, 3D data used in the project should be
classified in different layers. During topology building, program
asks user to define a theme and dataset where the topology
information will be stored in the harddisk. Each theme bears
their own topological relations in their own dataset directory
independent from other themes. Not only the topology is
provided for houseObjects, but also provided for DTM and
other vector data too. But in this paper, since the most complex
geometry belongs to 3D solid objects, topology management
has been explained in detail for houses. When topology is
created, related attribute table is automatically created and
linked to geometry. Details have been explained in the previous
section. In Figure 5, buildings on the DTM model and their
attribute table is shown. In 3D-City VAQS, as explained in the
previous section further attribute tables can be added to project
and by using common item these tables can be linked to each
other for the SQL queries. In Figure 5, the Owners table added
to project to link the owner information of the buildings with
object attribute table.

Figure 5. Object attribute table and owners table.

In the figure, these tables aren’t linked. To link each
table, on the database menu, link option is selected. Then,
software asks user to select master and slave tables and to
select index item to be used for linking. Here “UserID”
items are used for linking and in Figure 6, link is shown.

Object table

OAT table

Edge table Facet (cell) table

CID EID CAID EID PID EAID Code

Point table

PID X Y Z PAID IntId CID HAID IMG

IntId UserId ...

Figure 6. Linking attribute tables.

In Figure 6, owners table is master and the object attribute table
is slave. As seen in the figure, when the user selects a record
from master table, only the related record(s) are selected and
shown in the slave table. In the figure, since the slave table is
OAT table, and since it is linked to geometry, corresponding
building in the render window is also shown with a different
selection color. Here selection color is green as seen in the
figure. With this link, owner table (owner information) is linked
to geometry via OAT table. The link can be constructed double
sided too. This means that, when the user pick an object on the
render window, its corresponding records in the related tables
are also been selected automatically. We provide SQL queries
on every table added to project. For example, one can want to
see a particular owner’s building on the screen. In this case user
should write the required SQL query script on the query
window. Then, according to the query result, intended records
are selected with their corresponding geometric objects.

One can easily create a new data table or modify existing
one(s). Tables can be created with another software which
support dBase and Paradox too. Externally prepared data tables
can easily be added to project.

One can query any object by picking it with mouse on the
render window. In Figure 7, a picked object’s information taken
from attribute table is shown in an id window.

Figure 7. Query with picking object

On the id window, items of the OAT table are shown. When
new items are added, they are automatically shown too.

4. DATA SET USED IN 3D-CITY VAQS

For the terrain representation, our tool uses DTM model.
Regular grids or TIN can be used. Our tool can import and
export ArcView ascii DTM file and USGS DTM files. It can
also open x,y,z point dat files and creates DTM with regular
grids or TIN. For TIN generation we use Delaunay
triangulation. Photorealistic texture images (orthophoto,
satellite images etc.) can be mapped on to DTM or buildings.
Our tool can project grids or triangles of 2.5 D DTM to a 2D
plane. Thus 2D GIS analysis can be performed by using 2D
projections. We are still working on spatial 3D GIS analysis.

Our tool 3D-City VAQS can represent every kind of 3D object.
This tool can open and visualize V3D files too. In our tool for
realistic texture mapping, images can also be used.

5. CONCLUSION

 With our tool, visualization and query of 3D city models can be
performed effectively. But still it is under development to
provide 3D GIS analysis. We can perform some 3D analysis
such as buffer, clip, etc. at this point. But overlay analysis are
too time consuming without using set theory together with
geometry. For this purpose we are motivated on the description
of 3D GIS analysis in a formalist manner. At this point, we can
perform overlay analysis with complex geometric computations
but still we can not use 3D topological relations effectively and
so these computations are too time consuming. In order to
overcome this problem, we are studying to combine topology
and geometry by the means of set theory.

6. REFERENCES

Aronoff, S., 1995. Geographic information systems:a
management perspective, WDL publications, Ottava, Canada.

Goodchild, M., 1987. A spatial analytical perspective on
geographical information systems. International Journal of GIS,
1(4), pp. 327-334.

Gruen, A., Wang, X., 1999. Cyber city spatial information
system (CC-SIS): A new concept for the management of 3D city
models in a hybrid GIS. The 20th Asian Conference on Remote
Sensing, HongKong, China. http://www.geod.ethz.ch/p02/
general /persons/AG_pub/cc-sis_acrs.pdf (accessed, September,
2003).

Molenaar, M., 1992. A topology for 3D vector maps. ITC
Journal 1, pp. 25-33

Schroeder ,W., et al., 1998. The VisualizationToolkit An Object
Oriented Approach to 3D Graphics. Prentice Hall PTR, New
Jersey.

Zlatanova, S., 1999. 3D GIS for urban development. PhD.
Thesis.http://www.gdmc.nl/zlatanova/PhDThesis/html/ content.
html (accessed January 2004).

