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ABSTRACT: 
 
In the recent years, airborne digital imaging sensors have gained acceptance in the photogrammetric workflow. However, the 
processing and management of data acquired by these sensors requires an enormous computational effort, which is often too high for 
single processor architectures.  This demand for processing power stems from the large amount of data being generated and the high 
rate of automation possible in ground processing. Distributed computing, the method of dividing large processing problems into 
smaller tasks that can run on individual systems, has emerged as a key enabling technology for digital photogrammetric workflows.  
 
Using networks of workstations in distributed computing to solve large problems has become popular owing to the proliferation of 
inexpensive, powerful workstations. Clusters offer a cost-effective alternative to batch processing and an easy entry into parallel 
computing. The main advantage is the potential for future performance enhancement that results from the high rate of advances seen 
in computer and network hardware, scalability, fault tolerance and rapid development of applications. This paper summarizes a range 
of distributed computation technologies surveyed, design criteria used for choosing a solution and the results obtained in the ground 
processing workflow of the Leica Airborne Digital Sensor, especially in rectification and automated point matching. We conclude by 
presenting the results from real applications indicating timesaving and benefits of the distributed computing model in a 
photogrammetric production department. 
 
 
 

1. INTRODUCTION 

The digital sensor revolution happening right now will result in 
an information explosion. The processing and management of 
data acquired by digital sensors requires an enormous 
computational effort. The Aerial Digital Sensor (ADS40) from 
Leica Geosystems GIS & Mapping (LGGM) is already ahead of 
the curve in generating tremendous amount of data. Pretty soon 
other digital sensors will also be creating large quantity of data 
and face the same problems. This demand for large processing 
power stems from the large amount of data being generated and 
the high rate of automation possible in the ground processing. 
Using single computers one could not exploit the full 
automation possibility of digital acquisitions. 
 
Leica’s Airborne Digital Sensor is a high performance digital 
sensor, capable of delivering photogrammetric accuracy with 
multi-spectral remote sensing quality imagery. The ADS40 is a 
three-line-scanner that captures imagery looking forwards, nadir 
and backwards from the aircraft. Every portion of the ground 
surface is imaged multiple times. With its simultaneous capture 
of data from three panchromatic and four multi-spectral bands, 
the ADS40 provides unparalleled qualities of image and 
position data. Digital workflow from flight planning through 
acquisition to product generation is one of the major advantages 
of the sensor. The design principles and advantages compared 
to film cameras are discussed in detail in (Sandau, 2000). 
 
The ADS40 generates around 100GB of raw data per hour if all 
the CCD lines are active. This data passes through different 

levels of processing before products are generated; these 
processes are well documented in (Tempelmann, 2000). The 
first step in the workflow is downloading the data and adding 
the geo-positioning information using data supplied by a 
Position and Orientation System from Applanix Corporation. 
The geo-referenced images are then rectified to a plane to create 
stereo-viewable and geometrically corrected Level 1 images. 
The Level 1 images are also useful for the next process which is 
automatic point matching. Based on the accuracy requirements, 
the images are then triangulated using ORIMA, LGGM’s 
triangulation package. Finally, ortho-photo images using 
existing DTM or DTM generated from the triangulated images 
are created. Due to the large amount of data being processed 
this workflow could take an extended time. GPro is the ground 
processing software for the ADS40 that controls the workflow 
described. It provides the full functionality to download, 
generate geo-referenced and ortho-rectified images from the 
recorded imagery and positioning data.  It consists of highly 
optimized and threaded applications that are designed to handle 
large data sets. In addition, GPro also allows the user to perform 
various automated process and data management tasks. 
 
The last two years have shown that digital sensors, especially 
the ADS40, are able to meet the accuracy and radiometry 
required for large-scale ortho-photo generation. However, the 
quick turnaround time these sensors provide has been a 
challenge to realize to its full potential using a single computer. 
High volume production businesses like North West Geomatics 
(NWG) have already risen the bar for flight to product 



 

turnaround times using the ADS40. This problem can only be 
addressed using High Performance Computing (HPC). High 
Performance Computing is defined as the technology that is 
used to provide solutions to problems that either require 
significant computational power or need to process very large 
amounts of data quickly. In HPC, enormous processing power, 
fast networks, and huge amounts of data storage are applied to 
solve complex problems by utilizing industry standard, volume 
components. HPC clusters exploit recent performance advances 
in commodity processor and networking technology to make 
supercomputing affordable and accessible.  
 
This paper endeavors to summarize the challenges of dealing 
with the considerable amount of data being generated by digital 
sensors and the need for fast turn around times. It also shows 
how the computationally intensive processes in ADS40 ground 
processing are distributed to an HPC cluster. We conclude by 
indicating our current processing capacity and the long term 
plans of how to meet these challenges. 
 
 

2. SOLUTION 

North West Geomatics were one of the early adopter of the 
ADS40. They were quick to point out that if they were to fulfill 
their business plan for fast turn around of projects they needed 
more than a highly optimized solution. To address this problem 
Leica started looking at various technologies for parallel or 
distributed computing. The following criteria were used to 
select the best HPC technology that addresses our customer’s 
problems and give us fast to market solutions: 

• Minimum changes to current software  
• Easy to set up and configure on the client’s computer 
• Be able to schedule jobs  
• Work on Microsoft Windows platform 
• Prefer to use idle cycles of workstations 

 
The minimum changes to the current software requirement 
results from the fact that we already had a working solution and 
didn’t want to burden a simple user with the set up and 
configuration of a cluster of computers. GPro’s applications are 
highly threaded and optimized, so for production shop that dealt 
only with a small amount of data at a time they could continue 
using the already existing solution with out complicating their 
workflow. The next requirement, ease of deployment was a 
major criteria in our selection process. Most of our users do not 
have a large IT department with the knowledge and the budget 
to deploy, configure and fine-tune a dedicated cluster. One of 
our main goals in testing has been to see how easily the solution 
works out of the box, what the minimum hardware and software 
requirements are.  
 
As in any time consuming process, being able to schedule jobs 
for processing, setting their priorities, ability to cancel them is 
critical in fully utilizing a computational resource. Large 
volume production projects come in stages and there is a large 
contention for the resources. A good job scheduling tool will 
allow easy prioritization of jobs, monitoring and above all fault 
tolerance since hardware failure is imminent in a cluster 
environment. In addition, since Microsoft Windows is our main 
development environment the tool selected for distribution has 
to be mature and well supported on this platform. Most of the 
tools in HPC are available only for Linux and finding mature 
implementations of libraries for Windows was a challenge. 
Lastly, production shops have high-end workstations that are 

used for triangulation, feature collection and quality control. 
These high-end machines are busy during the day when the 
operators are working but sit idle during the night. It was 
considered an added bonus if the solution was able to take 
advantage of this computational power during off hours. 
 
Based on these criteria’s the following technologies were 
selected for investigation: 

• MPI:  Message Passing Interface 
• PVM: Parallel Virtual Machine 
• Condor: High Throughput Job Scheduler 
• DCOM: Distributed Component Object Model 

 
There are varieties of other distributed and parallel computing 
technologies not covered here. The above were selected since 
they are extensively used in the scientific community to solve 
large memory and CPU intensive numerical problems and are 
most relevant for the Microsoft Windows platform.  
 
There were two choices in using the different 
parallel/distribution technologies. The first was to write proxies 
that use these technologies to distribute the load across 
machines and continue to use the current programs with the 
minimum change as possible. This, however, implied that the 
granularity of distribution has to be large enough to fit the 
existing applications that work on image-by-image basis. The 
other solution was to rewrite all our computationally intensive 
application using parallel methodologies. Parallization will have 
resulted in the largest scalability since it allows a production 
shop to reduce the turn around time from flight to product 
generation by just adding more computation hardware. 
However, this revolutionary approach was rejected from the 
start because of time constraints since it will require a large 
redesign and implementation effort. 
 
The following sections will point out the advantages and 
disadvantages for each proposal. Except for Distributed 
Component Object Model, which was purely based on literature 
survey, all other options were installed and experimented with. 
 
2.1 Message Passing Interface (MPI) 

MPI addresses the message-passing model of parallel 
computation, in which processes with separate address spaces 
synchronize with one another and move data from the address 
space of one process to that of another by sending and receiving 
messages (Sterling, 2002).  MPI is a standardized interface (not 
an implementation) that is wildly used to write parallel 
programs. It was designed by a forum that sought to define an 
interface that attempts to establish a practical, portable, 
efficient, and flexible standard for message passing. There are a 
lot of MPI implementations ranging from free open source 
multi-platform libraries to highly optimized ones for a specific 
hardware. This range of choices allows an MPI program to be 
portable across multiple HPC platforms from simple cluster to a 
supercomputer. 
 
Writing proxies based on MPI turned out to be easy for the 
simplistic approach of distributing the work based on individual 
images or strips. The prototypes were developed using the 
public domain implementation MIPICH (Ashton, 2002) for 
windows. Configuration and set up of clusters using MPI was 
straightforward for the Windows platform. MPICH even had a 
plain GUI for feedback and control of running jobs. Image 
based job distribution was carried out with minimum 



 

modification to the existing software. This implementation was 
also instrumental in introducing us to the large potential 
available in parallel computing. One major disadvantage of the 
MPI implementation was that it required dedicated nodes for 
computation, which renders most of the idle high-end 
workstations unusable. Even though, simple programs could be 
written easily it requires a significant learning curve to get the 
maximum benefit out of parallel computing model of MPI. 
Some of the issues that need to be addressed in parallel 
programs are minimization of communication, load balancing 
and fault tolerance. The scheduling, monitoring and managing 
of jobs are not addressed and would require integration with 
another tool. 
 
2.2 Parallel Virtual Machine (PVM) 

PVM is an integrated set of software tools and libraries that 
emulates a general purpose, flexible, heterogeneous parallel 
computing framework on interconnected computers of varied 
architecture (Sterling, 2002).  It is a portable message-passing 
programming system, designed to link separate host machines to 
form a ``virtual machine'' which is a single, manageable 
computing resource (Geist, 1994). 
 
The biggest advantage of PVM is that it has a large user base 
supporting the libraries and tools. Writing our proxies using 
PVM allowed us to leverage this knowledge that resulted in the 
least amount of modification to the existing applications. It also 
introduced us to parallel programming. The disadvantages were 
that it was not easy to set up and not mature in the Windows 
platform. It has also been superseded by MPI and is considered 
not as fast. As in the MPI case, job scheduling and management 
is not addressed. 
 
2.3 Condor: High Throughput Job Scheduler 

Condor is a sophisticated and unique distributed job scheduler 
developed by the Condor research project at the University of 
Wisconsin-Madison Department of Computer Science (Sterling, 
2002).  “Condor is a specialized workload management system 
for compute-intensive jobs. Like other full-featured batch 
systems, Condor provides a job queuing mechanism, scheduling 
policy, priority scheme, resource monitoring, and resource 
management. Users submit their serial or parallel jobs to 
Condor, Condor places them into a queue, chooses when and 
where to run the jobs based upon a policy, carefully monitors 
their progress, and ultimately informs the user upon 
completion.” (Condor Team, 2003). It provides a high 
throughput computing environment that delivers large amounts 
of computational power over a long period of time even in case 
of machine failures. Condor has more extensive features that are 
well documented in the manual and appear in many 
publications from the research team. 
 
Condor proxies were developed to submit jobs to the Condor 
pool and monitor its progress using the Condor command line 
executables.  The most impressive thing about Condor was that 
set up was a breeze and everything worked right out of the box. 
The ability to effectively harness wasted CPU power from idle 
desktop workstations was an added benefit that gave Condor an 
edge over the others. The scheduling, monitoring and inbuilt 
fault tolerances were also features that could not be matched by 
any of the other HPC models. Moreover, since it could control 
both serial and parallel (MPI, PVM) programs it provides us 
with growth potential.  
 

The vanilla universe (which is Condor terminology for serial 
job management) directly matched our distribution model. In 
writing the proxies all we had to do were minor changes to each 
application to work on the subset of the input XML files and 
modify the job submission text files of Condor to kick of a 
batch file that sets up the shared drives. The major difficulty in 
using Condor was the absence of an API that allowed easy third 
party integration to monitor/manipulate jobs and machines. 
Another shortcoming was the lack of GUI’s for job control and 
feedback. Clipped functionalities on the windows platform (no 
transparent authentication & failure handling, automatic drive 
mappings etc) were some of the minor problem we came across 
at the beginning that has been partially addressed since then in 
newer versions of Condor. 
 
2.4 Distributed Component Object Model (DCOM) 

DCOM is a protocol that is an extension of the Component 
Object Model (COM) from Microsoft that uses remote 
procedure calls to provide location independence by allowing 
components to run on different machine from the client. It 
enables software components to communicate directly over a 
network in a reliable, secure, and efficient manner.  The theory 
of DCOM is great, but the implementation has proved less than 
stellar (Templeman, 2003). By the time we started evaluating 
distributed computing, DCOM has lost favor to newer 
technologies such as web services (Templeman, 2003). 
 
The job management for COM components could be handled by 
Microsoft Application Center 2000 that is designed to enable 
Web applications to achieve on-demand scalability and mission-
critical availability through software scaling, while reducing 
operational complexity and costs (Microsoft, 2001). As a full 
GUI based product, it appears to be uncomplicated to configure 
and set up Application Center clusters. However, it is mainly 
geared towards web service and our research did not turn up 
how it could be used for other types of applications. It was also 
not clear how one would write a component that could be load 
balanced. Moreover, this solution will also require a dedicated 
computation farm and has a high software price for each server 
added to the cluster. 
 
2.5 Selected Solution 

Condor with its ease of set up and high throughput computing 
was finally selected for implementation. Proxies were 
developed for each computationally intensive process. These 
proxies submit the job, get the status reported from each node 
and summarize the results as shown in Figure 1. The installation 
assumes that all the nodes have fast access to the file servers. 
The maximum output from this configuration will be utilized by 
high-end fiber array Storage Area Network (SAN) that provide 
high read and write performance. Using Windows Distributed 
File System (DFS) or different input and output locations from 
various file servers could also avoid I/O bottleneck. 
 
The following section will show a typical set up that uses 
Condor and the proxies developed at LGGM. We will finally 
summarize the actual result attained for some projects.  
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Figure 1.  Distribution Model 
 
 

3. SETUP 

3.1 Requirements 

The installation should be done on a network domain that has a 
valid domain controller to avoid authentication problems when 
mapping network drives. The different machines involved in 
Condor HPC solution are: 
 
Pool Manager: acts as the central Condor pool manager that 
matches the jobs with the available machines. This is the most 
important machine and shouldn’t run jobs in a production 
environment since it needs to be running all the time.  
 
Submitting Machines: these are the machines that could 
submit jobs to the cluster. Another option is to use one machine 
as the gateway to the cluster and submit jobs only from that 
machine. The latter has the advantage of localizing the different 
run time option used to optimize the distribution.  
 
Computation Nodes: these are the workers that do the 
computation. These nodes could be dedicated rack mounted 
machines or any machine in the office that is connected to the 
network. Workstations could also be configured to be both 
submitting and computation nodes.  
 
File Server(s): these are machine that provide the disk storage. 
The shared data files need to be on a Windows Server family 
OS or use Samba from Unix machines since Windows 2000/XP 
will only allow up to three clients to map its shared drives.  
 
License Manager(s): machines used to provide the LGGM 
floating licenses to be used by the submitting and computational 
nodes. The opportunistic nature of GPro may sometimes result 
in more machines being available at one time than there are 
licenses. The Condor proxies of GPro correctly handle this by 
resubmitting the job until it gets a license and runs to 
completion.  
 
Accordingly before installing a GPro Condor pool a user will 
have to select the pool manager machine, machines that are 
going to be used to submit GPro jobs (this are most of the time 
operators machines) and computation nodes. It is possible to 
combine the Pool/File/License Manager to the same machine if 
it has the capability.  

 
3.2 Setup 

From a users point of view, the work required to set up the HPC 
environment is minimal. Simply install Condor on the 
workstations and change the program names in the GPro 
preferences to their respective proxy equivalent. For example, 
the rectifier "ADSRectifier.exe" is changed to 
"ADSRectifyCondorProxy.exe". According to their needs users 
could mix and match which processes to distribute and which 
processes to run locally. The following steps explain how to 
install a HPC cluster for GPro using Condor. 
 
Condor Setup: 
 

1. Download Condor from  
“http://www.cs.wisc.edu/condor/".  

2. First install Condor on a server that is going to be the 
Condor Pool Central Manager. 

3. Install Condor on all the computation nodes. 
• Dedicated computational nodes should be 

configured so that their 'Job Start Policy' is 
"Always Run Condor jobs". This defines a 
very responsive pool. 

• All other workstations, for example that 
operators work on, should be configured 
using the default start job after 15 minutes 
of low CPU activity policy. 

4. Test the condor installation using the examples 
distributed with Condor. 

 
GPro Setup:  
There is nothing special about the Condor pool used by GPro. 
The only assumption made by the installation is that all the 
nodes have access to shared file servers.  
 

1. Select a shared file system to be mapped by all the 
computation nodes. 

2. Install and configure the Leica licensing client on all 
workstations that run and submit jobs to the pool. 

3. Install the distributed version of GPro that sets up the 
required proxy executables and configuration files to 
submit jobs. 

4. Modify the default Condor job submission files to 
reflect the selected shared file system.  

5. Change the program names to the proxies in the 
general preferences of GPro on all the submitting 
workstations 

6. Start submitting jobs to the pool.  
 
For easy upgrades GPro should only be installed on the server 
and not on each of the computational nodes. A typical 
distributed run is shown in Figure 2 below. 
 
 



 

 
Figure 2.  GPro run in a Condor cluster 

 
 
4. PRACTICAL RESULTS 

Two recent small projects were selected to show the 
timesavings in the computationally intensives processes. These 
projects were done using a portion of the cluster setup at NWG. 
The production cluster at NWG comprises of dedicated rack 
mounted systems in conjunction with operator’s machines 
during off hours. All the single runs were performed on a dual 
Xeon 3.06 GHz with 3GB RAM running Windows XP. A 
RAID0 disk array with 10 disks of 146GB SCSI drives was 
used for all data input/output. Analysis of the average I/O queue 
during runs showed that disk contention was not a serious issue 
for a single machine run. The distributed runs were done on six 
nodes of same hardware specification as the single run.  
Interconnect between the nodes and file server was done using 
gigabit Ethernet. Disk I/O analysis for the distributed runs 
showed some disk contention. 
 
The first dataset used is a small block from a project that was 
part of the Florida statewide program undertaken in 2003/2004 
by North West Geomatics and Earth Data. This block is roughly 
one degree by one degree in size.  It comprises of 256 USGS 
Digital Ortho Quarter Quads (DOQQs), delivered in both color 
and FCIR format.  The numbers contained here are for color 
data only, but one could simply double the Ortho times for both 
datasets.  This block was flown at 24,000 AGL with a 5-minute 
line spacing at 340 knots.  Seven control points were used in the 
block to provide a datum shift.  The DEM was the USGS format 
DEM converted into a 50m grid (flat terrain so the 50m grid is 
more than sufficient). 
 
The second dataset is a small test area over Zolloffo springs in 
Florida, which is of environmental concern.  It was flown on 
850m line spacing to capture 0.13m data for a final product of 
0.15m.  Flight speed was 100 knots.  Five control points were 
available in this area.  Both color and FCIR ortho photos were 
also generated for this area. Table 1 summarizes the 
characteristics of the projects and Table 2 lists the processing 
time for the most time consuming processes of the workflow. 

 
 
 Florida Zolloffo 
Capture GSD (m) 0.8 0.13 
Output GSD (m) 1.0 0.15 
Lateral Overlap (%) 30 30 
Raw Data Size (GB) 110 21 
Number of Lines 14 4 
Average Line Length (km) 120 5 
Project Area (km 2) 11500 4.5 

Table 1: Dataset Summary 
 
 

Florida Zollofo Process 

1 Node 6 Nodes 1 Node 6 Node 

Rectification 11.27 1.92 2.34 0.60 
Automatic Point 
Matching 

14.80 4.66 3.14 1.50 

Ortho 
Generation 

14.65 2.54 3.02 0.78 

Table 2: Processing Times in Hours 
 
As could be seen in the table, even though the processing time 
seem to decrease linearly, the cluster efficiency numbers drop 
for Zollofo processing due to only four nodes being utilized 
even though there were six available. 
 
 

5. CONCLUSIONS 

Distributed computing has enabled us to process large amounts 
of data in a reasonable time. It has empowered large mapping 
projects to be done in unprecedented turnaround times. Condor 
with it high throughput performance has enabled us to deliver 
products even in adverse condition when there have been node 
failures without human intervention. We plan to extend our 
usage of the Condor distribution model to other non-interactive 
applications so that they could benefit from all the advantages 
discussed above. However, in order to provide the scalability 
required we would have to increase our granularity and 
parallalize our applications. 
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