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ABSTRACT: 
 
Syntactic Pattern Recognition is a procedure, widely used in Cartography and Remote Sensing, that trusts upon matching of sections 
of maps and/or images or 3D models with archetypes or objects (parsers). Parsing is a topic proper of Linguistics that can be 
considered as a basic step (syntax analysis) of the Syntactic Pattern Recognition procedure. 
Considering a possible application of such technique to the automatic interpretation of imaged shapes, preliminary tests have been 
carried out onto simple geometric forms. An appropriate test image showing different geometric shapes has therefore been created. 
Parsing techniques have been applied as decision modules of the whole recognition path which is completed by some preliminary 
image processing steps. A number of algorithms are available for Parsing, for the needs of specific grammars: although not suited for 
any grammars, tabular methods help save time, as the Kasami method, remarkably simple to use: it works well in the case of context-
free grammars, as reduced to the so- called Chomsky’s normal form.  
Languages used to describe noisy and distorted patterns are often ambiguous: one string or pattern can be generated by more than 
one language, so patterns belonging to different classes may have the same description, but with different probabilities of occurrence. 
Different approaches have been proposed: when a noisy pattern has two or more structural descriptions, it is proper to use stochastic 
grammars.  
For the above said test it has been used a normal context free grammar over simple figures, that is a well designed specimen. 
We also test a badly designed specimen using from the start a stochastic finite state grammar, which can be assimilated to a finite 
state Markov process: a final comparison of the results shall try to show the differences between those approaches. 
 
 

1. INTRODUCTION 

Language is based upon blending of discrete parts (phonemes, 
morphemes): we may suppose what really happens as one 
speaks, that is a passage from a starting point to a universe in 
progress of more and more complicated structures, and this 
process may be thought of as unique. However, as Minsky says, 
the same kind of process takes place when we try to understand 
a visual experience. 
The meaning of a sentence relies upon the single words and 
upon their position. A sequence of words is seen as 
grammatically correct only when words appear in the 
framework of a certain scheme, however bias between sense and 
non-sense is only partially grammatical (grammar does not 
entirely control language). 
Linguistic assemblages are shaped upon forms and rules. For a 
number of scholars, linguistic forms, at least the most common 
types, arise less from a sort of inner device proper to the 
language, than from the very way one thinks: in other words the 
special way our brain works must be taken into account. So 
vision and speaking are both based upon principles not quite 
different. 
This is why some present procedures of Geomatics may be 
referred to logical and symbolic structures proper for 
Mathematical Logics and for Linguistics. Some improvements 
in GIS, Digital Photogrammetry and Remote Sensing are 
referred to as Computer Vision, Image Processing, Machine 
Learning, which are also linked to developments of Artificial 
Intelligence, which in turn is based upon Logics, Mathematical 
logics, Linguistics and Mathematical Linguistics. 

An easy case of this cultural melting is Pattern Recognition, as 
used in the framework of Image Processing: it is a procedure, 
widely used in Cartography and Remote Sensing, that trusts 
upon matching of sections of maps and/or images or 3D-models 
with archetypes or objects (parsers). Also, parsing is a topic 
proper of Linguistics, which has been borrowed from cognitive 
sciences. 
Syntactic Pattern Recognition consists of three major steps: 
• preprocessing, which improves the quality of an image, 
e.g. filtering, enhancement, etc. 
• pattern representation, which segments the picture and 
assigns the segments to the parts in the model 
• syntax analysis, which recognizes the picture according to 
the syntactic model: once a grammar has been defined, some 
type of recognition device is required, the application of such a 
recognizer is called Parsing. 
The decision whether or not the representation belongs to the 
class of patterns described by the given grammar or syntax (is 
syntactically correct) is made by a “parser”. 
Parsing is then the syntax analysis: this is an analogy between 
the hierarchical (treelike) structure of patterns and the syntax of 
language.  
Patterns are built up by sub-patterns in various ways of 
composition, just sentences are built up by words and sub-
patterns are built up by concatenating primitives (features) just 
words by concatenating characters. 
Also, a texture is considered to be defined by subpatterns that 
occur repeteadly according to a set of rules. 



 

A number of pattern recognition applications shows some 
distortion (due to noise). Also, patterns of a certain class are 
more frequent than others inside the same class. Quite the same 
as for natural languages, ambiguity should be kept into account: 
a sentence may actually bear different meanings, due to possible 
differences at recognition or interpretative level.  
 
 

2. PARSING STRATEGIES FOR PATTERN 
RECOGNITION 

2.1 The Theory of Formal Languages 

A statistic approach to language started as the scholars realized 
the value of statistical methods in the recognition of speech. 
Hidden Markov’s model was first used by the Author for 
modelling the language of “Evgenij Onegin” (Markov, 1913).  
In the theory of formal languages, a language is defined as a set 
of strings: a string is a finite sequence of symbols chosen from 
some finite vocabulary. In natural languages, a string is a 
sentence, and the sentences are sequences of words chosen from 
some vocabulary of possible words. A grammar is defined as a 
four-tuple: 
 

G = (N, T, P, S) 
 

 where N and T are the non terminal and terminal vocabularies 
of G, P is the set of production rules, and S is the start symbol. 
A formal language is indeed defined by: 

A terminal vocabulary of symbols (the words of the 
natural language) 

A non terminal vocabulary of symbols (the syntactic 
categories, e.g. noun, verb) 

A set of productions (the phrase structure rules of the 
language) 

The so called start symbol 
We start from a special non terminal S, and S is replaced by the 
string on the right side of a chosen production rule. The process 
of rewriting a substring according to one of the rewriting 
production rules continues until the string consists only of 
terminal symbols: 
 

S  → aS | bS | ε 
 
where the symbol | indicates “or” and  ε is the null string. The 
succession of strings that result from the process is a derivation 
from the grammar: to find a derivation (a parse) for a given 
sentence (sequence) is called parsing. 
As to the latter approach, let’s remind that in the Theory of 
Formal languages, Chomsky divides languages in classes, thus 
forming a hierarchy of languages, based upon different 
grammars: 

Unrestricted grammars (0-type grammars) 
Context-sensitive grammars (1-type grammars) 
Context-free grammars (2-type grammars) 
Regular grammars or finite state grammars (3-type 
grammars) 

The most general grammar is obviously the 0-type, which bears 
no limits for rewriting rules: for the other types, such 
restrictions are regularly increasing. Types 0 and 1 are able to 
describe natural languages as the other two, much simpler to 
manage from a computational viewpoint, are more suited into 
limited backgrounds and have been hitherto used for artificial 
languages. 

In the 1-type grammar, rewriting rules restraints bear that the 
right side of a rule should have at least as many symbols as the 
left side.  
For the 2-type grammar, all rules  should  have just one non-
terminal symbol on the left side 
For 3-type grammar, the right side has only one terminal 
symbol, or one terminal symbol and a non-terminal one for 
every production rule. 
An attraction of  the use of  a syntactic method for Pattern 
Recognition is the possibility of description and recognition of 
an object, a scene, a texture: but noise may complicate the 
process of computing the string structure: extraneous primitives 
may be generated by spurious edges, or actual primitives of 
some shape may be undetected due to the poor quality of the 
image. 
Another problem is the ambiguity of the primitives that are 
extracted to represent the patterns, how this ambiguity can be 
accounted for in the model or in the analysis (in the 
construction of the grammar or in the parsing). 
A grammar normally divides strings in just two classes: the 
grammatically correct ones, and the others. In any case, 
ambiguity is very frequent, and it is even deliberately pursued 
as sometimes happens in poetry.  
The following different approaches have been proposed: 

approximation 
transformational grammars 
stochastic grammars 
similarity and error-correcting parsing 

The use of approximation  reduces the effect of noise and 
distortion at the preprocessing and primitive extraction stage. 
The second approach  defines the relations between the noisy 
pattern and the corresponding noise-free pattern by a 
transformational grammar. 
Many efforts have been devoted to construct more sophisticated 
grammars, like stochastic and fuzzy grammars. Although 
context free grammars or transformational grammars can 
represent the phrase structure of a language, they tell nothing 
about the relative frequency or likelihood of a given sentence. It 
is usual in context free grammar to use recursive productions to 
represent repetition, however one can generate sentences which 
are technically grammatical, but not always acceptable. 
Stochastic approach supplies a solution to this problem: each 
production in a stochastic grammar is assigned a probability of 
selection, a number between zero and one. During the 
derivation process, rules are selected for rewriting according to 
their assigned probabilities. Each string has a probability of 
occurrence computed as the product of the probabilities of the 
rules in its derivation.  
When a string has two or more parses, we can use the more 
probable parse as a description of the string (pattern): the most 
probable parse is the one according to which the generated 
string has the highest probability. 
However, what we already know about probable occurrence 
plays a meaningful role. The parsers are made up according to a 
likelihood criterion. However, parsers may also be built 
according to a further criterion, i.e. the Bayes’s theorem. 
In this case, some utter a priori information is required about 
the starting probability to  deal with one class of patterns or 
another one. 
When a distorted pattern cannot be accepted by any grammar, 
an error-correcting parsing, based upon a similarity criterion, 
can be used: a way to handle noisy patterns is the use of 
similarity measures instead of stochastic grammars: a similarity 
or distance measure is defined between a sentence representing 
a known pattern and sentence representing an unknown pattern. 



 

The distance between two strings is defined in terms of number 
of errors (insertion, deletion, substitution.).     
 
2.2 Parsing algorithms 

In accordance with the needs of different grammars, a certain 
number of Parsing algorithms are in use. 
Parsing procedures may be top-down or bottom-up type, as one 
starts from initial symbol S, operating substitutions until only 
terminal symbols are present, such as to fit the clause, or as one 
starts from the string backward till the start symbol S. 
Besides, the language classes as arranged by Chomsky are 
related to a number of reconnaissance devices (automata): 
0-type languages: Turing machines 
1-type languages: bounded automata 
2-type languages: pushdown automata 
3-type languages: finite state automata. 
Chart algorithms are of special interest, because they are simple, 
although they are referred to context-free grammars. 
In the following, context-free as well as stochastic regular 
grammars have been used. So, we would recall a typical chart 
algorithm, the Kasami’s one, and also remind of equivalence 
between stochastic regular grammars and Hidden Markov 
Models (HMMs). 
Kasami’s algorithm is suited to context-free grammars, as they 
are transformed in the so called Chomsky normal form (CNF). 
To get CNF, we convert all rules to such production rules that 
all non terminal symbols would yield either two other non 
terminals or one terminal: 
A  →  a 
A  →  BC 

Be w= a1a2….an a string whose pertinence to a given gramamr is 
to be tested, the grammar being already reduced to the CNF. 
The algorithm is basically a triangular parsing table, whose 
elements are tij for 1 ≤ i ≤ n e 1 ≤ j ≤ n-i+1. Every tij should have 
a value being a sub-set of  N. The non terminal symbol shall be 
inside tij if, and only if: 
  
A  →  a1ai+1…ai+j-1.. 
 
The table is assembled as follows: 

one states  ti1=A if A  →  ai 
one states tij =A  even for a single k, such that 1≤ k<j  
if A → BC is to be found in P, having B present in tik 
and C in ti+k,j-k. 

The string shall belong to the said language just in case S shall 
be found into t1n 
Stochastic regular grammars are equivalent to Hidden Markov 
Models. 
A Hidden Markov Model has, properly, hidden states: so, just a 
series of symbols is present, which allows a probabilistic 
inference towards the related sequence of states. 
A Hidden Markov Model (HMM) is specified by a set of 
parameters: 

the set of states S = (s1, s2, ...,sN) 
state sequence Q = ( q1, q2, ...., qk) 
the prior probabilities (π) are the probability 
distributions of qi being the first state of a state 
sequence 
the transition probabilities (aij) are the probability to 
go from a state i to a state j, i.e P (qj| qi) 
the emission probabilities (e) are the probability of 
observing x when the system is in the state qi p(x|qi) 

 
One can calculate: 

the likelihood of a sequence of observations with 
respect to a HMM by means of the so called “forward 
algorithm” 
the most probable sequence of corresponding states 
(most probable path) by Viterbi algorithm 
the HMM parameter estimation by forward-backward 
algorithm 

 
Let fk(i) = Pr (x1...xi, πi =k) be the probability to observe the 
sequence x= x1... xi, at the same time, to be in the state k. The 
Forward algorithm allows recursive calculation of x probability 
to be done. The steps of algorithm are as follows: 
 

initialisation:    f0 (i) = πi e (xi) 
recursive step:  fi  (i) = el (xi)Σk (fk(i-1)akl) 
termination:      Pr(x)= )Σk (fk(n)akl) 

 
Viterbi’s algorithm, in the turn, lets associate to a sequence, the 
related most probable asset of otherwise hidden states: 
computation is quite analogous, just substituting in the Forward 
algorithm table the sum with the maximum search, according to 
the process: probability at each case corresponding to the 
Forward algorithm comes from the sum of some terms; 
however, for Viterbi’s algorithm, only the maximum one of 
abovesaid terms is used. 
Viterbi’s algorithm keeps, fore evrey state and for every 
position, a pointer to the preceeding state, so as to trace 
backwards the most probable path. 
The following  HMM has the alphabet: 0,1; a11 ,a12 , a13 ,a21 ,a22 
a23 , a31 , a32 , a33 are the transition probabilities and parameters 
e1(0), e2(0), e3(0), e1(1), e2(1), e3(1) represent the emission 
probabilities. 
The corresponding stochastic regular grammar is: 
 
S → X1 

 
X1  →→→→   0X1  1X1  0X2  1X2  0X3  1X3 
              p11       p12      p13      p14      p15     p16   
 
X2   →→→→   0X1  1X1  0X2  1X2  0X3  1X3 
               P21       p22      p23      p24      p25     p26   
 
X3   →→→→  0X1  1X1  0X2  1X2  0X3  1X3 
              P31       p32      p33      p34      p35     p36   
 
p11 + p12 = a11 
p13 + p14 = a12 
p15 + p16 = a13     
p11 / (p11 + p12) = e11(0) 
p13 / (p13 + p14) = e12(0) 
p15 / (p15+ p16) = e13(0) 
 
e1 (0) = e11(0) + e12(0) + e13(0) 
 
We repeat for the p2j and p3j probabilities. 
We can obtain the set of probabilities of the production rules of 
the stochastic regular grammar, given the set of emission 
probabilities and the transition matrix of HMM, and viceversa. 
Parsing is finding an optimal derivation for a given sequence 
(string): it can be tought as an alignment of non terminal 
symbols  (hidden states) of the grammar and terminal symbols 
of the sequence (string), just as Viterbi’s alignement of a 
sequence positions to HMM states. 
Moreover, the theory of stochastic automata define the class of 
languages accepted by stochastic automata. 

1 

2

3 



 

A stochastic finite state automaton is a five tuple SA= (Σ, Q, M, 
π0 , F) where Σ is a finite set of input symbols for the strings 
(the alphabet) , Q is a finite set of internal states, M is a 
mapping of Σ into the set of n×n stochastic state transition 
matrices, π0 is the n-dimensional initial state distribution vector 
and F is a finite set of final states. 
Indeed the generation process from a stochastic finite state 
grammar can be assimilated to a finite state Markov process. 
Let GS = (VN , VT, PS , S) be a stochastic grammar, we can 
construct a stochastic automaton SA = (Σ, Q, M, π0 ), accepting 
languages generated by GS : T(SA) 
The alphabet Σ is equal to the set of terminal symbols VT ; the 
state set Q is the union of the set of non terminals VN and the 
states T and R, state of termination and of rejection 
respectively; π0 is a row vector with the component equal to 1 
in the position of state S, the other components equal to 0; the 
state transition matrices M are formed on the basis of the 
stochastic productions; finally a n vector πf  represents the final 
state. 
Let’s consider the stochastic finite state grammar G = (VN , VT, 
PS , S), where: 
VN = (S, A),  VT = (a, b) and PS : 
 
S  →  aA     p1= 1 
A → aA    p2 = 0.8 
A  → b      p3 = 0.2  
 
We have, according to the above described procedure: Σ = (a, 
b), Q = (S, A, T, R), π0 = (1 0 0 0 ), and F = T. 
We can construct the transition state matrices M(a) and M(b): 
 

1000R
1000T
8.02.000A

1000S
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According to the Markov chains theory, we can calculate for 
example the probability of the string x = aab. 
M (aab) = π0 M2 (a) M (b) πf 
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If we calculate the probability of the string by means of forward 
algorithm of HMMS, we obtain the same result. 
Indeed, we can consider the hidden states: A and T and the 
following parameters: 
  
π(A) = 1, π(T) = 0;   
eA(a) = 1, eT(b) = 1; 
aAA = 0.8, aAT = 0.2, aTT = 0.8; 
fA (a) = π(A) eA(a) = 1; 
fT (a) = π(T) eT(a ) =0; 
fA (a,a) = 0.8, fT (a,a) = 0; 
fA (a,a,b) = 0, fT (a,a,b) = 0.16; 
f (a,a,b) = fA (a,a,b) + fT (a,a,b) = 0.16. 
 
If we calculate the probability of the string x= aab taking into 
account how it is generated: 
 

S → aA →  aaA → aab 
 
we obtain the same result: 
 

p(x) = p(aab) = 1× 0.8 × 0.2 = 0.16. 
 
2.3 Application test 

We mean to test a badly designed specimen either by proper use 
of a normal grammar after a pre-treatment of the specimen, or 
using from the start a stochastic grammar. 
First, in order to evaluate how well such approach could be 
applied to the automatic interpretation of images  preliminary 
tests have been carried onto simple geometric images.  
It is here shown an example addressed to draft a possible 
operational path for Parsing based pattern recognition of simple 
geometric entities. 
 

        
Fig. 1 Test image and polygon grouped pixels image.   

 
An appropriate test image has been created showing three 
different geometric figures: a rectangle, a scalene triangle and a 
equilateral triangle. The goal is to verify if the implemented 
grammar could correctly decide if one figure is or not an 
equilateral triangle. 
The recognition process goes on in the following way: 

a preliminary identification, based on radiometric/spectral 
discriminants, of the pixels of the image probably 
belonging to the searched objects is firstly carried out;  
the selected pixels are then grouped in different distinct 
geometric entities using neighbourhood and region 
growing criteria (different colors in the image below); 
for each entity a frame window is clipped from the original 
image and a Förstner filtering and thresholding algorithm 
is applied in order to select pixels most probably 
representing the vertices of the figure which has to be 
recognized; 
assuming that figures are closed polygons vertices 

coordinates are used to define length and direction of the 
connecting lines. These are the geometric primitives used in the 
parsing grammar. A simple translation from numbers to letters 
(defined when grammar has been defined) allow to transfer 
information to the parsing engine algorithm which has to decide 
if the object belongs or not to the defined grammar, that is if 
that polygon is or not an equilateral triangle. 
All these steps have been implemented using the IDL 
programming language. We do not intended to deeply describe 
well known image processing algorithms. Otherwise, we care to 
briefly describe how the parsing algorithm works. It has firstly 
to be structured, defining the deciding grammar. This is a static 
part of the program; in fact, once defined, it never changes 
during the recognizing process.  Changing grammar means to 
change the program text. In the future we intend to define a 
standard text file the user can fill off-line to define the different 
grammars he wants to use. Such file could be directly be read 
by the program while executing. Grammar has been structured 
as a matrix, with a column number equal to the number of the 



 

generic values Ai, and with a row number equal to  the 
maximum number of values (terminal and not) that each generic 
value Ai can assume. Each generic value Ai (first line) 
determines its own column with the possible values it can 
assume. Terminal values are listed in the last line. The matrix is 
a sparse one. 
The program reads the string corresponding to the translation of 
the geometric primitives in characters and it automatically 
generates the Kasami table for that string. This table size 
obviously depends on the stringth length. Strings belong to the 
grammar if S can be found in the last row, first column of the 
Kasami table. 
Used grammar is a context-free one and it is suitable for the 
recognition of different size equilateral triangles: 
 

S→AA1C A1→ AA2C B2→ BB1 

A1→b A2 → aB3C B1→b 

A1→ aB2C B3→ bB2 C → c 

 
The terminal values a, b and c represent the following 
primitives : 
 
 

Such grammar reduced to the Chomsky Normal Form can 
be defined as follows : 
 

 
It has been verified that the program can correctly label as 
‘equilateral triangles’ the ones corresponding to the strings  
w = ”abc” and y = ”aabbcc”; while it labels w = “aba” and  
y = ”aabbca”  as ‘not –equilateral triangles’. 
Obviously, images are never perfect: they are regularly noise 
poisoned; thus we shall use a stochastic grammar. The chosen 
one is regular, as it is equivalent to a HMM, so that we can use 
the corresponding algorithms, which are a well known powerful 
tool. 
An appropriate test image has been created showing a distorted 
version of an equilateral triangle  

 

 

Fig. 2 Test image of a noisy pattern  (equilateral triangle). 
 
A stochastic regular grammar has been introduced in order to 
describe an equilateral triangle and some other distorted 
versions (Fig. 3): 
 
S → aA1 
A1 → b1A2 ,  A1 → b2A2 
A2 → c1,  A2 → c2 
 
The object has been subdivided in subpatterns, corresponding to 
the string x = ab2c2.  
Let’s suppose to know probability to get each string x: 
p(a b1 c1) = 0.01 
p(a b2 c1) = 0.3 
p(a b1 c2) = 0.19 
p(a b2 c2) = 0.5 
From probability theory ensues that the probabilities of the 
production rules are: 
p1 = 1 
p2 = 0.032 
p3 = 0.968 
p4 = 0.31 
p5 = 0.69 
 
The hidden states of the corresponding model are: A1, A2 and T. 
The parameters of the corresponding HMM are: 
π (A1) = 1, π (A2) = 0, π (T) = 0; 
eA1(a) = 1, eA2 (b1) = 0.032, eA2 (b2) = 0.968, eT (c1) = 0.31,  
eT (c2) = 0.69; 
a A1A2 = 1, a A2T = 1 
 
 

 
Fig. 3 An equilateral triangle and some distorted versions. 

 
 
The “Forward” algorithm shall give us probability of a sequence 
of observations, for instance of the string x = a b2 c2: 
f(a b2 c2) =0.67. 
Viterbi’s algorithm, in the turn, lets associate to such a 
sequence, the related most probable asset of otherwise hidden 
states (the parse of the string): 
A1 A2 T. 
 
 

3. FORECASTS 

The ab2c2 string of the previously described example, may 
belong also to the classe of square triangles. 

S→A3A4 A4→A1C A3→A  

A1→A3A5 A5→A2C B2→B4B1  
B4→b A1→b B3 A2→A3A6 
A6→B3C B1→b A1→A3A7 A7→B2C 
B3→B4B2 C→C   

a 

b1 
c1 

a 

b1 
c2 

a 

b2 
c1 

b2 c2 

a 

a b c 



 

In case of syntax analyzers (parsers) planned on the basis of 
context-free, non stochastic (i.e. traditional) grammars, the two 
classes of patterns could not be distinguished: that could mean 
the string belong to both patterns. 
However, what we already know about probable occurrence 
plays a meaningful role.The parsers, in many cases, are made up 
according to a likelihood criterion. However, parsers may also 
be built according to a further criterion, i.e. the Bayes’s theorem 
Stochastic context free grammars are more powerful in order to 
describe languages: additional rules allow to create nested, 
long-distance pairwise correlations between terminal symbols. 
In the case of complex patterns, with more articulated relations 
between sub-patterns, regular grammars (even in stochastic 
form) are not adequate: stochastic context-free grammars, also 
more compact, should prove more efficient, altough more 
expensive in terms of memory and computational time. 
A variety of Cocke-Younger-Kasami (CYK) algorithm allows 
to find out an optimal parse tree (alignment problem) for 
stochastic context free grammars in Chomsky Normal Form; the 
so called “inside algorithm” allows to find out probability of a 
given sequence (string) if the grammar is previously known. 
The inside algorithm can be compared with  the forward 
algorithm for HMMs, the same as the CYK  algorithm can be 
compared with the Viterbi algorithm used for HMMs. 
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