
COMPARISON OF PARSING TECHNIQUES FOR THE SYNTACTIC PATTERN
RECOGNITION OF SIMPLE SHAPES

T.Bellone, E. Borgogno, G. Comoglio

DIGET, Politecnico, Corso Duca degli Abruzzi, 24, Torino, Italy

tamara.bellone, enrico.borgogno, giuliano.comoglio@polito.it

Commission III, WG III/8

KEY WORDS: algorithms, vision, pattern, recognition, understanding

ABSTRACT:

Syntactic Pattern Recognition is a procedure, widely used in Cartography and Remote Sensing, that trusts upon matching of sections
of maps and/or images or 3D models with archetypes or objects (parsers). Parsing is a topic proper of Linguistics that can be
considered as a basic step (syntax analysis) of the Syntactic Pattern Recognition procedure.
Considering a possible application of such technique to the automatic interpretation of imaged shapes, preliminary tests have been
carried out onto simple geometric forms. An appropriate test image showing different geometric shapes has therefore been created.
Parsing techniques have been applied as decision modules of the whole recognition path which is completed by some preliminary
image processing steps. A number of algorithms are available for Parsing, for the needs of specific grammars: although not suited for
any grammars, tabular methods help save time, as the Kasami method, remarkably simple to use: it works well in the case of context-
free grammars, as reduced to the so- called Chomsky’s normal form.
Languages used to describe noisy and distorted patterns are often ambiguous: one string or pattern can be generated by more than
one language, so patterns belonging to different classes may have the same description, but with different probabilities of occurrence.
Different approaches have been proposed: when a noisy pattern has two or more structural descriptions, it is proper to use stochastic
grammars.
For the above said test it has been used a normal context free grammar over simple figures, that is a well designed specimen.
We also test a badly designed specimen using from the start a stochastic finite state grammar, which can be assimilated to a finite
state Markov process: a final comparison of the results shall try to show the differences between those approaches.

1. INTRODUCTION

Language is based upon blending of discrete parts (phonemes,
morphemes): we may suppose what really happens as one
speaks, that is a passage from a starting point to a universe in
progress of more and more complicated structures, and this
process may be thought of as unique. However, as Minsky says,
the same kind of process takes place when we try to understand
a visual experience.
The meaning of a sentence relies upon the single words and
upon their position. A sequence of words is seen as
grammatically correct only when words appear in the
framework of a certain scheme, however bias between sense and
non-sense is only partially grammatical (grammar does not
entirely control language).
Linguistic assemblages are shaped upon forms and rules. For a
number of scholars, linguistic forms, at least the most common
types, arise less from a sort of inner device proper to the
language, than from the very way one thinks: in other words the
special way our brain works must be taken into account. So
vision and speaking are both based upon principles not quite
different.
This is why some present procedures of Geomatics may be
referred to logical and symbolic structures proper for
Mathematical Logics and for Linguistics. Some improvements
in GIS, Digital Photogrammetry and Remote Sensing are
referred to as Computer Vision, Image Processing, Machine
Learning, which are also linked to developments of Artificial
Intelligence, which in turn is based upon Logics, Mathematical
logics, Linguistics and Mathematical Linguistics.

An easy case of this cultural melting is Pattern Recognition, as
used in the framework of Image Processing: it is a procedure,
widely used in Cartography and Remote Sensing, that trusts
upon matching of sections of maps and/or images or 3D-models
with archetypes or objects (parsers). Also, parsing is a topic
proper of Linguistics, which has been borrowed from cognitive
sciences.
Syntactic Pattern Recognition consists of three major steps:
• preprocessing, which improves the quality of an image,
e.g. filtering, enhancement, etc.
• pattern representation, which segments the picture and
assigns the segments to the parts in the model
• syntax analysis, which recognizes the picture according to
the syntactic model: once a grammar has been defined, some
type of recognition device is required, the application of such a
recognizer is called Parsing.
The decision whether or not the representation belongs to the
class of patterns described by the given grammar or syntax (is
syntactically correct) is made by a “parser”.
Parsing is then the syntax analysis: this is an analogy between
the hierarchical (treelike) structure of patterns and the syntax of
language.
Patterns are built up by sub-patterns in various ways of
composition, just sentences are built up by words and sub-
patterns are built up by concatenating primitives (features) just
words by concatenating characters.
Also, a texture is considered to be defined by subpatterns that
occur repeteadly according to a set of rules.

A number of pattern recognition applications shows some
distortion (due to noise). Also, patterns of a certain class are
more frequent than others inside the same class. Quite the same
as for natural languages, ambiguity should be kept into account:
a sentence may actually bear different meanings, due to possible
differences at recognition or interpretative level.

2. PARSING STRATEGIES FOR PATTERN
RECOGNITION

2.1 The Theory of Formal Languages

A statistic approach to language started as the scholars realized
the value of statistical methods in the recognition of speech.
Hidden Markov’s model was first used by the Author for
modelling the language of “Evgenij Onegin” (Markov, 1913).
In the theory of formal languages, a language is defined as a set
of strings: a string is a finite sequence of symbols chosen from
some finite vocabulary. In natural languages, a string is a
sentence, and the sentences are sequences of words chosen from
some vocabulary of possible words. A grammar is defined as a
four-tuple:

G = (N, T, P, S)

 where N and T are the non terminal and terminal vocabularies
of G, P is the set of production rules, and S is the start symbol.
A formal language is indeed defined by:

A terminal vocabulary of symbols (the words of the
natural language)

A non terminal vocabulary of symbols (the syntactic
categories, e.g. noun, verb)

A set of productions (the phrase structure rules of the
language)

The so called start symbol
We start from a special non terminal S, and S is replaced by the
string on the right side of a chosen production rule. The process
of rewriting a substring according to one of the rewriting
production rules continues until the string consists only of
terminal symbols:

S → aS | bS | ε

where the symbol | indicates “or” and ε is the null string. The
succession of strings that result from the process is a derivation
from the grammar: to find a derivation (a parse) for a given
sentence (sequence) is called parsing.
As to the latter approach, let’s remind that in the Theory of
Formal languages, Chomsky divides languages in classes, thus
forming a hierarchy of languages, based upon different
grammars:

Unrestricted grammars (0-type grammars)
Context-sensitive grammars (1-type grammars)
Context-free grammars (2-type grammars)
Regular grammars or finite state grammars (3-type
grammars)

The most general grammar is obviously the 0-type, which bears
no limits for rewriting rules: for the other types, such
restrictions are regularly increasing. Types 0 and 1 are able to
describe natural languages as the other two, much simpler to
manage from a computational viewpoint, are more suited into
limited backgrounds and have been hitherto used for artificial
languages.

In the 1-type grammar, rewriting rules restraints bear that the
right side of a rule should have at least as many symbols as the
left side.
For the 2-type grammar, all rules should have just one non-
terminal symbol on the left side
For 3-type grammar, the right side has only one terminal
symbol, or one terminal symbol and a non-terminal one for
every production rule.
An attraction of the use of a syntactic method for Pattern
Recognition is the possibility of description and recognition of
an object, a scene, a texture: but noise may complicate the
process of computing the string structure: extraneous primitives
may be generated by spurious edges, or actual primitives of
some shape may be undetected due to the poor quality of the
image.
Another problem is the ambiguity of the primitives that are
extracted to represent the patterns, how this ambiguity can be
accounted for in the model or in the analysis (in the
construction of the grammar or in the parsing).
A grammar normally divides strings in just two classes: the
grammatically correct ones, and the others. In any case,
ambiguity is very frequent, and it is even deliberately pursued
as sometimes happens in poetry.
The following different approaches have been proposed:

approximation
transformational grammars
stochastic grammars
similarity and error-correcting parsing

The use of approximation reduces the effect of noise and
distortion at the preprocessing and primitive extraction stage.
The second approach defines the relations between the noisy
pattern and the corresponding noise-free pattern by a
transformational grammar.
Many efforts have been devoted to construct more sophisticated
grammars, like stochastic and fuzzy grammars. Although
context free grammars or transformational grammars can
represent the phrase structure of a language, they tell nothing
about the relative frequency or likelihood of a given sentence. It
is usual in context free grammar to use recursive productions to
represent repetition, however one can generate sentences which
are technically grammatical, but not always acceptable.
Stochastic approach supplies a solution to this problem: each
production in a stochastic grammar is assigned a probability of
selection, a number between zero and one. During the
derivation process, rules are selected for rewriting according to
their assigned probabilities. Each string has a probability of
occurrence computed as the product of the probabilities of the
rules in its derivation.
When a string has two or more parses, we can use the more
probable parse as a description of the string (pattern): the most
probable parse is the one according to which the generated
string has the highest probability.
However, what we already know about probable occurrence
plays a meaningful role. The parsers are made up according to a
likelihood criterion. However, parsers may also be built
according to a further criterion, i.e. the Bayes’s theorem.
In this case, some utter a priori information is required about
the starting probability to deal with one class of patterns or
another one.
When a distorted pattern cannot be accepted by any grammar,
an error-correcting parsing, based upon a similarity criterion,
can be used: a way to handle noisy patterns is the use of
similarity measures instead of stochastic grammars: a similarity
or distance measure is defined between a sentence representing
a known pattern and sentence representing an unknown pattern.

The distance between two strings is defined in terms of number
of errors (insertion, deletion, substitution.).

2.2 Parsing algorithms

In accordance with the needs of different grammars, a certain
number of Parsing algorithms are in use.
Parsing procedures may be top-down or bottom-up type, as one
starts from initial symbol S, operating substitutions until only
terminal symbols are present, such as to fit the clause, or as one
starts from the string backward till the start symbol S.
Besides, the language classes as arranged by Chomsky are
related to a number of reconnaissance devices (automata):
0-type languages: Turing machines
1-type languages: bounded automata
2-type languages: pushdown automata
3-type languages: finite state automata.
Chart algorithms are of special interest, because they are simple,
although they are referred to context-free grammars.
In the following, context-free as well as stochastic regular
grammars have been used. So, we would recall a typical chart
algorithm, the Kasami’s one, and also remind of equivalence
between stochastic regular grammars and Hidden Markov
Models (HMMs).
Kasami’s algorithm is suited to context-free grammars, as they
are transformed in the so called Chomsky normal form (CNF).
To get CNF, we convert all rules to such production rules that
all non terminal symbols would yield either two other non
terminals or one terminal:
A → a
A → BC

Be w= a1a2….an a string whose pertinence to a given gramamr is
to be tested, the grammar being already reduced to the CNF.
The algorithm is basically a triangular parsing table, whose
elements are tij for 1 ≤ i ≤ n e 1 ≤ j ≤ n-i+1. Every tij should have
a value being a sub-set of N. The non terminal symbol shall be
inside tij if, and only if:

A → a1ai+1…ai+j-1..

The table is assembled as follows:

one states ti1=A if A → ai
one states tij =A even for a single k, such that 1≤ k<j
if A → BC is to be found in P, having B present in tik
and C in ti+k,j-k.

The string shall belong to the said language just in case S shall
be found into t1n
Stochastic regular grammars are equivalent to Hidden Markov
Models.
A Hidden Markov Model has, properly, hidden states: so, just a
series of symbols is present, which allows a probabilistic
inference towards the related sequence of states.
A Hidden Markov Model (HMM) is specified by a set of
parameters:

the set of states S = (s1, s2, ...,sN)
state sequence Q = (q1, q2,, qk)
the prior probabilities (π) are the probability
distributions of qi being the first state of a state
sequence
the transition probabilities (aij) are the probability to
go from a state i to a state j, i.e P (qj| qi)
the emission probabilities (e) are the probability of
observing x when the system is in the state qi p(x|qi)

One can calculate:

the likelihood of a sequence of observations with
respect to a HMM by means of the so called “forward
algorithm”
the most probable sequence of corresponding states
(most probable path) by Viterbi algorithm
the HMM parameter estimation by forward-backward
algorithm

Let fk(i) = Pr (x1...xi, πi =k) be the probability to observe the
sequence x= x1... xi, at the same time, to be in the state k. The
Forward algorithm allows recursive calculation of x probability
to be done. The steps of algorithm are as follows:

initialisation: f0 (i) = πi e (xi)
recursive step: fi (i) = el (xi)Σk (fk(i-1)akl)
termination: Pr(x)=)Σk (fk(n)akl)

Viterbi’s algorithm, in the turn, lets associate to a sequence, the
related most probable asset of otherwise hidden states:
computation is quite analogous, just substituting in the Forward
algorithm table the sum with the maximum search, according to
the process: probability at each case corresponding to the
Forward algorithm comes from the sum of some terms;
however, for Viterbi’s algorithm, only the maximum one of
abovesaid terms is used.
Viterbi’s algorithm keeps, fore evrey state and for every
position, a pointer to the preceeding state, so as to trace
backwards the most probable path.
The following HMM has the alphabet: 0,1; a11 ,a12 , a13 ,a21 ,a22
a23 , a31 , a32 , a33 are the transition probabilities and parameters
e1(0), e2(0), e3(0), e1(1), e2(1), e3(1) represent the emission
probabilities.
The corresponding stochastic regular grammar is:

S → X1

X1 →→→→ 0X1  1X1  0X2  1X2  0X3  1X3
 p11 p12 p13 p14 p15 p16

X2 →→→→ 0X1  1X1  0X2  1X2  0X3  1X3
 P21 p22 p23 p24 p25 p26

X3 →→→→ 0X1  1X1  0X2  1X2  0X3  1X3
 P31 p32 p33 p34 p35 p36

p11 + p12 = a11
p13 + p14 = a12
p15 + p16 = a13
p11 / (p11 + p12) = e11(0)
p13 / (p13 + p14) = e12(0)
p15 / (p15+ p16) = e13(0)

e1 (0) = e11(0) + e12(0) + e13(0)

We repeat for the p2j and p3j probabilities.
We can obtain the set of probabilities of the production rules of
the stochastic regular grammar, given the set of emission
probabilities and the transition matrix of HMM, and viceversa.
Parsing is finding an optimal derivation for a given sequence
(string): it can be tought as an alignment of non terminal
symbols (hidden states) of the grammar and terminal symbols
of the sequence (string), just as Viterbi’s alignement of a
sequence positions to HMM states.
Moreover, the theory of stochastic automata define the class of
languages accepted by stochastic automata.

1

2

3

A stochastic finite state automaton is a five tuple SA= (Σ, Q, M,
π0 , F) where Σ is a finite set of input symbols for the strings
(the alphabet) , Q is a finite set of internal states, M is a
mapping of Σ into the set of n×n stochastic state transition
matrices, π0 is the n-dimensional initial state distribution vector
and F is a finite set of final states.
Indeed the generation process from a stochastic finite state
grammar can be assimilated to a finite state Markov process.
Let GS = (VN , VT, PS , S) be a stochastic grammar, we can
construct a stochastic automaton SA = (Σ, Q, M, π0), accepting
languages generated by GS : T(SA)
The alphabet Σ is equal to the set of terminal symbols VT ; the
state set Q is the union of the set of non terminals VN and the
states T and R, state of termination and of rejection
respectively; π0 is a row vector with the component equal to 1
in the position of state S, the other components equal to 0; the
state transition matrices M are formed on the basis of the
stochastic productions; finally a n vector πf represents the final
state.
Let’s consider the stochastic finite state grammar G = (VN , VT,
PS , S), where:
VN = (S, A), VT = (a, b) and PS :

S → aA p1= 1
A → aA p2 = 0.8
A → b p3 = 0.2

We have, according to the above described procedure: Σ = (a,
b), Q = (S, A, T, R), π0 = (1 0 0 0), and F = T.
We can construct the transition state matrices M(a) and M(b):

1000R
1000T
8.02.000A

1000S
RTAS

)b(M

1000R
1000T
2.008.00A

0010S
RTAS

)a(M ==

According to the Markov chains theory, we can calculate for
example the probability of the string x = aab.
M (aab) = π0 M2 (a) M (b) πf

16.0

0
1
0
0

1000
1000
8.02.000

1000

1000
1000
36.0064.00
2.008.00

0001)aab(M ==

If we calculate the probability of the string by means of forward
algorithm of HMMS, we obtain the same result.
Indeed, we can consider the hidden states: A and T and the
following parameters:

π(A) = 1, π(T) = 0;
eA(a) = 1, eT(b) = 1;
aAA = 0.8, aAT = 0.2, aTT = 0.8;
fA (a) = π(A) eA(a) = 1;
fT (a) = π(T) eT(a) =0;
fA (a,a) = 0.8, fT (a,a) = 0;
fA (a,a,b) = 0, fT (a,a,b) = 0.16;
f (a,a,b) = fA (a,a,b) + fT (a,a,b) = 0.16.

If we calculate the probability of the string x= aab taking into
account how it is generated:

S → aA → aaA → aab

we obtain the same result:

p(x) = p(aab) = 1× 0.8 × 0.2 = 0.16.

2.3 Application test

We mean to test a badly designed specimen either by proper use
of a normal grammar after a pre-treatment of the specimen, or
using from the start a stochastic grammar.
First, in order to evaluate how well such approach could be
applied to the automatic interpretation of images preliminary
tests have been carried onto simple geometric images.
It is here shown an example addressed to draft a possible
operational path for Parsing based pattern recognition of simple
geometric entities.

Fig. 1 Test image and polygon grouped pixels image.

An appropriate test image has been created showing three
different geometric figures: a rectangle, a scalene triangle and a
equilateral triangle. The goal is to verify if the implemented
grammar could correctly decide if one figure is or not an
equilateral triangle.
The recognition process goes on in the following way:

a preliminary identification, based on radiometric/spectral
discriminants, of the pixels of the image probably
belonging to the searched objects is firstly carried out;
the selected pixels are then grouped in different distinct
geometric entities using neighbourhood and region
growing criteria (different colors in the image below);
for each entity a frame window is clipped from the original
image and a Förstner filtering and thresholding algorithm
is applied in order to select pixels most probably
representing the vertices of the figure which has to be
recognized;
assuming that figures are closed polygons vertices

coordinates are used to define length and direction of the
connecting lines. These are the geometric primitives used in the
parsing grammar. A simple translation from numbers to letters
(defined when grammar has been defined) allow to transfer
information to the parsing engine algorithm which has to decide
if the object belongs or not to the defined grammar, that is if
that polygon is or not an equilateral triangle.
All these steps have been implemented using the IDL
programming language. We do not intended to deeply describe
well known image processing algorithms. Otherwise, we care to
briefly describe how the parsing algorithm works. It has firstly
to be structured, defining the deciding grammar. This is a static
part of the program; in fact, once defined, it never changes
during the recognizing process. Changing grammar means to
change the program text. In the future we intend to define a
standard text file the user can fill off-line to define the different
grammars he wants to use. Such file could be directly be read
by the program while executing. Grammar has been structured
as a matrix, with a column number equal to the number of the

generic values Ai, and with a row number equal to the
maximum number of values (terminal and not) that each generic
value Ai can assume. Each generic value Ai (first line)
determines its own column with the possible values it can
assume. Terminal values are listed in the last line. The matrix is
a sparse one.
The program reads the string corresponding to the translation of
the geometric primitives in characters and it automatically
generates the Kasami table for that string. This table size
obviously depends on the stringth length. Strings belong to the
grammar if S can be found in the last row, first column of the
Kasami table.
Used grammar is a context-free one and it is suitable for the
recognition of different size equilateral triangles:

S→AA1C A1→ AA2C B2→ BB1

A1→b A2 → aB3C B1→b

A1→ aB2C B3→ bB2 C → c

The terminal values a, b and c represent the following
primitives :

Such grammar reduced to the Chomsky Normal Form can
be defined as follows :

It has been verified that the program can correctly label as
‘equilateral triangles’ the ones corresponding to the strings
w = ”abc” and y = ”aabbcc”; while it labels w = “aba” and
y = ”aabbca” as ‘not –equilateral triangles’.
Obviously, images are never perfect: they are regularly noise
poisoned; thus we shall use a stochastic grammar. The chosen
one is regular, as it is equivalent to a HMM, so that we can use
the corresponding algorithms, which are a well known powerful
tool.
An appropriate test image has been created showing a distorted
version of an equilateral triangle

Fig. 2 Test image of a noisy pattern (equilateral triangle).

A stochastic regular grammar has been introduced in order to
describe an equilateral triangle and some other distorted
versions (Fig. 3):

S → aA1
A1 → b1A2 , A1 → b2A2
A2 → c1, A2 → c2

The object has been subdivided in subpatterns, corresponding to
the string x = ab2c2.
Let’s suppose to know probability to get each string x:
p(a b1 c1) = 0.01
p(a b2 c1) = 0.3
p(a b1 c2) = 0.19
p(a b2 c2) = 0.5
From probability theory ensues that the probabilities of the
production rules are:
p1 = 1
p2 = 0.032
p3 = 0.968
p4 = 0.31
p5 = 0.69

The hidden states of the corresponding model are: A1, A2 and T.
The parameters of the corresponding HMM are:
π (A1) = 1, π (A2) = 0, π (T) = 0;
eA1(a) = 1, eA2 (b1) = 0.032, eA2 (b2) = 0.968, eT (c1) = 0.31,
eT (c2) = 0.69;
a A1A2 = 1, a A2T = 1

Fig. 3 An equilateral triangle and some distorted versions.

The “Forward” algorithm shall give us probability of a sequence
of observations, for instance of the string x = a b2 c2:
f(a b2 c2) =0.67.
Viterbi’s algorithm, in the turn, lets associate to such a
sequence, the related most probable asset of otherwise hidden
states (the parse of the string):
A1 A2 T.

3. FORECASTS

The ab2c2 string of the previously described example, may
belong also to the classe of square triangles.

S→A3A4 A4→A1C A3→A

A1→A3A5 A5→A2C B2→B4B1
B4→b A1→b B3 A2→A3A6
A6→B3C B1→b A1→A3A7 A7→B2C
B3→B4B2 C→C

a

b1
c1

a

b1
c2

a

b2
c1

b2 c2

a

a b c

In case of syntax analyzers (parsers) planned on the basis of
context-free, non stochastic (i.e. traditional) grammars, the two
classes of patterns could not be distinguished: that could mean
the string belong to both patterns.
However, what we already know about probable occurrence
plays a meaningful role.The parsers, in many cases, are made up
according to a likelihood criterion. However, parsers may also
be built according to a further criterion, i.e. the Bayes’s theorem
Stochastic context free grammars are more powerful in order to
describe languages: additional rules allow to create nested,
long-distance pairwise correlations between terminal symbols.
In the case of complex patterns, with more articulated relations
between sub-patterns, regular grammars (even in stochastic
form) are not adequate: stochastic context-free grammars, also
more compact, should prove more efficient, altough more
expensive in terms of memory and computational time.
A variety of Cocke-Younger-Kasami (CYK) algorithm allows
to find out an optimal parse tree (alignment problem) for
stochastic context free grammars in Chomsky Normal Form; the
so called “inside algorithm” allows to find out probability of a
given sequence (string) if the grammar is previously known.
The inside algorithm can be compared with the forward
algorithm for HMMs, the same as the CYK algorithm can be
compared with the Viterbi algorithm used for HMMs.

References
Aho, A., Ullman, J., 1972. The theory of Parsing Translation,
and Compiling. Prentice Hall, Englewood Cliffs.
Chomsky, N., 1957. Syntactic structures. Mouton, The Hague
Fu, K., 1974. Syntactic Methods in Pattern Recognition.
Academic Press, New York.
Markov, A., 1913. An example of statistical investigation in the
text of “Eugene Onegin”. In: Proceedings of the Academy of
Sciences of St. Petersburg.
Rabiner, L. 1989. A tutorial on hidden Markov models and
selected applications in speech recognition. In: Proceedings of
the IEEE, 77 (2).
Rabiner, L., Juang, B. 1993. Fundamentals of Speech
Recognition. Prentice Hall, NJ.
Sester, M., 1992. Automatic model acquisition by Learning. In:
The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Whashington USA,
Vol. XXIX, Part B3.
Resch B. Hidden Markov Models.
http://www.igi.tugraz.at/lehre/CI

