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ABSTRACT: 
 
Acquiring accurate detection and description of buildings is a difficult object recognition problem due to a high complexity of the 
scene content and the object representation. Since most urban scenes deliver very rich information, a robust separation of fore 
(objects to be reconstructed) from background (irrelevant features) is an essential process in object recognition system, but is 
difficult to achieve since objects in the scenes normally show a large amount of geometric or chromatic co-similarity across them. 
In addition, most mapping applications require building shapes to be reconstructed with a high degree of geometric freedom. 
However, information extracted from remotely sensed data is usually incomplete for reconstructing a full description of building 
objects due to limited resolving power of the sensor used, object complexity, disadvantageous illumination condition and 
perspective views. The research illustrates that the problems outlined above can be resolved by fusing multi-data sources, where 
2D linear features extracted from Ikonos images is attributed with a high-quality of 3D information provided by airborne lidar.  
 
 

1. INTRODUCTION 

With the recent advent of a series of commercialized high-
resolution satellite, the potential of Ikonos imagery in 
topographic mapping has been investigated and highlighted 
by many researchers (Holland et al., 2002; Holland & 
Marshall, 2003). However, the success of fully automated 
reconstruction of building objects from the Ikonos imagery is 
still far to reach, and only partial solution in constrained 
environments have been reported (Kim & Muller, 2002; Lee 
et al, 2003). This research aims to develop a building 
extraction system which automatically reconstructs prismatic 
building models in an urban environment. In particular, two 
research interests have been exploited in this study; building 
detection (separation of objects to be reconstructed from 
irrelevant features) and building description (reconstruction 
of generic shape of building boundaries in a combination of 
data-driven and model-drive cues). 
 

2. DATA CHARACTERISTICS 

2.1 Ikonos image 

A “pan-sharpened” multi-spectral (PSM) Ikonos image 
covering the Greenwich industrial area was provided by 
Infoterra Co. for this research. The Ikonos PSM image is 
produced by combing the multi-spectral data with the 
panchromatic data, and resampled with 1-metre ground 
pixel. The image was orthorectified by Space Imaging Co. to 
satisfy the positional accuracy (~1.9 metres) of Precision 
Product of Space Imaging. Figure 1 shows the Greenwich 
Ikonos PSM image, in which the red channel is replaced 
with the near-infrared channel while the green channel as 
red channel respectively. The sub-scene image is 681 x 502 
pixels with 1m resolution whose dimension of the image is 
approximately 341,862 m2.  

 
 

 
Figure 1. Greenwich Ikonos PSM image 

 
2.2 Lidar DSM 

Figure 2 shows a lidar DSM which was also provided by 
Infoterra Co., which covers a sub-site of Greenwich 
industrial area with the size of 305,523 m2. The lidar DSM 
was acquired by the first pulse of OPTEC 1020 airborne 
laser sensor. The data has been converted from OSGB36 
(plan) and OSD Newlyn (height) to UTM/WGS84. The lidar 
DSM contains a total of 30,782 points, which corresponds to 
a point density of 0.1 (points/m2), i.e., one point per 3.2 x 
3.2 (m2). The height of the study area varies from 1.4 m to 
26.3 m. The terrain in the Northern part is higher than the 
Southern part, and the highest terrain height can be found in 
the North-West corner in figure 2. The Greenwich LIDAR 
DSM shows a typical urban environment, where a number of 
industrial buildings with different sizes spread over the 
study area. In particular, figure 2 shows the point density of 
the OPTEC 1020 LIDAR is not enough to properly represent 
the shape of those small houses though they are formed in 
planar roof surfaces. 



 

 
Figure 2. Greenwich lidar DSM 

 
3. BUILDING DETECTION 

The complexity of building extraction process can be 
reduced by a large amount if the process can be focused on 
single building object. This section presents a building 
detection method to localize individual buildings by 
sequentially removing dominant urban features which are 
not relevant to buildings. 
 
3.1 Terrain detection 

A lidar filter, called recursive terrain fragmentation (RTF) 
filter, was developed to distinguish between on-terrain 
points and off-terrain ones from a cloud of lidar points. The 
RTF filter was implemented by employing a hypothesis-test 
optimization in different scales. This filter assumes that 
generic terrain surface is a mosaic of planar terrain surfaces. 
The entire lidar space, initially hypothesized as a single 
planar terrain surface, is recursively fragmented with small 
sub-regions until the coexistence of different terrain slopes 
cannot be found over all fragmented regions. More detailed 
description of the RTF filter can be found in Sohn & 
Dowman (2002). Figure 3(a) shows the on-terrain points 
detected by the RTF filter from figure 2. In this figure, some 
terrain segments which are not densely covered by the 
filtered on-terrain points show poor quality of the Greenwich 
lidar DSM. 
 
3.2 High-rise and low-rise object detection 

With the on-terrain points detected by the RTF filter, a 
DTM is generated. Then, outlying points with a height less 
than a pre-defined height threshold (4m) from the generated 
DTM are classified as “high-rise” features, otherwise as the 
“low-rise” ones (see figure 3(b)).  

 
3.3 Tree detection 

Since the “high-rise” feature class generally contains trees 
as well as buildings, “vegetation” points must be identified. 
The normalized difference vegetation indices (NDVI) are 
computed by a combination of red and near-infrared 
channels of Ikonos. When the “high-rise points” are back-
projected onto the NDVI map, a small mask (5x5 size) is 
constructed around them, and “vegetation” points are 
identified if any masked pixel has the NDVI value larger 
than a threshold value (>0.8) (see figure 3(c)). 
 
3.4 Building blob detection 

Isolating the building label points and making them into 
individual building objects is rather straightforward. Those 

points classified into the on-terrain, low-rise, and tree 
objects are together assigned non-building labels. Then, 
building points surrounded by the non-building labels, are 
grouped as isolated objects. As a result, 28 building “blobs” 
can be found from figure 3(d) after removing small “blobs” 
whose member points are less than 30 points. Further 
processing allows the individual building “blobs” to be 
bounded with rectangle polygons, and these polygons are 
then fed into the building description process, which will be 
discussed in the next section. 

 

              
(a) terrain detection result 

 

 
(b) “high-rise” point detection result 

 

 
(c) after removing “vegetation” points 

 

 
(d) building “blob” detection result 
Figure 3. Building detection results 



 

4. BUILDING DESCRIPTION 

This section presents a building description process which 
reconstructs building outlines from each building “blob”. 
Generic building shape is represented as a mosaic of convex 
polygon. A set of linear cues is extracted by both data-driven 
and model-driven approaches. The building “blobs” are 
recursively intersected by those linear cues, which produces 
a set of polygon cues. Finally, building outlines are 
reconstructed by merging only “building” polygons forming 
building objects. 
 
4.1 Data-driven linear cue extraction 

The first stage of the building description is to extract 
boundary lines from Ikonos imagery with the support of the 
RTF filtering result. Straight lines extracted by the Burns 
algorithm (Burns et al., 1986) are filtered by a length 
criterion, by which only lines larger than pre-specified 
length threshold, ld =5m, remain for further processing. 
Then, two rectangle boxes with certain width, lw=5m, are 
generated along two orthogonal directions to the line vector 
filtered in length. The determination of boundary line can be 
given if non-building and building points are simultaneously 
found in both boxes or if only building-label points are 
found in one of the boxes and no lidar point can be found in 
the other box. The latter boundary line condition is 
considered if a low density lidar dataset is used. Figure 4 
illustrates this. 
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Figure 4. Illustration of boundary line detection  

 
 

             
 (a) extracted straight lines   (b) filtered boundary lines 

Figure 5. Result of data-drive cue extraction 
 
As a final line filtering process, a geometric disturbance 
corrupted by noise is regularized over boundary lines. A set 
of dominant line angles of boundary lines is analyzed from a 
gradient-weighted histogram which is quantized in 255 
discrete angular units. In order to separate a weak, but 
significant peak from other nearby dominant angles, a 
hierarchical histogram-clustering method is applied. Once 
the dominant angle, θd, is obtained, lines with angle 
discrepancies which are less than certain angel thresholds, 
θth=30º, from θd are found. Then, their line geometries are 
modified as their angles are replaced with θd. These 
modified lines do not contribute to the succeeding dominant 

angle analysis and the next dominant angle is obtained. In 
this way, a set of dominant angles is obtained, by which 
geometric properties of boundary lines can be regularized 
(see figure 5). 
 
4.2 Model-driven linear cue extraction 

New line cues are “virtually” extracted from lidar space in 
order to compensate for the lack of intensity line cue density 
by employing specific building models. For each intensity 
line cue, parallel lines and “U” structured lines are inferred 
from lidar space. First, a box growing direction, pointing to 
the location of parallel boundary line is determined. To this 
end, a small virtual box is generated with a width of lw=5m 
from the selected intensity line in the same way of detecting 
boundary lines presented in §4.1. To that direction, the 
virtual box grows until it comes across any on-terrain point 
(see figure 6 (a)). Then, it de-grows in order to have 
maximum building points while in its minimum size (see 
figure 6 (b)). In this way, the virtual box is expanded, but at 
this time, towards to two orthogonal directions to the 
parallel boundary line detected (see figure 6 (c)). Thus, “U” 
structured boundary lines made with the parallel boundary 
line can be detected. Finally, these three virtual lines 
detected are back-projected onto image space and then, their 
line geometry is adjusted by gradient weighted least-square 
method. Figure 6(d) shows model-driven cues extracted 
from figure 5(b).  
 

wl wl

g ro win g  d ire c t io n

d e g ro w in g  d ire c t io n

wl

g ro win g  d ire c tio n

g ro win g  d ire c tio n

n o n -b u ild in g  p o in t b u ild in g  p o in t in te n s i ty  lin e  c u e v ir tu a l  l in e  c u e

(a ) (b )

(c ) (d )

 
Figure 6. Result of model-driven cue extraction 

 
4.3 Polygonal cue generation 

Initial polygons resulting from the building detection result 
of figure 3(d) are decomposed of a set of convex polygons by 
a recursive intersection of linear cues, called hyperlines. 
This polygonal segmentation is implemented by BSP 
(Binary Space Partitioning) tree algorithm introduced by 
Fuchs et al. (1980). Figure 7 illustrates the overall 
partitioning scheme to generate polygons. Suppose that we 
have an initial polygon with rectangle geometry, P0, wherein 
LIDAR points are distributed with building and non-
building label. All vertices comprising P0 are stored as a 
root node of BSP tree for further recursive partitioning (see 
figure 7(a)).  
 



 

A set of hyperlines, {hi:i=1,…,N}, are computed as P0 is 
intersected respectively by a set of line segments, 
{li:i=1,…,N}, which is constructed by integrating the data-
driven and model-driven line cues. After setting up the 
hyperline list, a process to partition 0P  with hyperlines 
starts. This partitioning process consists of two procedure; 
polygon classification and partition scoring.  
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Figure 7. Illustration of polygonal cue generation 

 
4.3.1 Polygon classification 
Polygon classification is a process to determine whether or 
not the partitioning process is triggered over a given 
polygon, Pi. A polygon, Pi, is classified into a number of 
polygon classes; “empty”, “open”, “closed”, “pseudo-
closed”, “garbage” polygon. These polygon classes are pre-
determined depending on the labelling attributes of the 
member points of Pi or point density of the member points of 
Pi or geometric property of Pi as follows: 
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Figure 8. Polygon classification 

 
• “Empty” polygon: Pi is classified as “empty” polygon if 

there is no member point within Pi (see figure 8 (a)).  
• “Open” polygon: Pi is classified as “open” polygon if 

the member points of Pi are attributed with both 
building and non-building labels (see figure 8 (b)).  

• “Closed” polygon: Pi is classified as “closed” polygon if 
the member points of Pi are attributed with only building 
label (see figure 8 (c)).  

• “Pseudo-closed” polygon: Pi is classified as “pseudo-
closed” polygon if the member points of Pi are attributed 
with only building label, and the point density of Pi, 

dpt(Pi), is less than dth=0.1 (see figure 8 (d)), where 
dpt(Pi) is determined by  
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where  Nmem(Pi) and Ai are the number of member points 
and the area of Pi respectively.  

•  “Garbage” polygon: Pi is classified as “garbage” 
polygon if the member points of Pi are attributed with 
both building and non-building labels, and any lateral 
length or the area Pi is less than a certain threshold, i.e., 
lth= 5 and ath=50 respectively (see figure 8 (e)). 

 
The Pi is partitioned with two child convex polygons if it is 
classified as “open” or “pseudo-closed” polygon; otherwise 
the partitioning over Pi is terminated. 
 
4.3.2 Polygon scoring 
Once the partitioning of Pi is determined through the 
polygon classification. The second step is partition scoring. 
This process determines a hyperline, h*, to generate the 
“best” partitioning result of Pi from the hyperline list. The 
selection of h* is achieved by a partition scoring function. 
That is, all the hyperlines are tested to obtain the “best” 
partition of Pi and the partitioning result generated by each 
hyperline is evaluated by a partition scoring function. A 
hyperline, h*, with the highest partitioning score is finally 
selected to partition Pi. The partition scoring function, H, 
over a polygon, P0, is given by 
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where P1+ and P1- are child polygons produced by halving P0 
with a hyperline, hi. In Eq 2, H assigns a maximum score to 
hi if it produces the best partitioning result, whereas a 
minimum score for the worst partitioning result. Also, H 
differently computes scores depending on the polygon class 
of P0.  
 
If P0 is classified as the “open” polygon, H computes 
partitioning scores according to a bias degree of label 
distribution over P1+ and P1- divided by hi; H for “open” 
polygon computes higher partitioning score when a “closed” 
polygon with larger area is produced by hi (see figure 9 (a)). 
The partition scoring function, H, for “open” polygon can be 
described by 
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where Nnon-bld and Nbld are functions to count numbers of 
building labels and non-building labels belonging to a 
corresponding polygon.  
 
If P0 is classified as the “pseudo-closed” polygon, H 
computes the partitioning score by an area ratio of child 
“empty” polygon over P0 when either of P1+ and P1-  is 



 

recognized as an “empty” polygon, otherwise the null value 
is assigned as the partitioning score for P0 by H. The “best” 
partition of P0 can be obtained when an “empty” polygon 
with the largest area is produced by hi (see figure 9 (b)).  
The partition scoring function, H, for “pseudo-closed” 
polygon can be described by 
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where A() is the area of corresponding polygon. In fact, the 
partition functions defined in Eq. 3 and Eq. 4 generate 
polygons according to their level-of-detail forming a 
building object; the most “significant” building part is 
generated first and less “significant” one is later.  
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Figure 9. Illustration of partition scoring functions 

 
Once the partitioning scores for hi are computed by Eq. 3 or 
Eq. 4, remaining hyperlines are sequentially selected from 
the hyperline list and their partitioning scores are measured 
by H. In figure 7(b), a hyperline, hN, with the maximum 
partitioning score is finally selected to partition P0. Then, 
geometric information of P0 and hN are stored as a root node 
of BSP tree, which is expanded as new child nodes with 
vertices of P1+ and P1- are added to the root node for further 
recursive partitioning. The same method used for the 
partition of P0 is applied to P1+ and P1- respectively, but to 
only an “open” or “pseudo-closed” polygon. This process 
continues until no leaf node of the BSP tree can be 
partitioned by hyperlines (see figure 7 (c)). 
 
4.4 Polygonal cue grouping 

Figure 10 (a) – (c) shows an example how the BUS space 
with a set of convex polygons is generated by the recursive 
partition of an initial polygon as described in the previous 
section.  
 
Once the BUS space is generated by expanding a BSP tree, 
final leaves of the BSP tree are collected. A heuristic 
filtering is applied to them so that only “building” polygons 
remain (see figure 10(d)). A convex polygon of final leaves 

of the BSP tree is verified as the “building” polygon by 
following rules:  
 
• A polygon, Pi, is verified as the “building” polygon If it 

is classified as “closed” polygon, satisfying following 
conditions: 

 
( ) ( ) ; " "i i i
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where Nmem  is the number of member points of Pi; nth 
(=5) is a member point threshold; dpt is the point density 
of Pi computed by Eq. 1; γ (=0.6) is a control parameter 
( 0 1γ≤ ≤ ); dth (=0.1) is a point density threshold. 

• A polygon, Pi, is verified as the “building” polygon if it 
is classified as “open” polygon, satisfying following 
conditions: 
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where ρpt is a point ratio of building labels over the total 
number of member points of Pi and its threshold is ρth 
(=0.6); Nbld and Nmem are functions to count numbers of 
building labels and non-building labels belonging to Pi.  

 

                        
       (a) initial partitioning        (b) intermediate partitioning 
 

                        
     (c) final BSP partitioning   (d) “open” polygon filtering 

Figure 10. Polygonal cue generation and grouping 
 

5. BUILDING EXTRACTION RESULT 

Figure 11(a) shows a building extraction result over the 
Greenwich dataset (referred as the UCL building map) 
generated by the proposed technique. The overall success of 
the technique was evaluated in comparison with  the ground 
plan vectors of MasterMap® provided by the Ordnance 
Survey (see figure 11(b)).  
 
Although the OS MasterMap® provides a high-level of detail 
and accuracy, there are distracting features of the OS 
MasterMap® that causes difficulties in the quality 
assessments. The OS data does not contain some buildings 
even though they are obviously apparent in the Ikonos image 
and lidar. This is because the OS data was constructed at a 
different time to the acquisition of the Ikonos image and 
lidar data, from which the UCL building map was generated. 
In addition, the scale of the features in the OS MasterMap® 
has been compiled at a larger scale than the one of Ikonos 



 

image. As a result, very small features cannot be clearly 
recognized in the Ikonos image. Since this research has an 
interest to evaluate the quality of the UCL building map, 
rather thane the OS MasterMap®, those inherent faults of 
the OS MasterMap® was removed from the UCL data, and 
small polygons whose member points are less than 100 
points were also excluded before the quality evaluation. 
 

    
(a) UCL building map 

 

    
(b) OS MasterMap® ground plan 

Figure 11. Building extraction result and OS MasterMap® 

 
A number of objective evaluation metrics suggested by 
Shufelt (1999) was adopted in order to provide a 
quantitative assessment of the developed building extraction 
algorithm. These metrics can be defined as follows: 
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(%) 100 /
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building detection percentage TP TP TN
branching factor FP TP
quality percentage TP TP FP FN

= × +
=
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where TP (True Positive) is a building classified by both 
datasets, TN (True Negative) is a non-building object 
classified by both datasets, FP (False Positive) is a building 
classified only by the UCL building map, and FN (False 
Negative) is a building classified only by the OS 
MasterMap®. Table 1 shows the pixel classification results, 
and the evaluation on the UCL building map computed by 
Eq. 8 is presented in table 2. 
 

 Table 1. Pixel classification results 
Pixel classification Pixels 
True Positive (TP)  67085 
True Negative (TN) 255794 
False Positive (FP) 4344 
False Negative (FN) 14639 

 
 Table 2. Building extraction metric result 

Building extraction metric Evaluation result 
Building detection percentage 93.92 (%) 
Branching factor 0.22 
Quality percentage  77.94 (%) 

 
6. DISCUSSION 

As can be seen in table 2, the proposed building extraction 
technique detected building objects with 94 % detection rate 
(building detection percentage), and showed 0.2 delineation 
performance (branching factor). Finally, the overall success 
of the technique was evaluated as 78 % extraction quality 
(quality percentage). These results suggest that the 
developed system can successfully acquire accurate 
detection and description of building objects using Ikonos 
images and lidar data with a moderate point density.  
 

 
Figure 12. Building extraction errors 

 
However, the UCL building map contains certain amount of 
building extraction errors (FP and FN), which should be 
reduced for achieving a more accurate extraction of building 
objects. The errors apparent in the result generated by the 
developed system can generally be divided into three 
categories: 
 
Building detection error: most of FN pixels in Eq. 8 were 
generated by under-detection of the terraced houses (see 
blue coloured polygons in figure 12). This problem is mainly 
caused by the fact that the NDVI classification described in 
§3.3 tends to over-remove “building” points over those 
building with long and narrow structures such as a row of 
terraced houses and results in a very small “blob”, whose 
member points are fewer than 30 points. This problem can 
be resolved by modifying the NDVI classification from 
point-wise to region-wise approach. That is, in order to 
ensure larger numbers of member points are obtained, 
“high-rise” points populated in §3.2 are clustered in a 
number of single objects, and then a cluster-by-cluster tree 
detection is made by the NDVI classification. This 
modification may make terraced houses detectable since 
more member points are retained. 
 
Building delineation error: these errors are caused when 
boundaries of building objects are not properly extracted by 
the building description process (see red coloured pixels in 
figure 12).  Those errors are related to the inherent 
planimetric accuracy of input data (i.e., Ikonos image, lidar 
data, and OS MasterMap®), and the point density of lidar 
data. Most of boundary delineation errors are deviated from 
the OS reference data with one or two pixels if lidar 



 

measurements are sufficiently acquired over buildings (see 
figure 13 (a)). However, as lidar points are acquired with 
less point density over a building, more errors are produced 
around its boundaries (figure 13 (b) and (c)). This is because 
the detection of data-driven lines and model-driven lines is 
more difficult over a building with coarser point density than 
the one with denser point density. As a result, mis-location 
of data-driven lines and model-driven lines leads to the 
generation of delineation errors around building boundaries.  
 

        
 

           
 

           
Figure 13. Building delineation errors; the first column 

shows cut-out Ikonos images overlaid with 
building-labelled lidar points; the second column 
shows building delineation errors 

 
 

         
              (a) Ikonos image   (b) building-labelled lidar points 

         
(c) UCL building map      (d) OS MasterMap® 

Figure 14. Reference data errors 
 
Reference data error: these errors are caused by the 
inherent faults in the OS MasterMap® (see yellow coloured 
pixel in figure 12). As can be seen in figure 14, the UCL 
building map can successfully delineate boundaries of a 
building based on the result of lidar measurements and 
Ikonos image. However, the OS building map missed some 
part of that building (cf. figure 14 (c) and (d)). As outlined 
earlier, this error caused by a time difference between the 
acquisition of the Ikonos image and lidar data, and the 

construction of the OS data. The analysis of the reference 
errors suggests that the developed building extraction 
technique can be also used for applications detecting 
changes in an urban environment and supporting map 
compilation.  
 

7. CONCLUSIONS 

This paper presented a system for automatically detecting 
building objects and delineating their boundaries from 
Ikonos images and lidar data. A few new ideas to combine 
complementary nature of intensity images and high-quality 
of 3D information to solve problems associated with 
building detection and building description are introduced. 
The overall success of the developed building extraction 
system was evaluated in comparison with the OS 
MasterMap® ground plan. The results highlights Ikonos 
images can be used in topographic mapping at large scale in 
a combination of lidar data. The current system is limited to 
delineating polygonal shapes of buildings with flat roofs. 
Thus, a further development must be directed to reconstruct 
3D roof structures based on the ground plans extracted by 
the current techniques. 
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