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ABSTRACT:

The paper highlights approaches to reference data acquisition in real environments for the purpose of performance evaluation of image
analysis procedures. Reference data for the input and for the output of an algorithm is obtained by a) exploiting the noise characteristics
of Gaussian image pyramids and b) exploiting multiple views. The approaches are employed exemplarily in the context of evaluating

low level feature extraction algorithms.

1 INTRODUCTION

As most image analysis procedures are addressed to real world
applications, performance evaluation in natural environments is
needed for the design, optimization and selection of algorithms
(Canny, J.E., 1983; Forstner, 1996; Maimone and Shafer, 1996).
Considering the fact that many approaches to performance eval-
uation rely on reference data, we propose two methods for refer-
ence data acquisition in natural environments.

The first approach provides reference output data based on a large
number of multi-perspective images. It assumes that individ-
ual outputs of an algorithm on images of different views can be
fused in an estimation process that yields practically error-free
estimates for the outputs on each individual image.

The second approach provides almost noise-free images with nat-
ural image structures by exploiting the noise characteristics of
Gaussian image pyramids. It is applicable to single images and
provides reference input at least for investigating the noise sensi-
tivity of algorithms.

Both methods are applied exemplarily for characterizing low level
feature extraction algorithms.

2 REFERENCE DATA IN PERFORMANCE
CHARACTERIZATION

To sketch the impact of reference data for performance character-
ization purposes, this section discusses the role of reference data
in characterizing and evaluating algorithms.

2.1 Characterizing and evaluating algorithms

Algorithms generally fulfill the requirements of specific tasks only
to a limited extent. As an example, a point detection algorithm
may only partly fulfill the requirements of object reconstruction,
as it erroneously may leave out relevant points.

We refer to evaluating an algorithm as the process and the re-
sult of deriving statements on the usefulness of an algorithm with
respect to a specific task, resulting e. g. in a score or expected

costs. For example, an algorithm detecting screws on an assem-
bly line may be evaluated by means of the expected costs which
are associated with misdetection.

Evaluation may be based on the results of performance character-
ization. Performance characterization wants to provide applica-
tion independent models C,(+) describing relevant properties ¢,
of algorithms f and of their output dependent on properties c; of
the input. As an example, performance characterization of corner
extraction modules may provide models describing the precision
of extracted points dependent on the image noise (cf. section 4).

A general scheme for evaluating an algorithm may follow fig. 1.
Firstly, the input is characterized using methods for input data
characterization, resulting in input characteristics c;. These input
characteristics are used to instantiate the models C, (-) which re-
sult from the characterization and describe the behavior of the al-
gorithm dependent on the input characteristics, yielding estimates
éo = Cs(cs) for characteristics ¢, of the algorithm and its output
on the given input. Based on user-specified output requirements
R(co) and cost functions E(c,), the estimated characteristics 6;
may be used to estimate the costs é, = E(&,) which are to be
expected in case the algorithm is applied to the given data.

Abstraction hierarchy. Algorithms are implemented in pro-
grams to fulfill a function with a certain intention. In design-
ing a computer vision system, several alternative functions may
be considered to follow a certain intention. For example, feature
based matching and intensity based matching may be considered
as functions following the intention of image matching. For each
function there may exist multiple algorithms, e. g. cross correla-
tion and least squares matching as algorithms for intensity based
matching. Again, several different implementations of the same
algorithm may be available.

Characterization and evaluation may therefore take place on the
level of the intention, the level of the function, the level of the al-
gorithm or the level of the implementation, with the levels build-
ing a characterization hierarchy of decreasing abstraction (cf. fig.
2).

2.2 The role of reference data

Reference data serves for investigations on the lowest level of
abstraction, i. e. for empirical investigations on the level of the
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Figure 1: Work-flow for characterization and performance evaluation of algorithms.

U U U U -
i Model |

Intention :
level

[Algorithm A2]

level

7

: 1'Algorithm.7 :' Funclion‘] !
Lo level
=]
~_ |oe
g
S
3
>

Implementation
Level

Figure 2: Abstraction hierarchy of algorithms

implementation.

In the model area, functions, algorithms or implementations are
analyzed theoretically based on models that describe the data and
models that describe the function, the algorithm or the implemen-
tation. In the reality domain, empirical tests on synthetic data are
needed to validate the implementation or to simulate the behavior
of the implementation on data that follows a certain model.

Neither theoretical analysis nor empirical testing on synthetic data
gives full information about how well real world input data fits
the data model that is inherent in an algorithm or an implementa-
tion. To validate model assumptions in reality, tests in real envi-
ronments have to be carried out using reference data to measure
deviations of system-immanent model assumptions from reality.

3 METHODS FOR REFERENCE DATA DEFINITION IN
REAL ENVIRONMENTS

There are several ways to define reference data for characterizing
implementations of algorithms in real environments. Reference
data for the output of an implementation may be specified ex-
plicitely by a human or be defined as the result of a reference
implementation of a reference algorithm on given data. Further-
more, reference data for the output of an arbitrary implementation
I may be defined as the output of I on reference input data.

Our first approach to generate reference data matches best the
concept of reference data from a reference algorithm. In our case,
the reference algorithm employs an algorithm A on many hetero-
geneous data sets D; and combines the results o; in a robust es-
timation process to provide the reference output of the algorithm

A on each data set. The second approach supports defining refer-
ence output based on reference input. It provides noiseless refer-
ence input data by exploiting the noise characteristics of Gaussian
image pyramids.

3.1 Reference data from multiple views.

The character and the amount of deficiencies in the output of
computer vision algorithms may depend on the perspective under
which an object is observed. For characterizing view-dependent
properties of an algorithm, test scenarios are needed based on
multiple views, with reference data defining the true result for
each view. In the following, we propose a method for automati-
cally generating reference data from multiple views.

Procedure. Assuming that the outputs an of algorithm on multi-
perspective images can be combined in such a way that the com-
bination of all results yields an error-free or nearly error free re-
sult, reference data for the output on each data set may be esti-
mated as follows:

1. A large number of images is taken from the same (parts of)
an object. To minimize viewpoint-dependent errors in step
2, the exposure setup chosen is such that effects of errors in
analyzing individual views are widely compensated for over
the whole set of views.

2. A reference algorithm or the algorithm to be characterized
itself is applied to each image I;, yielding the individual
outputs o;.

3. The individual outputs o; are fused to obtain a common error
free result a.

4. Reference outputs for the individual views are derived from
the error free result, e.g. by projection.

3.2 Reference data from multiple resolutions

Our approach to reference data acquisition from multiple resolu-
tions provides nearly noise-free input images with natural image
structures by exploiting the noise characteristics of Gaussian im-
age pyramids. It is applicable to single images and serves refer-
ence data for at least two questions:

1. Investigations concerning the noise sensitivity of an algo-
rithm may compare its results on noise-free input with the
results on noisy data with known noise characteristics. For
this purpose, noiseless test data and test data with known
noise characteristics is required.



2. Results of computer vision algorithms may contain scale-
dependent errors which can be estimated from the output
on images of different scales. Therefore, test images are
required realizing multiple levels of resolution.

Gaussian image pyramids. Animage pyramid stores an image
I at multiple resolutions. For a high resolution image I we build
up a Gaussian image pyramid in the following way, cf. (Crowley,
J.L. etal., 2002):

We start from the full resolution image / (9 — J of size N, X N,
[pel?] as the lowest level image. On each pyramid level v, the
image 1 ) is smoothed by two-dimensional convolution

I8 (r,¢) = Go(r,c) * I (r,c)

with an isotropic Gaussian kernel

1 2402
e 202

Go(r,c)

2702

of filter width ¢ = 2 [pel]. The smoothed image I, ™) is sub-
sampled using

1Y ¢) = 18 (2r, 2¢)

forall (r,c) € {1,...,N./2"""} x {1,...,N./2""'}, yield-
ing the higher level image 7“1,

Noise characteristics of Gaussian image pyramids.

Smoothing with a Gaussian kernel of width o reduces image
noise. The relation between the noise variance o of the orig-
inal image and the noise variance o2 of the smoothed image is
given by (cf. (Fuchs, 1998), eq. 4.8

e 1
ol = ag//_oo Gi(h c)drde = WO’S.

Thus, if 6§ denotes the noise variance of the level-0 image of an
image pyramid, the noise variance of the level k image is given
by
(o2 = 1 2
= —0}.
" (4mc?)*

Obviously, the amount of image noise decreases rapidly with in-
creasing pyramid levels.

Procedure. The method exploits the fact that the higher level
images of an image pyramid are practically noiseless but contain
the same image structure as the full resolution image — a fact that
qualifies the higher level pyramid images for the use as reference
data for the input signal of an algorithm. The natural image struc-
ture is widely prevented even in the higher level pyramid levels,
as the decimation step on each level of the image pyramid widely
compensates for smoothing the signal.

4 EXAMPLE: CHARACTERIZING FEATURE
EXTRACTION ALGORITHMS

To demonstrate the feasibility of the approaches to reference data
acquisition, we employ both methods for characterizing low level
feature extraction modules. We consider the following issues:

1. Straight line and edge detection: Some modules for extract-
ing linear features, i. e. straight lines and edges from images,
for some reason provide line and edge segments which are
systematically too short. We investigate the shortening of
linear features exemplarily for the feature extraction mod-
ule presented in (Fuchs, 1998).

2. Point detection: Most investigations on the noise behavior
of point extraction algorithms are based on synthetic data
for the signal and for the noise. Unlike these, we investi-
gate the noise sensitivity of the point extraction proposed
by (Forstner and Giilch, 1987) based on an almost noiseless
real signal with only the added noise being synthetic.

4.1 Basics

4.1.1 Notation. We use Euclidean and homogeneous repre-
sentations of points and straight lines in 2D and 3D. Euclidean
coordinates of a 2D point are denoted with lowercase slanted let-
ters x, its homogeneous coordinates are denoted with lowercase
upright letters x = (xT , 1)T. Homogeneous coordinates of a 3D
point are denoted with upright uppercase letters X. Segments of
straight lines and edges in 2D are represented by their bounding
points ! : (Xs,Xc). The line joining two end points x, and x. is
given homogeneous with 1 = x5 A Xe = X X Xe.

Stochastic entities are underlined, e. g. x, their expectation values
are marked with a bar, e. g. X¥. Estimated entities wear a hat, e. g.
x and reference values have a tilde, e. g. .

4.1.2 Shortening of linear features at junctions. An exam-
ple for shortened lines and edges at junctions is depicted in fig.
3c). It is drawn from the output of the feature extraction software
FEX, which was applied to an intensity image of a polyhedral ob-
ject. The software expects a multi-channel intensity raster image
as input and provides a symbolic image description containing
lists of points, blobs and linear features, the linear features being
segments of straight lines or intensity edges.

Figure 3: Situation for a single image: a) Rectified image b) Rec-
tified image with projected reference points c¢) Rectified image
with extracted edges d) Local situation for two junctions.

Given the true values X5 and x., of the two end Eoints x, and x, of
a straight line or edge, the expectation value d of the shortening

d is defined as

d=E(d)=E(| % — % | - |x, —x. ]).



Assuming that the line 1 = x, X x, is sufficiently parallel to the
reference 1 = X; X X, it approximately holds
d~E(|% —x, | +]% —x, )
= B\ % —x, ) + B(| % —x, |

and in a symmetric situation, i. e.

5=B(%-x[)=E(% —x,|) = E(% x|,

e
it holds o

d=25=2B(|%—x),
9 denoting the expectation value of the one-sided shortening at

each end point of a line or edge segment.

Given N observed end points x1, . . . ,xn of linear features with
their reference points X1, . . ., X v, the mean one-sided shortening
4 and the variance a?n of the one-sided shortenings 6, =| ¥, —
X, | may be estimated from

1 N
o= 6n 1)

and

1 N
62 = Z(an —5)% )

4.1.3 Noise characteristics of point extraction. The noise
sensitivity of point extraction algorithms may be characterized in
terms of the quality of the point localization under varying image
noise, quantified with the bias b = b(02) and covariance ma-
trix 3., (c2) of extracted points dependent on the image noise
variance o2 .

Given N independent point observations x1, . . . ,x x of equal pre-
cision, an estimate X for true point X is given by the mean

1 N
x:N;xn ©))

and the bias b of the observations and their covariance matrix
3.2 may then be estimated from (cf. (Luxen, 2003))

—i_3 s _ 1 oz T
b=X%—-% and Em_Nflz(x" DEn—%)". @

4.2 Test procedures

With a calibrated digital camera Kodak DCS 460, images of a
polyhedral object were taken from 46 different perspectives, cf.
fig. 4. All images were corrected referring to distortion.

Figure 4: Images of a polyhedral object (sample). Image size:
2036 x 3060 [pel].

4.2.1 Characterizing the shortening of linear features The
shortening of linear features provided by the feature extraction
software FEX is investigated by comparing the end points of ex-
tracted straight lines and edges with ground truth resulting from
the multiple view approach.

Reference data estimation by multiple view approach. Incase
of a precise polyhedral object, the end points of straight line and

edge segments coincide with imaged object corners, and refer-

ence values for the image coordinates of object corners can be

considered as reference for the end points of straight line and

edge segments.

Therefore, to estimate reference data, the object corners were ex-
tracted from each image using the corner extraction proposed by
(Forstner and Giilch, 1987). Based on approximate values for
the image orientations as well as for the object coordinates, the
point correspondence problem was solved and spurious features
were eliminated. A bundle adjustment was carried out for simul-
taneously estimating the projection matrices P; of all images I;
and the coordinates X; of the corresponding corners C; in object
space. As the comprehensive exposure setup realizes heteroge-
neous viewing angles for almost every object point and due to the
fact that in the estimation process the redundancy is very high,
effects of small errors in the mensuration process were assumed
to be negligible and the result of the object reconstruction to be
complete. Therefore, the estimated coordinates XZ and the esti-
mated projection matrices Isj were considered as reference data
in object space. Reference data in the image domain was obtained
by projection

i = %i; = P;X, )
resulting in reference values X;; for the image coordinates x;; of
each corner C; in each image I;.

Analysis of extracted lines and edges. The feature extraction
software FEX was applied to each image, with the control pa-
rameters being optimized by visual inspection. For each image
1;, the end points x;,s and xy;,. of all extracted line segments
l; were matched to the reference points X;; by employing a dis-
tance threshold e = 20 [pel], for each reference point ¥;; leading
to a set

Lij = {(xkj,sicij) ‘ | Xkjs — X5 |< 6} U

U {(xkj,e7i7ij) ‘ | Xkje —Xij [< 6} ©)
of point-to-reference-point correspondences. Using eq. 1, the
one-sided-shortening ¢ was estimated junction-wise for each L;;,
leading to estimates 0;;, image-wise over Z; = |J, Lsj, leading
to estimates SJ(-I) and for each junction over all images, i. e. over
Ji = Uj L;;, leading to estimates 5£‘7).
4.2.2 Characterizing the noise sensitivity of corner extrac-
tion.

Reference data from multiple resolutions approach. To in-
vestigate the robustness of the corner extraction (Forstner and
Giilch, 1987) with respect to noise, image pyramids were gen-
erated for all images.

The third level image I J(-S) was taken from each pyramid, em-
bodying an almost noiseless image fj = IJ(-S) with real image

structure. Reference coordinates ig) for the object corners in the
third level images were derived from the reference coordinates
Xi; (eq. 5) by scaling,

) =45, )



Analysis of points under image noise. To generate noisy im-
age data, the reference images I; were contaminated with zero
mean Gaussian white noise

n~ N(0,07),

the noise variance being varied from o,, = 0.1 grey values ([gr])
to o, = 12 [gr] in steps of /2 [gr].

N = 100 test images I;i"), ..
image I; and each noise level o,,. The point extraction was ap-

T J(Gl?)()) were generated for each

plied to each test image, for each point JES’) leading to a set
plon) — {m)xm ‘ |k, — 2 < 6}
of observations (%) x,,.

Using eq. 4, the bias b and the covariance matrix 3., of the

observations were estimated point-wise for each Pff ") over all
noise levels o,.

4.3 Provisional results

First results of our experiments are plausible, indicating that the
proposed methods for reference data definition may be success-
fully used in characterizing image processing algorithms.

4.3.1 Noise characteristics of corner extraction. Results con-
cerning the noise sensitivity of the corner extraction are illus-
trated in fig. 5 and fig. 6.

As to be expected, the empirical standard deviations &, and &
of extracted corners in z- and y-direction and the resulting mean
error 6, = /62 + 62 increase with increasing image noise (cf.
fig. 5). For most corners, the increase of 6, 6 and &7, is stronger
than linear and thus stronger than to be expected. This may be
caused by the fact that to detect all desired corners, the smoothing
parameter o1 of the corner extraction was adapted linearly to the
standard deviation o, of the image noise, reaching from o1 =
0.7[pel] for o,, = 1[gr] to o1 = 0.9 [pel] for o, = 10[gr].
As smoothing deteriorates the quality of the point localization
(cf. (Canny, J.F., 1983)), the loss of precision may thus be partly
caused by enlarging the smoothing filter for images with a larger
amount of noise.

o, [pell o, [pel] RootOf(cfmj) [pel]
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Figure 5: Empirical precision of extracted corners on noisy im-
ages. Each curve represents the uncertainty of a single point.
Left: Empirical standard deviation o, in z-direction. Center:
Empirical standard deviation o, in y-direction. Right: Mean lo-

calization error o = (/02 + 02.

Also the estimated bias | b | of extracted points increases with
increasing image noise (cf. fig. 6), which will be mainly due to

b, [pel]

by (pel Ib] [pel]
2 1
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Figure 6: Estimated bias of extracted corners on noisy images,
each curve representing the bias of a single corner. Left: Bias b,
in z-direction. Center: Bias by in y-direction. Right: Norm | b |
of the bias.

enlarging the smoothing filter dependent on the image noise. As
to be expected, the different behavior of the bias components be
and By of different points indicates that the bias depends on the
perspective under which a corner is observed.
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Figure 7: Shortening of straight lines and edges on different res-
olutions.

4.3.2 Shortening of edges at junctions The results concern-
ing the shortening of extracted lines and edges at junctions are
depicted in the figs. 7, 8 and 9.

For three junctions in a single image, fig. 7 shows the one-sided
shortening of the junction branches dependent on the image reso-
lution. The results were drawn from the three lowest levels of an
image pyramid. The mean shortening of extracted lines reaches
from 3 to 5 pixels. It decreases with decreasing image resolution.

For a single junction, in fig. 8 the mean and the variance of the
shortening of edges is depicted over all images. The shortening
varies over different images, depending on the perspective under
which the junction is observed and on its illumination. The short-
ening is large especially in situations with low contrast at edges.

Fig. 9 shows for each junction the mean and the standard devi-
ation of the shortening of adjacent edges, with the mean and the
standard deviation being taken over all images. The one-sided
shortening reaches up to 10 pixels. Again the worst results are
obtained for junctions with low contrast at edges.

5 CONCLUSIONS AND OUTLOOK

This paper proposes two methods for generating reference data in
the context of characterizing image processing algorithms. The
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Figure 8: Shortening of straight lines and edges at a single junc-
tion over all images
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Mean and the variance are taken over all images

role of reference data in characterizing and evaluating algorithms
is discussed and the approaches to reference data generation are
explained.

The methods were successfully employed to investigate the noise

sensitivity of point extraction modules and the shortening of straight

lines and edges provided by linear feature extraction modules.
First results are plausible and give reason 1) to exploit the pro-
posed methods for reference data generation on other data sets,
2) to further investigate the noise behavior of corner extraction
modules including local image characteristics such as shape or
local contrast and 3) to further investigate the shortening of linear
features dependent at junctions dependent on the contrast at the
junction branches.
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