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ABSTRACT

Building reconstruction has received increasing attention in the last few years. Many systems deal with reconstruction
from aerial laser scans and images. As there is an increasing demand for more detail in a building’s description, terrestrial
data sources become more important. Preferably, extraction and reconstruction are realised as a fully automatic process.
This paper describes a new approach for segmenting and describing a building’s facade. Basic models representing facade
parts such as windows are constructed as aggregations of geometric primitives like lines. Models are parameterized.
Edges are then extracted from laser scan data of a single building. Extracted edges are preprocessed using a length
filter. Subsequently, the previously defined models are fitted into the processed edge representation of the building using
a constrained search approach. The goal is to find multiple occurrence of a particular shape (i.e. multiple windows),
represented by an object model with a fixed parameter set, in one building. This approach works semi automatically with

a view to full automation in the future.

1 INTRODUCTION

This work is part of a research project which deals with
automatic derivation of 3D city models. Four data sources
are used for this:

1. airborne laser scans
2. terrestrial laser scans
3. airborne images

4. terrestrial images

Objectives of the project include the fusion of multiple data
sets and automatic object extraction. This paper presents
one approach towards that goal. Images coming from one
of the named data sources, in this case range images de-
rived from terrestrial laser scans, are segmented. Edges
are extracted as low-level primitives. These edges are to
be aggregated into higher-level primitives; they represent
geometric structures present in the image. Because our
main concern are 3D city models, we have chosen build-
ing’s fagades as an example. We are looking for geometric
structures which represent parts of the facades that occur
multiple times, such as windows, doors or ornaments. If
possible, these geometric structures are searched for in im-
ages coming from the other data sources in a way that cor-
relations are found.

In this paper, a procedure is developed to extract those
shapes. Model-based matching is used and constrained
search is applied to find successful matches.
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Our approach uses mostly 2D image processing tools, and
searching is done using 2D features, so preprocessing has
to be done to allow for distortion. To reduce the search
problem to two dimensions, features are extracted in the
facade using depth information and are then projected into
the facade’s plane. Search is carried out matching the ge-
ometry of objects found in the facades.

2 RELATED WORK

Several papers deal with the extraction of facade structures.
For example, in (Wang et al., 2002) a system extracting
windows from the orthoimage of a fagade is described. A
consensus texture facade image is calculated from several
luminance-normalized facade images by weighted averag-
ing. The resulting image is deblurred and rectangles are fit-
ted into windows in the fagade by an oriented region grow-
ing algorithm. This way, rectangles are iteratively fitted
into blobs representing windows so that they grow to as-
sume the window’s size in the image. Extracted windows
are then grouped using clustering algorithms.

Another example is (Werner and Zisserman, 2002). Here,
the data source is an edge image with depth information
calculated over multiple views. Parameterized models are
fitted into facade structures such as windows or doors.
Models are three-dimensional and include structures com-
posed of straight lines such as boxes as well as more com-
plicated models which contain arcs. To select a particular
model, probabilities for models are determined using the
Bayesian rule over a set of training images.

In both examples, multiple photos are used as the data
source. In our case, we want to apply an algorithm falling



into the same category as those two to a single range im-
age.

In (Sester and Forstner, 1989), the concept of fitting
generic models, described by a set of parameters, is pre-
sented. In this paper, emphasis is put on dealing with un-
certainty.

There is also an extensive repertoire of employing search
algorithms for matching problems. In (Rottensteiner,
2001), we find a classification of matching techniques
which is based on (Gtllch, 1994). According to this, there
are three main branches of matching algorithms:

1. Raster based matching: Correspondences of images
or image patches are found by comparing grey levels
or function of grey levels.

2. Feature based matching: Features are extracted from
images and mapping occurs between those features.
This means basically finding matches between the ge-
ometric description of objects found in different im-
ages.

3. Relational matching (Vosselman, 1992): Here, topo-
logical relations of features found in images are
matched. This is achieved by creating feature adja-
cency graphs first and then searching for matches be-
tween those graphs.

Building interpretation trees is a technique often used to
establish mappings between the items in the respective
search space. Depending on whether one wants to find
some matches or all matches between model and data pix-
els, features or graph nodes, a partial or exhaustive search
needs to be conducted.

In our case, we want to match geometric features doing an
exhaustive search to find all relevant structures in a build-
ing’s facade. To achieve this, we use a constrained search
approach which is described in detail later. Several ob-
ject recognition systems were successfully implemented
using this technique. Earlier work includes (Grimson et al.,
1990), (Flynn and Jain, 1991) and (Walker, 1999), where
fuzzy rules are used to allow for uncertainty in the mea-
surement of the constraint parameters.

3 SEGMENTATION

We are looking for structures in fagades, like windows,
doors and ornaments, that have the following properties:

[. They occur repeatedly and are arranged in a certain
way, for example in rows and columns or other regu-
lar fashions.

2. They consist of features that represent discontinuities,
i. e. edges.

3. They have the same size.

4. They have identical geometric properties, like angles
and distances between edges.

Starting from these prerequisites, we construct models for
the fagade structures. For the moment, we concentrate on
windows. These models consist so far of straight lines. The
simplest model is a rectangle with variable aspect ratio.
More complex models have a rectangle as the outline and
also contain interior structure like grids which are often
found in windows. Figure 1 shows those generic models
used.

Figure 1: Models for windows.

To find instances of these models, we have to decide on
a suitable representation of the laser scan data and extract
straight lines. Those straight lines are then matched to one
of the models using search, as described in chapter 4.

The range image of a terrestrial laser scan is used. A subset
of the point cloud containing a building’s fagade is clipped.
The range image is modified so that the facade appears
parallel to the image plane, i.e. points having the same
distance from the fagade are assigned the same range value
(see figure 2).

Range Tmage Plane

Projected Rays

Figure 2: Modified range image.

Burns’ line extracting algorithm (Burns et al., 1986) is then
used to segment the range image. The result is a table of
straight segments representing breaks in depth of the range
image. Segments are filtered for length as very short seg-
ments are usually insignificant. We now give a short de-
scription of how Burns’ algorithm works. Our implemen-
tation for the application of this algorithm on range images
is identical to the one for ordinary images, no adaption is
necessary.

For the line extraction, gradient images in x and y direction
are calculated for the range image. Pixels are then sorted
into overlapping buckets according to their gradient. Pixels
in the same bucket are grouped using region labelling. For
each region, a plane is fitted which represents the gradient
slope in that region. This plane is then intersected with
a plane representing the average gradient in every region.
This way, straight lines are obtained. The lines are clipped
by the boundaries of their support regions.

Those 2D segments can be transformed into 3D by finding
points in the point cloud corresponding to the endpoints of



the extracted lines. Then, a plane representing the build-
ing’s facade is found. All 3D segments are projected into
that plane. This way, distortion of facade structures can be
eliminated.

4 CONSTRAINED SEARCH

4.1 Principle

Constrained Search is a technique for matching models to
data devised by (Grimson et al., 1990). The principle is to
build an interpretation tree that associates model features
with data features (see figure 3). In order to avoid search
explosion by testing every possible pairing of model fea-
tures and data features, constraints are used to prune the
interpretation tree. The goal is to use these constraints
to rule out inconsistent matches at an early stage of the
search. Every subnode of a pruned node will not be visited
during the search process, therefore complexity of the tree
is reduced.
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Figure 3: Part of interpretation tree.

Constraints can be unary or binary. Unary constraints de-
fine consistency of pairings between one model and one
data feature, whereas binary constraints define consistency
between pairings of two model features and two data fea-
tures. Definitions for the constraints used in our system
will be given later.

Overall consistency of the match is verified by finding a
transformation that transforms the model features into data
feature space (pose estimation) and calculating the devia-
tion. If the deviation is below a set threshold, the match is
considered consistent and therefore accepted.

The depth of the tree is defined by the number of data fea-
tures, whereas the number of children of each node corre-
sponds to the number of model features. Null associations
are used to account for data features which are not associ-
ated with a model feature.

4.2 Application
In our system, model segments are associated with data

segments. We need to determine constraints which are
meaningful in the context of this task. As stated in chapter

3, the structures we are looking for have certain geomet-
ric properties. These can be interpreted as constraints. In
particular, we are going to make use of orthogonality and
parallelism. These can be phrased in the form of an an-
gle constraint and a distance constraint. Because we don’t
use absolute values for angles and distances in the range
image, constraints are binary and check that relations be-
tween model edges hold for relations between data edges.
As the models described earlier contain the right angles
and parallel lines that can be found when examining facade
structures, these are exactly the conditions that hold true
for the data edges which these models are matched to.

So, the following binary geometric constraints are used for
pruning the interpretation tree:

1. Angle Constraint: This constraint compares the angle
between two models segments to the angle between
two data segments. A user-defined deviation is al-
lowed. Formally it looks like this:

bi,

be the angle between the edge normals of the data
edges i and j,
Opq

be the angle between the edge normals of the model
edges p and q. Then

angle_constraint(i, j, p,q) = true

iff 0 € [Opg — €4, Opg + €4 (D

2. Distance Constraint: This constraint compares the
distance between two model segments to the distance
between two data segments. Obviously, this con-
straint is not scale invariant. Maximum and minimum
distance between the endpoints of one edge to the line
through the other edge are calculated for both edges.

di iz, An.ij

be the smallest distance and the biggest distance be-
tween data edges, whereas

Dl,pq: Dh,pq

be the smallest and the biggest distance between
model edges. A certain deviation is allowed.

distance_constraint(i, J,p, q) = true
i diijsdnis] € [Dipg — €4 Dhpg +€a]  (2)

The distance constraint is of particular importance because
it provides the most effective pruning of our interpretation
tree without discarding correct solutions.

Unary constraints are not used because consistency checks
can be made only by relative comparisons between model
and data segments, not absolute comparisons. Constraints
that consider length are not used because generally the



length of a data segment is not very meaningful. In our
range images, edges are usually extracted in a fragmented
way and can be much shorter or much longer than an edge
in the real world.

Because we want to find all possible matches of models in
our data set, we do an exhaustive search of the interpreta-
tion tree and store every consistent solution found.

4.3 Verification of Hypotheses

Photogrammetric methods are used to determine the trans-
formation that transforms our model into data space. Two
transformations in are of particular importance: a Helmert
transformation with 4 free parameters and an affine trans-
formation with 6 free parameters in two-dimensional
space.

Because known approaches usually work for estimating
parameters by transforming points, significant points are
used for each edge instead of transforming lines. There are
several possibilities for this and certain problems associ-
ated with each possibility:

1. Middle points of edges: Because the length of an edge
is of limited significance (real edges are usually frag-
mented into several edges in the edge image), the mid-
dle point of an edge is somewhat arbitrary. Apart from
this, information is lost because a line contains more
information than a single point.

2. Endpoints: Here, the same problem with the length
and exact position of an edge occurs. In fact, the
endpoints of an extracted edge usually don’t coincide
with the endpoints of a real edge. Besides, using end-
points means that edges are given an orientation. To
correctly find all possible solutions, each edge would
have to be considered twice, once in each direction.
This doubles the depth of the interpretation tree.

3. Intersection points: These probably give the most use-
ful information. Intersection points are calculated by
treating edges as lines, so points not directly lying
on an edge are also found. In fact, those intersec-
tion points usually give the best approximation for the
endpoints of the real edges of a building’s facade. The
only problem is that a set of edges can have many in-
tersection points, some of them too far away from the
extracted edge to be meaningful. Solutions containing
such points have to be rejected.

The general form of a 2D affine transformation is as fol-
lows:

X=a+cr—dy 3)
Y=btex+ fy )]

In a Helmert transformation, it holds that

e=d 5)

and
f=c (6)
so the equations simplify to
X=a+cx—dy @)
Y=b+dr+cy )

The Helmert transformation has proven particularly useful
in our example. It provides rotation, transformation and
uniform scaling in both directions.

An approach for estimating parameters based on least
squares adjustment for equally weighted observations is
used (Niemeier, 2001). The coefficients of the transfor-
mation equations for all points are written in matrix form:

10 =1 —-n
01 y1 =
1 0 o —Y2
A= 0 1 Yo o (9)
1 0 2 -y
01 vy, =z

The points in the target co-ordinate system are written as

Xy
Y1

1= (10)
XP
YP

The estimate for the transformation parameters is calcu-
lated as
&= (AT A)~1 AT} (1)

5 SEARCH STRATEGY
5.1 Initialization

First, an initial model needs to be fitted. Our model so far
is a rectangle with variable aspect ratio which is automati-
cally estimated. For this, the user of our system is required
to select a structure in the edge image by enclosing it with
a bounding box. A generic rectangle is then fitted into the
edges inside the bounding box. For the initial fitting, an in-
terpretation tree is built for matching four model segments
to the data segments present. No constraints are used. At
leaf level of the tree, an estimate for the aspect ratio of the
rectangle is made. The model rectangle is stretched ac-
cordingly. Then, a Helmert transformation is calculated to
transform the rectangle into data space.

Typically, if there are more than four data segments present
in the bounding box, more than one suitable rectangle is
found. In this case, the rectangle matching most data seg-
ments and providing the best fit is used. Alternaltively,
the user can select one of several solutions. This way, a
custom-made model is found for the structure which we
wish to find in our edge image.



5.2 Search

The model derived during initialization is now searched
for in the whole edge image or a user-defined subsection
thereof. It can be freely rotated or translated, but the aspect
ratio is kept constant, and only a limited amount of scaling
is allowed, as we will see later.

An edge image can consist of several hundred edges, so
pruning of the interpretation tree is inevitable. The an-
gle and distance constraint defined earlier are used for
that. The distance constraint also rules out solutions which
would require scaling of the model beyond the bounds of
the constraint, which accounts for the limited amount of
scaling.

Because there are usually many edges in the facade of a
building and the number of edges determines the depth of
the tree, careful application of constraints is necessary to
avoid search explosion. It is possible to divide the search
space and search several small trees instead of one big one.
For this, the edge image is tiled after initialization. Tiles
are twice as big as the initialized model, and tiling takes
place in a way that tiles overlap halfway so every correct
solution is contained in at least one complete tile, although
it can also be contained partially in several other tiles.

Effectively, tiling means enforcing the distance constraint
in a way that two data segments can’t be part of the same
match if their distance is more than twice the size of the
model. For the search inside the individual tiles, the dis-
tance constraint can now be relaxed without causing a
search explosion because the number of edges inside a tile
is usually small by comparison to the total number of edges
in a building fagade.

It is also possible to filter edges after initialization and be-
fore further search. An angle criterion can be used because
after the first fit it is known which angles edges have to be
suitable candidates for more matches.

Another way to reduce complexity during search and also
eliminate finding the same solution several times is to
delete data edges from the search space after matching
them successfully. If a real edge consists of several seg-
mented edges, more than one match could be found which
essentially represents the same building structure. In fact,
only one solution is of interest, so the rest can be safely
omitted. Apart from this, due to the rotational symmetry of
models, a solution is found multiple times, once for each
orientation of the model. If data edges are deleted after
finding the first solution, this can’t happen anymore.

6 EXPERIMENTAL RESULTS
6.1 Tests

We testet our procedure on various single laser scans of
buildings. This section presents the results for the Opera
House in Hannover. First, the range image is calculated
and line extraction is applied. The edge image is shown in

figure 4. A section of the edge image showing a single win-
dow was selected and used for initialization of a rectangle
(figure 5).

e

Figure 4: Edge image.

A small frame is defined by the user for an initial estimate
of one window. A generic rectangle is fitted and stretched
according to the window’s proportions (see figure 5). No
constraints are used.

Figure 5: Initialized model.

After successful initialization, multiple occurrences of this
window are found by matching the rectangle to the edges
inside a user-defined bigger frame, which can contain the
whole facade or a particularly interesting part thereof (see
figure 6). Full automation for this step is aimed for, so far
the user also needs to define deviations for the constraints
so a meaningful fit is achieved.

In figure 6, it can be seen that windows of similar size and
shape as the initial window are successfully found. Some
of the windows are found multiple times. This is due to
the fact that there are many small edges for each window
and the initial rectangle can be successfully fitted into sev-
eral different subsets of them. To remedy this problem, one
could apply a more complex window model, or otherwise
use a filtering postprocessing step which eliminates over-
lapping matches. No meaningful matches are found in the
central part of the building.
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Figure 6: Correspondences found.



6.2 Discussion and Future Work

In the example presented, initialization for one window
leads to successful matching of similar windows once they
are properly extracted. So far, a pose estimate is only car-
ried out for matches which yield at least 4 intersection
points. That means that windows are found where there
is at least one edge per side actually extracted from the
range image. It is desirable to allow for a limited amount
of uncertainty so two or three edges per window can be
used to instantiate a model. This will be subject to further
investigations.

The extracted windows can be used to propose a pattern
in which windows are arranged along a fagcade. Windows
found by the same model with the same constraints param-
eters are used for that. This makes it possible to predict the
presence of windows also for spots where no structures are
found: The hypotheses can then be used to direct another
search step.

Another way of improving the fit is to use weighted esti-
mation of parameters. Possible candidates for weights are
the following:

1. Intersections of edges that are actually present in the
edge image could be assigned a higher weight than in-
tersection points that are calculated by prolongations
of edges.

2. The length of the extracted edges could be used in
some way.

7 CONCLUSION AND OUTLOOK

A semi-automatic method for finding multiple occurrence
of a shape in a building’s facade has been proposed. In this
paper, we have described how we applied segmentation
of laser scans to produce an edge image and constrained
search to match structures in the edge image.

In the future, there are several applications for this proce-
dure in our research project. We will apply the algorithm
to photos of a building as well in order to find correspon-
dences between the laser scan and the photo. The objective
is to automatically apply textures to 3D models of a build-
ing derived from a laser scan. Models for shapes so far
consist only of straight lines. It is planned to extend the
model library so that models contain parameterized curves
as well.

Once structures are found, properties describing a build-
ing’s fagade can be defined. For example, one can count
the number of windows which are arranged horizontallay
or vertically. It is even possible to conclude the number
of storeys that a building has. It is also possible to de-
termine the relative size and position of windows or other
structures by comparison to the building’s size and geom-
etry and identify a particular building amongst others in
images coming from a different data source.

It is also possible to use this algorithm for registration of
different terrestrial laser scans. From structures found in
every single scan, one could estimate the relative pose of
these scans to each other and calculate a transformation.
This way, structures found in buildings by our algorithm
can replace tie points which are generally used for this task.
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