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ABSTRACT: 
The use of a square template in least squares image matching has been established as a well known and tested method. This paper 
suggests the use of an elliptical template as alternative to the square one. The main stimulus for the adoption of the ellipse was the 
disturbing shift of the matched point along linear features. When the square template was used around a point in a linear feature, the 
matched point was not in the correct position, due to slipping along that feature. This phenomenon is expected in least squares 
matching (LSQM) because all points along the line are similar and hardly distinguishable. Even the use of epipolar geometry cannot 
solve the ambiguity of this problem, when the linear features are parallel or almost parallel to the epipolar line. The use of a dynamic 
ellipse oriented with the large axis along the linear feature uses considerably more information, thus strengthening the matching 
process along that direction. The necessary information about the size, shape and orientation of the ellipse are dynamically calculated 
based on local image content and data from the previous iteration. 
 

                                                                 
*  Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

Image matching is a very important aspect of really digital 
photogrammetry since it supports automation. Feature-based 
and area-based matching are the main categories in image 
matching, with the latter being preferred by surveyors and 
photogrammetrists due to increased accuracy and possibility 
of statistical analysis of errors.  
Least square template matching, as an extension to simple 
correlation coefficient matching, was first introduced in 1984 
(Gruen et al). The method has gone a long way since then, 
was enhanced using epipolar geometry (Gruen, Baltsavias, 
1985), multiphoto image matching (Baltsavias, 1991), 
simultaneous multi point matching (Rosenholm 1986), 
pyramids (Baltsavias,1988), combination of feature-based 
and area-based matching (Forstner 1986), etc. Many 
enhancements over the basic model have been introduced 
since 1984. The versatility of least squares and their ability to 
combine data from any source, provided that the 
mathematical model is well defined, has boosted research. 
Numerous variations of image matching using least squares 
have been published the last years, using the basic least 
squares matching with 6 geometric unknowns (or 4 
unknowns in case similarity was adopted) as their core 
module. All these approaches were based on square 
templates, a decision probably based to pixel layout and 
limited computer power. 
Since the early 90s, when image matching research was at its 
peak, there has been little algorithmic enhancement. 
Photogrammetric research has shifted to automatic aerial 
triangulation and digital aerial cameras, leaving image 
matching to signal analysts, and machine vision as part of 
artificial intelligence. Electronic engineers are interested in 
pattern recognition while accuracy isn’t their priority. 
This research is being done as part of a PhD thesis 
concerning image matching in general. Under this prism the 
effort was concentrated for the production of a stand-alone 
matching algorithm with the following characteristics: 
• Independence from external data. The fact that the 

algorithm should be used for automatic relative 

orientation and for the new digital cameras, which 
depend on line arrays and therefore epipolar geometry 
does not apply as we know it, were the main aspects that 
lead to the adaptation of this approach. 

• Reliability. In this way automatic relative orientation 
could depend on these points and the matching could be 
used for the extraction of a reliable Digital Elevation 
Model (DEM), where extensive manual corrections 
would not be necessary anymore. It is not to forget that 
the time needed for DEMs automatic collection and 
necessary correction is almost comparable to the manual 
collection. Actually many commercial companies still 
use manual collection in certain cases although they own 
software packages with automatic  (DEM) collection. 

• Self adaptation. LSQM has a vast number of parameters, 
which should be adjusted for each model. In high end 
commercial systems the number of parameters is huge 
and only matching experts can set them correctly. It is 
not rare to find application engineers of a specific 
software package, who cannot set the parameters 
correctly. Even when set correctly, these parameters do 
not comply with features all over the model area, and 
therefore the matching algorithm should be “clever” 
enough to adjust itself to the content and the information 
around each point. This not only helps inexperienced 
users, who cannot define the parameters, but also 
ensures the best combination of parameters in each 
point. Hence the algorithm was designed so that almost 
all parameters are self adaptive through internal 
procedures. A large effort has been made to keep 
manually set parameters to a minimum.  

DEM generation and relative orientation are the most 
demanding image matching applications and that is why 
research was focused on these topics. 
In general the procedure for DEM generation looks like this: 
1. Pre-processing of the images (image enhancement) 
2. Initial approximation (usually using feature based 

matching, pyramids, or neighbourhood techniques) 
3. Least Squares Matching (LSQM) 
4. Filtering of blunders in 3D or 2D space 



5. Generation of the surface which is done either by 
regularisation using interpolation on a given grid or by 
Triangulated Irregular Network (TIN) 

Therefore the final DEM accuracy depends on all these 
factors. The most recent developments in automatic DEM 
generation are focused on pre and post processing of data.  
It was the authors’ belief that if the main matching algorithm 
was robust enough, the filtering of blunders would become 
simpler or even useless. Therefore the research was focused 
in the core of the matching algorithm, the LSQM. 
In the initial efforts a number of existing techniques were 
tested. From the early stages it was noticed that points on 
lines or edges could not be properly matched. It is usual, for 
points along linear features to be wrongly matched, the 
matching ending due to iteration limit, without returning a 
valid solution. During the error analysis of the LSQM the 
error ellipse from the variance-covariance matrix (Qxx) was 
drawn over points, which were wrongly matched. That was 
when the idea of using the ellipse as a matching template was 
born. It seemed promising because the matching would use 
more information along the edge, where the localisation is 
ambiguous. Since the localisation is good along the direction 
perpendicular to the line, one can afford to use less pixels 
along that direction in favour of more pixels along the linear 
feature. 
 

2. METHODOLOGY 

Although as a concept it is rather simple, a number of 
questions rise when trying to implement this idea in the 
computer. For this particular research the left image is being 
considered as the template (also found as master in 
bibliography) and the right image is the search area (also 
found as slave). The main concept is that the Qxx matrix 
should be used to formulate an ellipse, which is going to be 
used for pixel selection for matching. Because of this there 
are two basic implementation differences from the standard 
LSQM procedure.  
• The first one is that the template is not fixed during the 

process. Pixels used for matching depend on the shape 
and orientation of the ellipse formulated on the search 
image. 

• The second one, which actually originates from the 
previous one, is that the interpolation takes place over 
the pixels on the template image rather than on the 
search image. 

The schematic procedure of the method can be seen in fig. 1. 

From the Qxx matrix define the main parameters of the 
ellipse (two axes and one angle), which correspond on the 
right image. 
Since the corrections over the 6 parameters of the affine 
correspond to the deformed template on the search image, it 
is quite clear that the Qxx matrix corresponds on the right 
image.  
The formulae are quite straightforward and can be found in 
any least squares textbook. In this particular case formulae 
are from Balodimou (2000). The characteristic values for an 
ellipse are shown in figure 2. 

Run the first iteration using the 
standard square template

START
Find the best size for the nxn pixel 

template

From Qxx matrix calculate ellipse 
parameters (a,b,θ)

Calculate appropriate scale factor for 
the ellipse, so that the area of the ellipse 

equals nxn, the best template size.

Find the centers of pixels (x,y) inside the 
closed polygon, on the search image.

Use the inverted affine to convert the pixel 
centers from the search image back to the 
corresponding coordinates on the template 

image

Corrections of the 
affine (dx) and  Qxx 

matrix

List of integer x,y of pixel 
centers on search image, 

around the corrected current 
search point

List of natural x,y on 
template image, around the 

template point.

Find the grey levels of the x,y coordinates 
on the template image, using resambling

Calculate the dL matrix of the grey 
level differences 

Calculate the A matrix as usually from the 
integer pixel values on the search image

Least Squares

Are dx 
corrections on 

affine low

Figure 1.  Flow chart of the implemented method. 
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Supposing θmax, θmin and αmax, αmin are directions for the 
major and the minor semi-axis: 
σx > σy  σxy > 0 θmax = θ αmax = α + 100g 
σx > σy σxy < 0 θmax = θ + 200g αmax = α + 100g 
σx < σy σxy > 0 θmax = θ + 100g αmax = α 
σx < σy σxy < 0 θmax = θ + 100g αmax = α + 200g 
σx = σy σxy > 0 θmax = 50g αmax = 50g 
σx = σy σxy < 0 θmax = 150g αmax = 100g 

 

The magnitude of the two main semi axes are calculated from 
the following formulae: 
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Figure 2. Ellipse characteristics. 

 
The coverage of the calculated ellipse is a very small area. 
This is expected considering that the final ambiguities along 
the two main directions are very small, at the magnitude of 
±0.1 pixels or even lower. Hence a scale factor must be 
applied in the two main axes. In fact the information for the 
best size of the square template is already available from a 
previous step of the algorithm, described in Skarlatos, 2000. 
An algorithm is applied prior to matching to decide about the 
best possible size of the square template. The decision is 
based on statistical values about information around the pixel 
in the left (template) image. It should be noted here that this 
algorithm is location invariant and investigates each patch 
size based on the square template concept, not on the ellipse 
itself. It is not repeated during iterations, instead it is applied 
once prior to matching in each point.  
It is possible though to use the existing self-adaptive template 
algorithm to recalculate the best size of the ellipse, based on 
its shape and orientation. The constraint is that the checking 
should be done for selected areas of 80,100,150…900 pixels 
(equivalent to 9x9-31x31 window size). Recalculations of the 
description of the ellipse and the pixels within cause 
unacceptable delay and therefore such modification was 
rejected. 
Find appropriate scale factor for the ellipse. 
The area of the ellipse is πab, where a and b are the main 
semi-axes, or in this case maxmin σσπ ⋅⋅ . Therefore the scale 

factor for each semi-axis is 
maxmin σσπ
area_new
⋅⋅

. If each semiaxis 

is multiplied by this factor, the new ellipse has area equal to 
new_area. Proportions and orientation of the ellipse are 
maintained, absolutely necessary to the concept of this 
algorithm. 
Find the pixels in the ellipse. 
Theoretically pixels belonging to the ellipse should have 
more than 50% of their area in it. This method of pixel 
identification consumes a lot of computer power, therefore a 
simpler method was used. If the center of the pixel is inside 
the ellipse then the pixel belongs to the ellipse.  
Therefore the two focal points of the ellipse are calculated e1 
and e2 (fig. 3). The focal points are located on the large axis 

at distance 2
min

2
max σσγ −=  from the centre of the ellipse, 

hence their coordinates on the local coordinate system of the 
ellipse are (±γ,0). By applying a rotation angle θ and two 
shifts Xo and Yo, (Xo,Yo) being the centre of the ellipse, the 
coordinates are transformed in the image coordinate system 
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For a point (center of pixel) to be inside the ellipse it is 
necessary: 
 
 

a2)p,e(dist)p,e(dist 21 <+                 (5) 
 
 
Where a is the big semi-axis and p the pixel under 
investigation. 
This check is being done on all pixels within a square with 
sides of 2a, ensuring all possibilities for the direction of the 
ellipse are included in the check. This check is simple and 
fast. The only drawback is that the number of finally selected 
pixels does not coincide exactly with the desired area of the 
ellipse, as calculated on step 2. Statistically this is less than 
2% for the 99% of the cases. For small ellipses this 
percentage may go up to 3%, but drops rapidly when size 
increase, and therefore returns the aforementioned results 
over a matched model. In any case such discrepancies do not 
affect the general idea of the proposed method.  
 

 
Figure 3. Ellipse (green solid line) with check area (red 

dashed), finally selected pixels (green dashed). 
Expected area 221 (=11x11) and finally selected 
pixel 218, representing differentiation less than 
1.5%. 

 

Use the inverse affine transformation to locate these 
pixels on the left image  
In order to perform LSQM the same pixels should also be 
located on the left (template) image. In order to do so the 
inverse affine transformation from the previous iteration is 
used to find the co-ordinates of these pixels on the left image. 
It is expected that after the transformation the left pixels will 
be in random positions (not integer values) and therefore 
interpolation is necessary to find the grey level values for 
these positions. The values are used as floating point numbers 
for further calculations. 
Formulate the matrices, A and l for least squares and 
solve them for the 8 parameters  



The model used for LSQ, adopts the affine transformation for 
geometric corrections with two additional parameters for 
radiometric corrections and is identical to the model 
described extensively in Baltsavias 1991 and Gruen 1996. 
Supposing that the geometric transformation is: 
 
 

o21o1211 yaxaax ++=  

o21o1211 ybxbby ++=  
(6) 

 
 
where the unknowns are 

{ }r,r,db,db,db,da,da,dax s211211211211
T =  

The main equation for every observation (grey level 
difference between right and left interpolated pixel) which 
forms the A and l matrix: 
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are the partial derivatives along x and y axis respectively. 
The matrix equation formed is lAx =  and the solution being  
 
 

lAA)(Ax T1T −=               (8). 
 
 
If the corrections on dx and dy are still high, go to step 1 
 

3. APPLICATION OF ELLIPSE MATCHING AND 
COMPARISON WITH THE STANDARD SQUARE 

TEMPLATE. 

The main algorithm of the method is described in detail 
above. At this time the matching software including the 
algorithm is used as a learning tool for customisation and 
optimisation. Hence there is a big number of parameters that 
can be adapted or self-adapted. For simplicity and 
comparison reasons it should be mentioned that both 
algorithms are tested using 
• Maximum template size 41x41 pixels. This means that 

the automatic template size algorithm will check all 
templates between 7x7 and 41x41 to find the best size for 
a square template. If no template size is considered good 
enough for matching, then the matching in this position is 
being done using the maximum allowed (41x41 in this 
case). Otherwise the matching will be done using the 
template found. If matching with this template fails then 
the matching will be attempted again with a bigger 
template, actually the next template size will be  

2
plcurrenttemmaxtempl

plcurrenttemnexttempl
−

+=            (9) 

This continues in case of failure until the maximum 
template defined by the user is reached. A template of 
41x41 is rather big, but even so in some cases of 

homogeneous background it is useful. Of course both 
methods start with the same template. 

• The iterations stop if both dx and dy corrections are 
lower than 0.2 pixels or if their number exceeds 12. 

• Both methods use 8 unknowns, 6 geometric and 2 
radiometric parameters. 

• Correlation is being done prior to matching so that the 
matching has initial approximations better than 1-2 
pixels, which is the convergence radius for the LSQ 
method. Since this technique is applied here, the starting 
pixel (initial approximation) for both methods is the 
same. 

In order to test the initial motivation and the theoretical 
background for the ellipse method four examples will be 
presented, all for points along linear features. 
 

3.1 Case 1  

This case is described to demonstrate that the square template 
may return a “correct” match in an erroneous position, while 
elliptical template returns the correct position. 
In both cases the best template size was found to be 13x13 
pixels, since the algorithm is invariant of the LSQM which 
follows. Both methods start from the same initial 
approximation (pixel in the right/search image), since this 
point is provided using correlation.  
Both methods return a “correctly” matched point. As shown 
in figure 3, the square template method returned a wrongly 
matched point, due to the aforementioned shift, which occurs, 
in linear features. This phenomenon is particularly interesting 
here, because the square template fails although it has rich 
information (the dense shadow) just 3 pixels away. After 
failing to match the square template of 13x13 pixels, the 
algorithm used a 29x29 template, which returned after 3 
iterations a matched point, which is obviously wrong (fig. 4).  
The ellipse using 169 pixels (equivalent to 13x13) returned a 
correct match after 3 iterations. The fact that the ellipse is 
more accurate than the square is verified from the σο for the 
gray level differences. In the square method σo is 25.14 while 
the ellipse returned a much smaller σo of 12.73, indicating 
that the match of the ellipse was much stronger. 
It should be mentioned that due to the simplifications made 
for the ellipse, in terms of shape and pixels used, the final 
number of used pixels for matching was 169 and 167 in the 
second and third iterations respectively. A deviation of 2 
pixels in 169 pixels, or 1.2% is considered negligible and 
certainly unable to affect the final result. 
It should also be mentioned that in this case the ellipse 
method was faster than the square one, not to mention that if 
the algorithm was used with 13x13 template instead of the 
self-adaptive, the square would have failed completely.  
 

 

Figure 4. Comparison between the square and ellipse 
template:Case1. From left to right: The 
left/template image, the matched point in the right 
(search) image using square, the matched point in 



the right image using ellipse. The rectangle in 
ellipse method is displayed as a measure of the 
affine parameters. 

 

3.2 Case 2 

Here a 25x25 (=625) pixels template was found to be the 
best. Both methods started from the same approximation and 
returned a correctly matched point after 8 iterations. Once 
again the square template is obviously wrong, misplacing the 
matched point towards the centre of the pavement, probably 
because of the shadow. As one can see in figure 4, the 
pavement in this particular spot is under a tree, causing left 
and right images to differ considerably, not to mention a 
“strange” line on the left image due to scanning (fig. 5). 
On the other hand the ellipse method provides a much better 
localisation, exactly on the edge of the pavement. During the 
iterations, the maximum and minimum of the pixels used 
were 634 and 624 respectively, instead of 625. These 
differences (1.4%) are considered minor and certainly not 
able to influence the final match. Once again, the ellipse 
returned a better value for σo, 15.25 against 21.12 of the 
square template, verifying initial considerations. 
 

 

Figure 5. Comparison between the square and ellipse 
template:Case2. Bad localization of the square, 
returns wrong point. The line in the left (template) 
image is the effect of bad scanning, which 
surprisingly doesn’t affect the match. The final 
affine parameters are different. Observe the shape 
of the rectangle in both cases. 

 

3.3 Case 3 

This is described to show that in some cases the square 
template cannot return a match, while elliptical template 
returns the correct position. 
In this case the best template was found to be 29x29 pixels.  
The square method failed completely. It did not return a 
matched point. After failing using the 29x29 template, it used 
a larger template of 37x37 to include more information, and 
after that a 41x41 template, which is the largest template 
allowed by the user. After the failure of the 41x41 template, 
which can be seen in figure 5, the matching algorithm 
returned a complete failure, instead of a point (fig. 6). 
The ellipse method used the 29x29 or 841 pixels and found a 
correct match after 3 iterations. Actually in the second and 
third repetition 840 and 846 pixels were used instead of the 
expected, 841, but this is also considered a small deviation 
since it is 0.6%.  
In this particular case the ellipse method not only did find a 
correct match accurately, but it was faster than the square.  
In this case σo was 7.81, the lowest from all presented cases, 
although this case is obviously the weakest. This can be 
explained by the fact that the two images are similar and 
therefore the grey level differences are very small while the 

algorithm cannot find a strong solution, because the 
information around the pixel is the same for every point on 
the line. 
 

 

Figure 6. Comparison between the square and ellipse 
template:Case3. Complete failure of the square 
template, even with the largest 41x41 template. 
The shift along the line is clear. 

 

3.4 Case 4 

This case is described to show that the ellipse works just as 
well or even better as the square template in normal cases. 
The best template was found to be 15x15. Both methods 
return a correct match after 2 iterations (fig. 7). Elliptical 
template uses 223 pixels instead of 225, which represents a 
0.9% decrease of the total pixels used. This difference is 
incapable to affect the final match.  
There is a difference between the returned values of the 
matched point, 356.79, 898.55 (ellipse) and 356.58, 898.42 
(square). The difference of 0.19, 0.13 pixels, which is almost 
indistinguishable in figure 6, is justified if one considers that 
the expected accuracy of LSM is 0.1-0.2 of the pixel (Guelch 
E.,1988). The same figure of 0.2 pixels for random points is 
also reported in Trinder, J.C. et al.The σo, which is a measure 
of precision of the final match, is in favor of the ellipse (7.32 
against 10.54 of the square), thus indicating that the elliptical 
template might return a more accurate position. 
 

 
 
Figure 7. Comparison between the square and ellipse 

template:Case4. Both cases return a corrct match. 
 

4. CONCLUSIONS AND FURTHER RESEARCH. 

Until know ellipse has been tested against square template, 
manually over a number of features, including points, 
corners, uniform areas etc. In point features and in 
homogeneous areas, the ellipse is almost a circle. In all cases 
ellipse returns a better σo value, which is indicative of better 
precision. In certain cases, especially in linear features, it 
provides not only more accurate results, but also correct 
results even in some cases where square fails completely. The 
superiority of the elliptical template is shown numerically in 
table 1. 



 

 Case 1 Case 2 Case 3 Case 4 
 Sq. Ell. Sq. Ell. Sq. Ell. Sq. Ell. 

Templat
e sizes 
used 

(the last 
one is 

the one 
which 

returns 
the 

point) 

13x13 
29x29 13x13 25x25 25x25

29x29 
37x37 
41x41 

29x29 15x15 15x15

Pixel 
decreas

e 
percent

age  

- 1.2% - 1.4% - 0.6% - 0.9%

Iteratio
ns on 

the last 
templat
e used 

3 3 8 8 - 3 2 2 

σο 25.14 12.73 21.12 15.25 - 7.81 10.54 7.32 

Returne
d point YES YES YES YES NO YES YES YES

Correct 
match NO YES NO YES NO YES YES YES

Table 1. Comparison of results. 
 

The only problem that arises from the application of the 
proposed method is the complication of the calculations, but 
then again this is the only way to attain better results. 
Complication of calculations leads to more computer time. 
The algorithm has not been timed since it has been used until 
now manually and time differences cannot be observed, but it 
is predicted that it will be slower than the square.  
It should be mentioned though that not much attention should 
be given in speed, because computer power doubles every 1.5 
years. When LSQM was first introduced it was very slow for 
the contemporary computers, not to mention the quality of 
CCD sensors. Today, matching over a whole model, 
producing 18000 points can be completed in 3 minutes and 
for 2,5 million points in 30 minutes in an average computer. 
The problem might be evident when applied in DEM 
collection. Prior to this code optimization will decrease the 
algorithm’s speed by half. Use of fewer vertices to describe 
the ellipse is another possible source of time saving. 
Reduction by 20%, will save time almost 15% over the whole 
matching algorithm. Another interesting feature is that after 
the second iteration the ellipse does not change considerably 
both is shape and orientation, meaning that it is almost 
useless to reform it after each iteration. This is another point 
where processing time can be saved. 
In 2 cases (1 and 3), the square method fails in the suggested 
template and uses a bigger one in order to find a solution. In 
the same cases ellipse uses the suggested template and is 
equal or faster, in terms of total iterations, in all cases. 
Therefore the ellipse method compensates speed, up to a 
point by itself. 
Epipolar geometry provides a very good solution for linear 
features nearly perpendicular to the epipolar line (Baltsavias, 
E., 1993). The ellipse provides solution for all linear features, 
without the use of relative orientation, and therefore is a 
universal method, while being more accurate for all points. 

Failure rate, including points returned from square template 
as correct, without being so, is reduced considerably. Hence 
it is safe to conclude that it is a promising method which 
requires further research. The next step is speed optimisation 
and application on DEM collection of different objects and 
scales to verify these conclusions. Comparison will be done 
against square template DEM as well as against a reference 
DEM.  
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