
SAR IMAGE SEGMENTATION THROUGH B-SPLINE DEFORMABLE CONTOURS AND
FRACTAL DIMENSION

J. Gambini *, M. Mejail *, J. Jacobo-Berlles *, C. Delrieux **

* Universidad de Buenos Aires, FCEyN, Departamento de Computación
Ciudad Universitaria, Pab. I, 1428 Buenos Aires, República Argentina

Tel/FAX: +54 11 4576-3359, e-mail: {jgambini, marta, jacobo}@dc.uba.ar

** Universidad Nacional del Sur, Departamento de Ingenierı́a Eléctrica
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ABSTRACT

Synthetic Aperture Radar (SAR) images are usually corrupted by a signal-dependent non-additive noise called speckle.
This makes difficult the segmentation, object identification, and feature extraction within this kind of images. In this work
we propose the combination of local fractal estimation and B-Spline based active contours as a solution for the boundary
extraction problem in SAR images. After a supervised initialization (the specification of a an initial curve laying com-
pletely within the region of interest), the algorithm searches the control points (vertices) of a B-Spline curve that fits the
boundary of the region to be segmented. The vertices of the curve are found by a local estimation of the fractal dimension
in the surrounding. Fractal dimension provides a good local roughens and statistical correlation estimation. Box-counting
measurement of the fractal dimension is widely acknowledged to be the most adequate in terms of robustness and com-
putational requirements. Box counting algorithms are based on a statistical analysis of the brightness distribution of the
pixels in a surrounding of varying sizes. A power law can be established between the surrounding size and the amount
of pixels with a given brightness profile, and then an adequate assessment of the local fractal dimension can be per-
formed. The proposed algorithm is systematically tested on synthetic and real SAR images, and both the accuracy and the
performance of our proposal are assessed.

1 INTRODUCTION

Segmentation of region boundaries is an important issue in
remote sensing image analysis and many techniques have
been studied to solve this problem. In the particular case
of region boundary determination in SAR images, the use
of Active Contours has been developed by O. Germain et
al. (Germain, 2001), J. Jacobo et al. (Jacobo-Berlles et al.,
2002) and M. J. Gambini et al. (Gambini et al., 2004) in
all cases with a statistical approach.

The technique proposed in this work is based on B-Spline
boundary fitting and was originally developed by A. Blake
et al. (Blake and Isard, 1998). Blake’s proposal cannot
be successfully applied to SAR images due to the speckle
noise, since local brightness fluctuations induce spurious
control points, and therefore a bad boundary segmentation.
Here, we adapt the active contours idea, but the control
points are chosen in places where a local gradient in the
fractal dimension are found. The boundary extraction pro-
cess we describe here, begins with the application of local
fractal dimension (box counting). Histogram classification
of this attribute of the image allows an adequate thresh-
old detection. Then, the determination of zones of interest,
each of them includes one region for which we are going
to extract the corresponding boundary. These zones of in-
terest are given by B-Spline curves, determined by their

control points. Then, a series of segments is drawn on the
image, and the image data lying on them are extracted. For
each segment, the transition point, that is, the point be-
longing to the region’s boundary, is determined. This de-
termination is based on the estimated values for the fractal
dimension. Then, for each region, the contour sought is
given by the B-spline curve that fits these transition points.

The structure of this paper is as follows: section 2 de-
scribes the model used here for fractal dimension estima-
tion, section 3 gives an introduction to B-Spline curve fit-
ting, section 4 specifies the criterion used to determine the
transition points and explains the region fitting algorithm,
section 5 shows the obtained results and finally, section 6
presents the conclusion an further research .

2 FRACTAL ANALYSIS FOR IMAGE
SEGMENTATION

Fractal dimension analysis has been largely used as an im-
age descriptor for segmentation. The strategies that we
present here seem to produce better results in autonomous
classification problems that had not been addressed before.
A local image estimator that can be useful when coping
with noisy images is the fractal dimension (Mandelbrot,



1983). The underlying idea is that random brightness dis-
tributions posses self-similar characteristics that are anal-
ogous to those of classical fractal sets (Cantor set, Sier-
pinsky gasket, and so on). However, self-similarity mea-
surements cannot be applied in a strict sense since a ran-
dom distribution is by definition not algorithmic. How-
ever, the relation between random distributions and frac-
tals is very significant (Peitgen and Saupe, 1986, Mandel-
brot and van Ness, 1968). The box-counting dimension is
perhaps the best trade off between accuracy and computa-
tional complexity. In most cases this fractal dimension es-
timator coincides with self-similarity measurements, and
even though an absolute measurement may be inaccurate,
our interest in feature segmentation by relative comparison
of fractal dimension is not compromised.

Box-counting dimension is based on counting the pixels
visited by the set under measurement in a grid of varying
resolution and position. (This assumes a previously bina-
rized image under an adequate criterion.) Let s be the size
of the side of a square cell in the grid, and N(s) the average
of the cells visited by the set under measurement under dif-
ferent translations. Then it is expected that increasing the
resolution of the grid (which in fact decreases the side s of
the cells of the grid in a fixed size image), N(s) should also
increase. The slope of this relation in logarithmic space is
the box-counting dimension of the set:

D = lim
s→0

log(N(s))
log(1

s )
. (1)

Accurate estimations should show a value of D that is sta-
ble and steady along several orders of magnitude. In exper-
imental settings this is obviously impossible to grant, and
therefore the values of D are taken as provisory.

Starting with this schema, we can find local estimators
that are adequate for image segmentation. The idea is to
adapt the box-counting dimension to a local context, in
which only a sub-image centered around a given pixel is
considered. Larger sub-images produce better measure-
ments, but also with higher computational cost. In this
work we used a grid of 5 × 5 pixels centered around the
pixel under estimation, which showed experimentally to
be a good compromise. Consider for instance the syn-
thetic image, under a statistical model, with three different
areas and a background which was generated simulating
speckle noise in Figure 1(a) and its brightness histogram
(Figure 1(b)). Any segmentation produced by simple bi-
narization will be of little use. In Figure 1(c) we show a
binarization under bayesian classification (marked with a
circle in Figure 1(b)). However, the box-counting dimen-
sion performed on the image is remarkably good for con-
tour extraction (see Figure 1(d)).

3 B-SPLINE REPRESENTATION

A brief theoretical review of B-spline representation of con-
tours is presented; for more details see (Blake and Isard,
1998, Rogers and Adams, 1990).

(a) (b)

(c) (d)

Figure 1: (a) Synthetic image under a statistical model with three
different areas and a background which was generated simulating
speckle noise. (b) Its brightness histogram. (c) Binarization un-
der bayesian classification. (d) The box-counting dimension.

Let {Q0, ..., QNB−1} be a set of control points, where Qn =
(xn, yn)t ∈ R

2, 0 ≤ n ≤ NB − 1, and let {s0 < s1 <
s2 < · · · < sL−1} ⊂ R be a set of L knots. A B-spline
curve of order d is defined as a weighted sum of NB poly-
nomial basis functions Bn,d(s) of degree d−1, within each
interval [si, si+1] with 0 ≤ i ≤ L − 1. The constructed
spline function is r(s) = (x(s), y(s))t, 0 ≤ s ≤ L − 1,
being

r(s) =
NB−1∑

n=0

Bn,d(s)Qn,

and

x(s) = Bt(s).Qx (2)

y(s) = Bt(s).Qy (3)

where the basis functions vector B(s) of NB components
is given by B(s) = (B0,d(s), . . . , BNB−1,d(s))t. The weight
vectors Qx and Qy give the first and second components of
the Qn, respectively.

The curves used in this work are closed of order d = 3 or
d = 4 specified by periodic B-spline basis functions.

3.1 B-spline curve fit

The problem of determining a polygon that generates a fit-
ting B-spline curve with known number of control points,
NB, was studied by (Rogers and Adams, 1990). We now
present a brief review of this subject.

A set of k data points in the image plane is given by {D0, D1, . . . , Dk−1},
where Di = (xi, yi)t, i = 0, . . . , k − 1, and the spline



curve that best-fits them is sought. Then, by equations 2
and 3, the components Di must satisfy

xi = Bt(ti)Qx,

yi = Bt(ti)Qy,

for certain values of ti, where i = 0, . . . , k− 1, and NB ≤
k.

This linear system is more compactly written in matrix
form as D = K(Qx Qy), where the k × NB elements
of the real matrix K are given by Kij = Bj,d(ti), with i =
0, . . . , k−1, j = 0, . . . , NB−1, and D = (D0, D1, . . . , Dk)t.
In the most general case NB < k and, therefore, K is
not a square matrix. In this case, the pseudo-inverse ma-
trix form (Qx Qy) = K+D is used to find the B-spline
fitting curve. A useful set of values for the parameters
{t0, . . . , tk−1} is given by

t0 = 0, ; t� =
∑�

i=1 ‖Di − Di−1‖∑k−1
i=1 ‖Di − Di−1‖

, � ≥ 1.

The knot set to build the B-spline basis functions is arbi-
trarily chosen.

4 BOUNDARY DETECTION

In this section we describe the algorithms developed for
boundary detection once the noise was removed.

4.1 Radial lines algorithms for boundary detection

Let E be a scene made up by the background B and a set
of regions {R1, R2, . . . , Rk} with their respective bound-
aries {∂R1, ..., ∂Rk}. For each region Rj , we want to find
the curve Cj that fits boundary ∂Rj in the image. In the
first step a box-counting fractal dimension estimation is ap-
plied in order to remove the noise. We define an initial
search area, which are specified by polygons, the vertexes
of which are control points that generate a B-spline curve,
as shown on Figure 2 with a thin line. Once the initial
search zones are determined the centroid of each of them
is calculated.

Figure 2: Initial areas of interest determinated by polygons, the
vertexes of which are control points that generate a B-spline curve
.

If a point belongs to the object boundary, then a sample
taken from the neighborhood of that point exhibits a change
in the intensity level of the box-counting image and it is
considered to be a transition point. Then N segments s (i),
i ∈ {1, ..., N} with the form s(i) = CPi are considered.
Here C is the centroid of the initial region, the extreme P i

is a point outside of the region and θ = ang
(
s(i), s(i+1)

)

∀i is the angle between two consecutive segments, as shown
on Figure 3.

Figure 3: Radial straight lines s(i), i = 1, ..., N projected from
the centroid C of an initial curve to the external part of the region.
θ(i) is the angle between s(i) and s(i+1), i = 1, ..., N − 1.

The segment s(i) is an array of m elements coming from a
discretization of the straight line on the image. The border
point bi is found convolving the data of the segment with a
mask given by [−2,−1, 0, 1, 2]. After find {b1, ..., bN}, the
algorithm build the B-spline curve interpolating the border
points.

4.2 Possible Problems

This algorithm gives very good results when it is applied
to convex objects, but there are some situations where this
method could fail. For example, it is possible that some
point on the object boundary be obstructed by other point
of the same boundary, so the radial straight lines will not
reach this point, making it impossible to find it, as shown
on Figure 4.

Figure 4: A non convex object. The procedure fails on the
straight line segment shown on this figure. It will not detect the
border points marked with a circle.

In order to solve these problems we have modified the al-
gorithm, using an estimation of the curves’s derivative at
step n to predict the center of the segment s(n+1) at step
n + 1. This modified version calculates the velocity vec-
tor between two given boundary points b i and bi+1 in the



following way:

−→v i =
bi+1 − bi

‖bi+1 − bi‖ (4)

then, locates the segment orthogonal to the straight line
direction −→v i, and centers it at λ−→v i, where λ is an arbi-
trary value. The method finds the border point b i+2 us-
ing the convolution with a mask, as in previous algorithm
and finally build the B-spline curve interpolating the found
points {b1, ..., bN}. The two first initial points b1 and b2

are found as in previous algorithm.

5 RESULTS

A synthetic image, under a statistical model, with three dif-
ferent city-like areas and a background with was generated
simulating speckle noise. On Figure 5, the result of apply-
ing the radial straight line algorithm in a synthetic image
is shown. The result of applying the algorithm which uses
the velocity vector to find the contour of the interested ob-
ject in a synthetic image is shown in Figure 6. This image
has two regions: the object and the background. The thin
line is the initial curve and the thick line is the fitting curve
found by the algorithm. As it is illustrated, the method tol-
erates a very bad initialization step. Figure 7 (a) shows a
single look real SAR image where the algorithm was ap-
plied. On Figure 7 (b), the curves result applied to the
original image, is shown.

Figure 5: Result of applying the algorithm of radial lines to a
synthetic image.

6 CONCLUSIONS

In this paper, a new approach to segmentation in SAR im-
ages using a classification technique based on fractal di-
mension and B-spline deformable contours, is described.
We have shown here the boundaries of several regions which
were obtained using different methods according to the
features of the object. In the first step the estimated frac-
tal dimension classification is applied to remove the noise.
The second step is to find regions of interest, in a super-
vised manner, for each region, their respective boundaries
are considered as the initial solution for the border detec-
tor. Then, a process of boundary detection is applied only

Figure 6: Result of applying the velocity algorithm to boundary
extraction in a synthetic image. The thin line is the initial curve
and the thick line is the fitting curve found by the algorithm. As
it is illustrated, the method tolerates a very bad initialization step.

Figure 7: Result of applying the algorithm to a real SAR image.

for the data that are on a set of line segments. All these
processes diminish the computational cost and improve the
performance of the method. For each region, the result of
the application of this algorithm is a boundary curve given
by a mathematical formula expressed in terms of B-Spline
functions. The results using both simulated and real SAR
images are excellent with an acceptable computational ef-
fort.
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