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ABSTRACT: 
 
Laserscanning produces large sets of multidimensional point data, which demand for an effective and efficient organization and 
storage. Adequate data structures must perform specific spatial queries and operations in order to support the computation and / or 
the construction of surface models. Because of their increasing size, it is not advisable to organize the clouds of points by main-
memory data structures. Such an approach would lead to long loading times and misses scalability. Instead, persistent data structures 
are desirable. In this paper, the usage of multidimensional spatial access methods are investigated for organizing laserscanner data. 
Such access methods have originally been developed for storing and indexing geographic data in spatial database systems and 
Geographical Information Systems. Point access methods based on hierarchical hash trees are one important class of such access 
methods. Typical examples for hash trees are the BANG file and the buddy tree. Rectangle access methods are another class of 
relevant access methods. The R-tree and its variants are the most important representative of this class. R-trees are typically used by 
commercial spatial database systems. All data structures mentioned before are fully dynamic, i.e. they support arbitrary sequences of 
insertions, modifications and deletions. They allow a persistent storage of multidimensional points and preserve spatial proximity 
locally, i.e. within (database or file) blocks. The performance of the above point and rectangle access methods is investigated and 
compared for storing and querying large clouds of points representing buildings. The examination identifies those access methods 
that allow a fast construction of the data structure as well as an efficient support of relevant spatial queries. For some queries, 
however, a local preservation of spatial proximity is not sufficient. The extraction of points for overview purposes is an example for 
such a query. Therefore, different approaches for a global preservation of spatial proximity are introduced and experimentally 
investigated. 
 
 

1. INTRODUCTION 

Laserscanning gains more and more importance in the last few 
years. It allows the simple and inexpensive measurement of 
spatial objects like façades or the interior of buildings. 
Laserscanning produces large sets of multidimensional point 
data, which demand for an effective and efficient organization 
and storage (Niemeier & Kern, 2001). The measurements 
provide immediately Cartesian coordinate values (x,y,z) and – 
for some laserscanners – the intensity of the received signal. 
Therefore, the result of a measurement is a set of three- or four-
dimensional points. 
 
Because of the large data volume – several millions of points 
with increasing tendency – it is not advisable to store the points 
as conventional points in a CAD program (Schwermann & 
Effkemann, 2002). In general, the approach to maintain the 
cloud of points in main memory has several disadvantages: 
• Such an approach requires a long time for loading the data 

from secondary storage (like hard disks). 
• Main memory storage shows a bad scalability because it 

swaps (after exceeding a threshold) parts of the memory 
onto the slow secondary storage. 

 
An alternative is the usage of persistent data structures. Such 
data structures store the data on secondary storage and allow 
reading only (the required) parts of the data. Such data 
structures have been developed to be used in (relational, object-

relational and object-oriented) database systems as an index. 
Therefore, they are also called index structures. However, 
conventional index structures are optimized for one-
dimensional data types like numbers and character strings. They 
cannot be used (without modification) for spatial data. For this 
purpose, spatial index structures (also called spatial access 
methods) have been developed for spatial database systems and 
Geographical Information Systems (Rigaux et al., 2002). One 
category of spatial index structures are point access methods, 
which allow the dynamic organization of multidimensional 
points on secondary storage. Rectangle access methods are 
another class of spatial access methods supporting extended 
objects, especially multidimensional rectangles, but also non-
extended objects, i.e. multidimensional points. All types of 
spatial index structures support the efficient processing of 
spatial queries. 
 
In this paper, the question is investigated whether spatial access 
methods are suitable for storing point clouds produced by 
laserscanners. Section 2 presents different spatial access 
methods. The main focus is on so-called hash trees and R-trees. 
In section 3, we consider the use of such index structures for 
data produced by laserscanners. The paper concludes with a 
short summary and an outlook to future work. 
 
 
 
 



 

2. SPATIAL ACCESS METHODS 

2.1 Indexing in Database Systems 

The main task of a database system (DBS) is to store large sets 
of data persistently. The database management system (DBMS) 
must support the insertion, modification and deletion of 
arbitrary data in arbitrary sequences. For this reason, the DBMS 
organizes the data in database blocks. The access to secondary 
storage (i.e. typically to hard disks) is performed blockwise, 
i.e., the access to a data record requires the transmission of (at 
least) one complete block that may store also non-required 
records.  
  
An index dynamically organizes the database blocks in order to 
accelerate the access to blocks containing records that fulfill 
some query condition(s) (e.g., all persons born in Istanbul). The 
data structures that are used for building and maintaining an 
index are called index structures. In current database systems, 
two types of index structures are most often used: B-trees and 
hashing. 
 
A B-tree is a dynamic balanced tree. Each of its nodes 
corresponds to a database block. B-trees store the data sorted 
according to a selected attribute. For processing a query, the 
tree is traversed starting at the most upper node (= the root); 
only subtrees are accessed that potentially refer to queried data. 
Figure 1 illustrates a B-tree. 
 
 

 
 

Figure 1.  Example for a B-tree. 
 
Hashing computes the location of a block on secondary storage 
(i.e. the block address) using one or more selected attribute(s) 
of a record. This computation is done by a hash function. Figure 
2 depicts the hashing approach. Hashing supports efficiently 
exact match queries, i.e. the search for records with attribute 
value(s) that exactly match to the query condition (like in the 
above Istanbul example). However, hashing has efficiency 
problems either with handling uneven data distributions or with 
range queries (like finding all persons born in a city whose 
name starts with I). 
 

 

 
Figure 2.  Example for hashing. 

 

2.2 Indexing Spatial Data and Point Data 

B-trees require a linear ordering of the data and hashing has – 
as mentioned before – problems with uneven data distributions 
or with range queries. Because of this reasons, conventional 
cannot be used – without extensions – for organizing spatial 
data. Therefore, special spatial access methods have been 
developed for spatial database systems and Geographical 
Information Systems. Point access methods allow organizing 
multidimensional points and rectangle access methods – in 
addition – the storage of extended multidimensional objects like 
rectangles, cuboids, and (in approximation) of polygons, arcs 
and solids. 
 
The grid file (Nievergelt et al., 1984) is an example for a 
multidimensional point access method. It is based on hashing. 
However, the hash function is replaced by a grid directory. This 
directory stores block addresses in its cells (see Figure 3). Grid 
files have performance deficits storing uneven or correlated 
distributed points.  
  
 

 
Figure 3.  Example for a grid file. 

 
The partitioning of the data space by grid files has following 
properties: 
• The region described by a database block (the so-called 

block region) is rectangular. 
• The data space is completely covered by the block regions. 
• The block regions do not overlap. 

 
However, for achieving efficient spatial access methods, at least 
one of these three properties must not hold (Seeger, 1989). 
 
2.3 Hash Trees 

Hash trees are multidimensional point trees that combine 
hashing with data structures derived from trees. A typical 
example of a hash tree is the BANG file (Balanced and Nested 
Grid File) developed by M. Freeston (1987). The BANG file is 
a hierarchical tree. The upper part of the tree is the directory 
and the leaf nodes store the real data (“data nodes”). The block 
regions of the directory nodes are based on a grid structure and 
represented by a (multidimensional) rectangle. In contrast to 
conventional grid files, a block region does not represent the 
complete area of this rectangle. Instead, the included rectangles 
of the smaller block regions in the same node are removed from 
the rectangle. In consequence, the shape of block regions is 
irregular and may consist of several, unconnected areas. 
Figure 4 shows a set of points organized by a BANG file. The 
points are distributed on an area having the shape of a sinus 
curve. The figure depicts the partitioning of the BANG file of 
all nodes having the same height in the tree. 
 



 

 

 
 

Figure 4.  Example for the partitioning of a BANG file. 
 

 

 
 

Figure 5.  Example for the partitioning of a buddy tree. 

Another example of a hash tree is the buddy tree (Seeger & 
Kriegel, 1990). The buddy tree is also a hierarchical tree with 
directory nodes containing rectangular block regions. In 
contrast to the grid file and the BANG file, however, the 
regions do not need to cover the complete data space. Figure 5 
illustrates the partitioning of the buddy tree using the sinus data 
again. 
 
2.4 R-Trees 

The R-tree (Guttman, 1984) is a spatial access method 
organizing multidimensional points as well as rectangles. The 
R-tree has similar properties as the B-tree but it does not require 
a linear ordering. The block regions are minimum-bounding 
rectangles of all regions or data in the corresponding subtree. 
These block regions may overlap and do not need to cover the 
whole data space. 
 
There exist several variants of R-trees. They differ in the 
insertion strategy (i.e., which subtree is chosen for storing a 
new object) and the criteria used for splitting a node if an 
overflow occurs. Figure 6 illustrates an R-tree: it shows the 
block region of the root node and (a part) of the partitioning of 
a node pointing to a data node, which illustrates the overlap 
between the block regions. 
 

 

 
 

Figure 6.  Example for the partitioning of an R-tree. 
 

2.5 First Conclusions 

The presented spatial access methods are dynamic index 
structures supporting the insertion, the modification and the 
deletion of points. They support the persistent storage of data 
on secondary storage like hard disks. All presented spatial 
access methods are suitable of two-, three- or more dimensional 



 

points. They support the efficient processing of basic spatial 
queries. Such spatial queries are: 
• spatial selection queries like the point query and the 

window query, 
• the computation of k nearest neighbors (nearest neighbor 

query, see e.g. (Hjaltason & Samet, 1999)), and 
• the spatial join (see e.g. (Brinkhoff et al., 1993)). 

 
Index structures typically preserve the ordering of data locally. 
In the case of spatial access methods, spatially close objects are 
stored with high probability in the same database block. This is 
essential for processing spatial queries because one query 
accesses typically many spatially neighbored objects and 
because reading a database block from secondary storage is a 
very costly (i.e. slow) operation in comparison to other 
computer operations. Storing near objects in the same block 
reduces the number of block accesses and increases the 
probability to find the block in the cache of the database system 
or of the operating system. 
 
Other techniques try to store blocks, which are described by 
spatially close block regions, physically close on the secondary 
storage (“global order”). The objective is to reduce the cost of 
sets of blocks required by one spatial query. The presented 
spatial access methods do not preserve the global order. This 
would require the usage of additional techniques like the 
approaches proposed by (Hutflesz et al., 1988) or by 
(Brinkhoff, 2001). 
 

3. USAGE FOR DATA FROM LASERSCANNING 

3.1 Preparation 

For investigating the spatial access methods presented in the 
sections 2.3 and 2.4 for data produced by laserscanning, some 
preparations had been necessary: 
• Modula-2 implementations of the BANG file and the buddy 

tree, both implemented for old Motorola processors, were 
adapted to current Intel processors. A unified API was 
designed and implemented. 

• Besides the well-known R*-tree – a very efficient variant of 
the R-tree (Beckmann et al., 1990) – the new Revised R*-
tree (RR*-tree) of Beckmann & Seeger (2004) was 
implemented in Java. 

• The two Modula-2 implementations and the Java 
implementation of the R-tree variants were integrated under 
a unified Java user interface. 

 

 
 

Figure 7.  Illustration of the test data. 

The data structures were tested by a cloud of points that 
originates from the measurement of the façade of a building. 
The data set consists of about 3.66 million points. It is 
illustrated in Figure 7.  
 
3.2 Investigation 

The following experiments were performed on a Pentium IV-
PC with 2 GHz and 256 MB main memory. 
 
The aspect investigated first was the construction of the spatial 
access methods. The points were inserted into the index 
structures in the order they have been measured. The observed 
storage overhead is – independently of the data structure – 
about 68%. The reasons are the storage requirements for the 
directory and – more significant – empty space in the data 
nodes. The empty space is due to fact that all investigated 
spatial access methods are dynamic index structures allowing 
insertions and deletions without worsening their performance. 
The empty space can be reduced by using special bulk-loading 
algorithms. 
 
The insert throughput is depicted in Figure 8. The performance 
of most the spatial access methods is rather high. One exception 
can be observed: the R*-tree achieved only a third of the 
throughput compared to the other trees. 
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Figure 8.  Throughput of the insertion of points. 

 
All spatial access methods showed an excellent performance for 
extracting data points queried by small query cuboids. The 
access to the data does not require a long loading phase. The 
queried points were accessed by few block accesses. 
 
Many applications require extracting an overview about the 
distribution and/or location of the points. One example is a 
rough visualization which is often sufficient for getting an 
impression of the data. A reasonable approach for such 
requirements is to stop the traversal of the spatial access method 
as soon as the size of a block region falls under a given 
threshold. Such an approach reduces the number of block 
accesses significantly. However, the tests have shown that the 
query time was not reduced significantly. The reason is that the 
investigated spatial access methods preserve only the local 
order. In consequence, block accesses on the secondary storage 
had often led to a seek operation on disk. Therefore, the 
standard access methods were compared to globally re-ordered 
variants. In the globally re-ordered variants, the blocks were 
sequentially arranged on secondary storage according to a depth 
first traversal through the respective tree. Figure 9 shows the 
results of this comparison. The query time of the standard 
version is set to 100% for each spatial access method. We can 



 

observe a performance improvement of factors between 6 
and 10. 
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Figure 8.  Comparison of query time. 

 
4. CONCLUSIONS 

In this paper, we discussed the usage of spatial access methods, 
which have been originally developed for organizing spatial 
data in spatial database systems and GIS, for the persistent 
storage of point clouds produced by laserscanning. As potential 
data structures, the BANG file and the buddy tree as 
representatives of hash trees and the R*-tree and the RR*-tree 
as R-trees have been selected, implemented and experimentally 
investigated using real laserscanner data. The first results show 
that both types of index structures have the potential for 
organizing point clouds originating from laserscanning. 
 
Two important tasks for future work can be identified: 1. The 
definition of typical query profiles. Such profiles would allow a 
more detailed investigation and comparison of index structures. 
2. The order preserving properties and spatial hierarchies of 
spatial access methods may be used for analysing the clouds of 
points measured by laserscanners. Especially the extraction and 
approximation of surfaces and edges (e.g. like in (Niemeier & 
Kern, 2001)) should be considered. 
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