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ABSTRACT:

While the available, eventually multi-source data from remote sensing systems yield the advantage of producing more features, the
crucial point in the scene interpretation workflow is still the big, application dependent gap between these features and the related
object characteristics. The necessary bridging process of perceptual organisation as well as the fusion of features have been
neglected too much in the past. In this contribution we will present our methodological developments concentrating on the
perceptual organisation of features that have been derived from multi-sensor data aiming at the extraction and classification of
topographic surface edges. The algorithm we are proposing consists of a segmentation and classification of the raster-based
elevation and image data, transforming the resulting polygon outlines into vector format and performing some post-processing
steps (dilation, smoothing).

1. INTRODUCTION

The various and heterogeneous user demands concerning
properties of remotely sensed data have led to the development
of a couple of new sensors with advanced spatial, spectral,
radiometric or temporal characteristics. Furthermore multi-
sensor systems have been designed for the simultaneous
acquisition of image and elevation data, in particular by
electro-optical cameras and laser scanning systems. Section 2
gives an overview of such multi-sensor data sources in general,
and the FALCON system, which will be used in this study, in
particular.

However, despite these technical developments the user’s
acceptance for remote sensing products has not been
significantly increased. This is mainly due to the fact that
respective automatic processing methods – in particular for
interpretation purposes – are not operational or have not
revealed an additional value of the advanced data sources yet.
To be more specific: While the available, eventually multi-
sensor data yield the advantage of producing more scene
features, the crucial point in the interpretation workflow is still
the big, application dependent gap between these features and
the related object characteristics (Schenk, 2003). The
necessary bridging process of perceptual organisation has been
neglected too much in the past. Furthermore, a fusion of
features coming from different sensors has hardly been applied
within the perception step. Section 3 will elaborate on the
aspects of perceptual organisation and fusion in more detail
from a theoretical point of view.

In the context of these deficiencies we will demonstrate in the
second, practical part of this contribution our methodological
developments concentrating on a fusion of features that have
been derived from multi-sensor data. As an example we will

focus on the extraction of topographic surface edges
(commonly known as breaklines). The task from a
methodological point of view consists not only in delineating
the edges as such but also in their classification (e.g. walls,
embankments). The algorithm we are proposing consists of a
segmentation and classification of both, the raster-based
elevation and image data,  transforming the resulting polygon
outlines into vector format and  performing some post-
processing steps (dilation through matching with image edges
and smoothing). This hybrid feature level fusion process as
well as first qualitative results will be presented in section 4.

2. MULTI-SENSOR DATA SOURCES

2.1 General remarks

Due to the enhanced performance of GPS/IMU (Inertial
Measurement Units) solutions for capturing position and
orientation data of the associated moving platforms airborne
laser scanning systems have reached maturity in the last ten
years. Today standard systems capture both, multiple
reflections (first and last echo data) and intensities of the
reflections (generally, in the near infrared portion of the
spectrum).

Enabling furthermore the simultaneous acquisition of multi-
spectral image data, one yields high potential multi-sensor
systems that on one hand deliver more accurate and reliable
elevation data compared to stereo image matching solutions,
and on the other hand by-pass the disadvantage of the “blind”
laser scanning information. The presently most prominent
examples of these multi-sensor airborne systems are FALCON
(TopoSys company), which will be used within this study (see
section 2.2), the laser scanner ALS 50 in combination with the



ADS 40 camera (Leica Geosystems) or the ALTM-3033/3070
(Optech) with the Emerge DSS camera. Schiewe (2004) gives
a detailed overview of these systems.

2.2 FALCON sensor system

In 2002 the company TopoSys (Germany) released its airborne
FALCON system which not only delivers laser scanning
elevations but also acquires multi-spectral imagery
simultaneously (Lohr, 2003). In the following a scene covering
the City Memmingen (located in Southern Germany) and its
neighbourhood will be processed.

The imaging sensor consisting of a line array scanner that
acquires data in four bands in the visible and near infrared
spectrum with a ground pixel size of 0.5 m and at a radiometric
resolution of 11 bit.

The laser scanner operates with a glass fibre array producing
a parallel acquisition pattern. The resulting elevation data with
a height accuracy of about ± 0.2 m are delivered with a raster
grid size of (0.5 m)2 or (1.0 m)2, respectively, having a swath
width of 250 m for a flying altitude of 1000 m.

A special feature which is of major interest for the following
study is the ability to capture multiple reflections of the laser
beam (Löffler, 2003): From each laser pulse of the FALCON
system the respective lowest and highest values (first echo and
last echo, respectively) are recorded (other systems might
record even more reflections). It is important to note that this
separation is only possible if the two echoes are at least one
pulse length (i.e. 5 ns, corresponding to 1.5 m, taking the
speed of light into account) apart from each other. That means,
that rather low objects like bushes cannot be separated from
the ground by subtracting first and last echo. On average one

Figure 1. Schematic profile representation of a building
through different reflections

grid cell of (1.0 m)2 of the derived Digital Elevation Model is
“hit” by a couple of laser beams. Hence, we have the
possibility of distinguishing the respective highest and lowest
values of the first and last echoes, respectively (called FE-high,
FE-low, LE-high, LE-low). As a consequence, the respective
elevation models differ in their representation of the scanned
surface. For example (see figures 1 and 2), the first echo-
highest values (FE-high) are able to represent narrow,
outstanding objects (like buildings and vegetation) while
narrow gaps in between disappear. Outstanding objects are
extended in size. On the other hand, the last echo-lowest
values (LE-low) show the opposite properties. Consequently,
the difference (FE-high minus LE-low) leads to the
representation of vegetation and (rather broad) building edges.

Figure 2. Different representation of buildings through
different laser pulse reflections: image data (upper
left, for comparison purposes), FE-high (upper
right, buildings too large), LE-low (lower left,
buildings too small) and difference FE-high minus
LE-low (lower right, broad building edges).

3. GENERAL REMARKS ON PERCEPTUAL
ORGANISATION AND FUSION

The process of (automatically) interpreting a remotely sensed
scene is strongly correlated to the process of cognitive
perception (see also figure 3). The latter does not only include
the acquisition and representation of various stimuli by a
human being, but also their organisation and interpretation.
Cognitive perception can be seen as a hybrid process, i.e. it
contains procedures in both directions, top-down (or model
driven) and bottom-up (or data driven) at the same time.
Furthermore, it is not simply a linear process, but it also
includes feedback mechanisms at various stages.

However, actual implementations of scene interpretation
algorithms do not consider all these principles. In particular,
we have still a big, application dependent gap between the
extracted features and the related object characteristics as
described in the knowledge (or memory) representation. The
necessary bridging process of perceptual organisation (like
grouping of lines and areas into meaningful structures) has
been neglected too much in the past and is mainly responsible
for unsatisfying classification results (Schenk, 2003).
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With the advent of multi-sensor systems as presented in the
previous section, the number of extracted scene features
increases. To deal with this large amount of information and
eventually inherent contradictions, a fusion process on various
levels becomes necessary. While most efforts in the past have
been laid upon fusion on signal level, in our context a fusion
on feature level is of great importance in order to integrate the
several information in the sense of perceptual organisation as
described above. Hence, in the following section we want to
demonstrate a concept and an implementation of such a feature
level fusion process for multi-sensor data for the particular
application of extracting and classifying topographic surface
edges.

Figure 3. Analogy between the processes of remote sensing
scene interpretation and cognitive perception

4. SURFACE EDGE EXTRACTION

4.1 Definitions

For the description and interpretation of topographical surfaces
those curves are of major interest that represent either local
maxima (ridge lines, watersheds), local minima (valley lines)
or the border between surfaces with significantly different
gradients. In the following we will concentrate on the latter
type, which will be termed here surface edges and can be seen
as a subset of the Digital Surface Model (DSM). Hence,
surface edges combine the “hard” edges of topographical
objects (object edges, like those of buildings or vegetation) and
of terrain edges (as a subset of the Digital Terrain Model,
DTM, like embankments, ditches, etc.). It shall be noted that
the commonly used term of breaklines is strictly not correct
because those represent only particular edges which had been
generated through geomorphologic processes (Brunner, 1985).

Surface edges represent either an abrupt gradient change only,
or they build complex objects which might consist of a lower
and upper edge as well as a surface in between (like with an
embankment). In principle surface edges are modelled by 3D-

vectors, whereas for a couple of applications (like
topographical maps) a 2D-ground plan representation is
sufficient. Unfortunately, from a modelling point of view,
generally accepted quantitative criterions for surface edges (in
particular thresholds for surface gradients) do not exist. As one
example, the German ATKIS system specifies only the height
and length of the object but no gradient value for capturing
embankments.

4.2 Application potential

Surface edges can be seen as value added information and an
improvement to any given Digital Elevation Model (DEM).
Typical applications using edge information are for example
flood prevention and river and drainage management, where
characteristic lines for hydrological/hydraulic models are
needed, the inspection survey of power lines, or the generation
of 3D city models. Furthermore surface edges define the
outline of so-called reduction surfaces which have to be
masked out from DSMs in order to derive DTMs in the process
of a DSM normalisation (Schiewe, 2003). Finally, they can
significantly contribute to a reduction of data amount of very
densely measured or interpolated DEMs.

4.3 Previous work

As regularly mentioned in the literature, the (semi-)automatic
derivation of surface edges from irregularly or regularly spaced
elevation points has led to unsatisfying results so far (e.g.
Petzold et al., 1999; Pfeifer & Stadler, 2001). Obviously this is
mainly due to the still limited quality of the input data in terms
of the spatial resolution or point density as well as the
geometrical accuracy in the vertical and horizontal components.
On the other hand, these limitations will not be valid anymore
in the near future with a certain probability, or can even be by-
passed with some technical efforts nowadays. Hence,
advancements with suitable algorithms for the extraction of
surface edges are of great importance.

One of the major contributions for automatic surface edge
detection in the past came from Wild et al. (1996) who applied
an adaptive edge preserving filter in the process of the DEM
generation before extracting edge pixels through gradient
filters (e.g. a Sobel filter). Brügelmann (2000) used the second
derivatives and hypothesis testing to derive regions of break
points which then had to be further processed. Kraus & Pfeifer
(2001) describe the derivation of 3D structure lines which uses
the pre-knowledge of an approximate ground plan of the edges.
However, it has be stated that these and other algorithms (like
the ones of Chakreyavanich, 1991, or Gaisky, 2000), which are
based upon geometrical information only, cannot compete with
the manual, photogrammetrical measurement of surface edges
in terms of completeness and accuracy.

4.4 Methodology

4.4.1 Core idea and outline: In contrast to other algorithms
our proposed multi-sensor data fusion approach for the
extraction of surface edges differs with respect to the following
aspects:

• We will not only use one single elevation data set but also
the various multiple reflections from a laser scanning
systems (as presented in section 2.2) in order to increase
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the amount of information that is introduced into the
classification.

• We will not only use geometrical, i.e. elevation data, but
also semantical information as derived from image data.
This simulates the manual digitising process where
thematic information about the underlying objects is
introduced simultaneously and a categorisation of the
extracted edges is performed.

• Instead of an edge-based approach we will apply a region
growing algorithm, thus by-passing the problem of linking
detected edge pixels to connected lines.

Figure 4 sketches the outline of the algorithm: A segmentation
delivers borderlines which can be seen as candidates for
surface edges. On base of the extracted features of the outline
and the interior region the follow-up classification performs a
hypothesis testing on these candidates as well as a
categorisation into semantical classes (like walls or
embankments). After the classified edges are converted into
the vector domain, some post-processing steps (dilation by
matching with image edges, and smoothing) are performed. At
both stages, the classification and the post-processing, some
grouping processes in the sense of perceptual organisation will
be applied.

Figure 4. Outline of the proposed surface edge extraction
approach using multi-sensor data

In the following sections the whole process will be explained
in more detail by concentrating on the extraction of only one
type of surface edges, namely building walls.

4.4.2   Segmentation: For the case under consideration, the
detection of walls, both edge detection and region growing are
aspects of the same processes under the assumption of step
edges (Pavlidis & Liow, 1990). Hence, instead of an edge-
based approach we will apply a region growing algorithm, thus
by-passing the subsequent problem of linking candidate pixels,
as detected by any edge filter, to connected lines. Furthermore,

the linkage between segments and attached borderlines is of
great advantage for the subsequent classification process.

For the segmentation we use the software system eCognition
(Baatz & Schäpe, 2000) which uses an extension of a region
growing method called Fractal Net Evolution Approach
(FNEA). As we want to extract only building walls at this
stage of our study, we introduce the lowest elevation values
from the last laser scanner echo (LE-low) as the heterogeneity
feature for the segmentation. The LE-low represents only the
ground surface and buildings (see section 2.2 and figure 2).
Keep in mind that the LE-low reflection leads to an inside
“buffering” of the real borderlines into the interior of the
objects.

4.4.3  Classification of segments: The classification step
performs not only a hypothesis testing of the surface edge
candidates but also their categorisation into semantical classes.
As already pointed out, in this study we want to concentrate on
buildings walls only.

Our two-stage classification procedure starts with an
elimination approach. Here features with rather “weak”
threshold values are introduced which leads to a set of
segments that classify nearly all buildings correctly (thus
minimising the number of omission errors) but still include a
considerable number of misclassifications (commission errors).
For the classification of segments that are surrounded by walls
we are considering the following feature values:

• Area greater than 50 m2 – considering the minimum area
of a building.

• Elevation difference to lower neighbours greater 3 m –
considering the minimum height of a building.

• Normalised Difference Vegetation Index (NDVI) less than
0.05 – considering the relatively high reflections in the
red spectrum and the relatively weak reflections in the
near infrared spectrum due to roof colour and material.

Consequently, the goal of the second step has to be the
reduction of  the commission errors. In the following only the
above obtained subset of candidates is taken into account.
Because the object description using the following features is
neither geometrically sharp nor standardised we introduce
partial rather than crisp memberships, i.e. we apply a fuzzy
logic classification approach. For the classification of
segments that are surrounded by walls we are considering the
following feature value ranges that shall make the distinction
against vegetation segments and that are modelled by a linear
membership function:

• NDVI (see above): Based on the hypothesis that with a
smaller NDVI value the possibility of the existence of a
building becomes larger, we introduce the value range
between the minimum value (membership value µ=1) and
the above applied threshold of 0.05 (µ=0).

• Rectangular fit: After creating a rectangle with the same
area as the considered segment, the area of the object
outside the rectangle is compared with the area inside the
rectangle, which is not filled out with the object. For
buildings a rather high value with a maximum of 1.0 can
be expected. Thus the fuzzy value range extends from 0
(µ=0) to 1 (µ=1).

• Standard deviation of elevation: Due to some very high
values at the edges (walls) we can expect high standard
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deviations for buildings. Hence, the value range extends
from the minimum variance (µ=0) to the maximum (µ=1).

Finally a combination of the single fuzzy values takes place
through an unweighted averaging. Those segments, that have
been classified as potential buildings in the first step and
which also show here a combined membership value larger
than 0.33, are now classified as buildings.

4.4.4 Post-Processing: At this point of the algorithm the
vectorisation of the selected building outlines only is
performed.

The problem with these classified edges is that they are based
on the LE-low reflections of the laser scanning system which
represent the outstanding objects in reduced size compared to
the real outlines (see figure 2). Hence, a dilation has to be
performed. In principle, multi-spectral imagery is able to locate
these edges which more precisely (Schenk & Csatho, 2000). It
has to be noted that these images edges would not have been a
suitable input into the previous segmentation step because
numerous edges of all objects would have been detected and
several effects like gaps or over-sampling would have
disturbed the object delineation. At this stage of our study we
derive the image edges simply by using the above applied
segmentation algorithm (figure 5, top left).

Because the image edges are rather imperfect, in the following
the edge matching process is equivalent to a buffering of the
classified edges into the direction of the outside image edges.
In order to estimate the buffer distance we compute for every
vertex of the classified edge the nearest distance to the
surrounding image edge and build the average of those
distances that are smaller than 1.5 pixels. This threshold is
necessary in order to neglect incorrect or further image edges
that are too far away from the real building outline. The value
corresponds to the maximum positional error of the classified
edges as derived from the LE-low reflections. The buffer
operation yields, after dissolving barriers between the buffer
boundaries, the dilated classified edges (figure 5, top right).

Figure 5. Post-Processing: top left: selected building (yellow)
with classified edge (red, “1”) and image edge
(blue, “2”), top right: additionally dilated classified
edge (black, “3”), bottom: smoothed dilated
classified edge (orange, “4”).

Finally a smoothing of these edges takes place using the
Douglas-Peucker algorithm (figure 5, bottom).

4.5 First empirical results

With respect to the segmentation process the visual inspection
yielded satisfying results with the selected grade of
generalisation. The geometrical accuracy of the selected
heterogeneity feature LE-low leads to a good separation of
buildings from their surrounding objects.

Obviously, the key problem of the segmentation procedure is
the proper and automatic choice of the grade of generalisation.
It is possible to use multiple generalisation levels, for instance
by applying the methodology of “Classification on multiple
segment levels” (Schiewe, 2003). However, due to complexity
reasons we have chosen only one scale level for this study.

The classification accuracy is determined through a visual
interpretation of the obtained segments and expressed in terms
of the error coefficient C as follows:

Thus, the higher the coefficient C (with a maximum of +1.0)
the better the overall classification accuracy is. After the first
classification stage (elimination procedure, refer to section
4.4.3) C amounts to 0.88 where 95.3% of all buildings have
been detected. The second stage (fuzzy logic classification)
significantly reduces the number of commission errors so that
the coefficient C becomes 0.92. While the remaining omission
errors (4.7% of all buildings are not detected) are due to
segmentation problems (see above), nearly all commission
errors occur along the scene border. If additional knowledge
would have been introduced here, the number of commission
errors could have been reduced even more and the coefficient
C would have been increased to 0.97.

It has to be stated that in principle the detection of buildings in
FALCON data sets can be performed with an even increased
accuracy if the imagery would have been taken during summer
time. For our data set, which was captured in early March, the
NDVI was not as effective as in other studies (e.g. Schiewe,
2003) for the distinction between buildings and vegetation (in
particular deciduous trees).

Figure 6. Result of post-processing step (orange line)
compared to manually digitised edge (red rectangle)
as well as numerous image edges (blue), overlaid
onto LE-low elevation data.
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Figure 6 gives a typical example of the effects of the post-
processing operations. It demonstrates the necessity of both,
the choice of elevation data for delineating buildings rather
than image data (where shadows often extend or falsify the
outline; indicated by the upper arrow), and the dilation
operation which leads to a rather good coincidence with
manually digitised edges. However, remaining errors occur
which are mainly due to the input data quality (indicated by the
lower arrow). It has to be noted that so far only few and simple
post-processing operations have been applied.

5. CONCLUSIONS

Multi-sensor data yield the advantage of producing more scene
features, however, the crucial point in the interpretation
workflow is still the big, application dependent gap between
these features and the related object characteristics. Hence, the
central goal of this contribution was to present a methodology
that bridges this gap for an important application, the
extraction of topographic surface edges with the emphasis on
building edges. In contrast to other methodologies for object
edge extraction we propose an algorithm into which several
features of both, the multiple reflections of the laser scanning
system and the multi-spectral imagery, have been introduced.
With that not only geometrical but also semantical information
are used. As we concentrate on the derivation of building
edges, we applied a region growing algorithm, which by-
passes the problem of linking detected edge pixels to
connected lines.

So far we have presented first qualitative results of our
approach. It could be shown that the simultaneous usage of
geometrical and semantical information definitively improves
the classification and delineation of object edges compared to
the single use of only one source. However, we have still to
state some imperfect results which are mainly due to the
quality of the input data in terms of the point density of the
laser scanning elevations and the image acquisition date which
has led to rather less predictive NDVI values.

In future several improvements of the methodological
components will be addressed. For instance, we will apply a
multi-scale segmentation instead of the use of a single segment
layer. Additionally, the edge image matching process will be
further developed by introducing even more features. Finally,
the methodology will be extended in order to extract further
surface edge classes (like embankments or ditches).
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