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ABSTRACT: 
 
The paper presents the combined ridge-stein estimator (CRS) for linear pushbroom imagery exterior orientation, which is severely 
ill-conditioned for the strong correlation among exterior orientation elements of linear pushbroom imagery. The estimator is a new 
biased method combining the ridge estimator and the stein estimator. It can effectively change the ill-conditioned state of linear 
pushbroom imagery exterior orientation process and achieve optimum estimation values through applying different scale 
compression to each least squares estimation component. Its performance is evaluated using one 10-meter SPOT 1 panchromatic 
image and one 2.5-meter SPOT 5 panchromatic image. Experimental results show that the combined ridge-stein estimator can 
effectively overcome the strong correlation among exterior orientation elements and reach high reliability, stability and accuracy. It is 
within one pixel accurate for ground directional points and within one and a half pixels accurate for ground check points.   
 
 

1. INTRODUCTION 

The linear pushbroom imagery is widely used in remote sensing 
mapping for its stable geometry and good image quality, such as 
SPOT, MOMS-02, IRS-1C/D and IKONOS images. However, 
the strong correlation among exterior orientation elements of 
this kind image induces normal equation heavily ill-conditioned 
(Gupta, 1997) and severely affects the reliability, stability and 
precision properties of exterior orientation.  
 
Aiming at solving this problem many researchers have put 
forward different methods, including the incorporation of high-
correlated elements, the separate and iterative solution of line 
elements and angle elements, the fictitious error equation, the 
ridge estimator (Huang, 1992; Zhang, 1989), the stein estimator 
(Zhang, 1989) and so. But there lie various shortcomings 
among these methods. The incorporation of high-correlated 
elements method only works well when the photography state is 
near to vertical photography. The separate and iterative solution 
of line elements and angle elements method isn’t rigorous in 
theory and the orientation precision and iterative times depend 
on the accuracy of initial exterior orientation elements. The 
fictitious error equation method adds great workload and 
demands much ancillary data, such as orbit parameters, satellite 
photo data, and etc. The ridge estimator (Guo, 2002) and the 
stein estimator are both biased methods and can achieve better 
results than those unbiased estimation methods listed before. 
However, the two methods still need improvements. The ridge 
estimator has not a unique solution for it is non-linear to its 
estimation parameter. The stein estimator applies the same scale 
compression to each least squares estimation element without 
considering the fact that each element has different sized error. 
Therefore, in this paper the combined ridge-stein estimator 
(CRS) (Gui, 2002) is proposed up for linear pushbroom 
imagery exterior orientation. The CRS estimator is new biased 
estimator and has never been applied to photography before. 
 

 In the following, after a brief introduction of the CRS estimator, 
focus is put on its application in the linear pushbroom imagery 
exterior orientation, and then experiments are performed using 
one 10-meter SPOT 1 panchromatic image and one 2.5-meter 
SPOT 5 panchromatic image, and finally conclusion is drawn.   
 
 

2. DEFINITION OF THE COMBINED RIDGE-STEIN 
ESTIMATOR AND ITS PROPERTIES 

In the adjustment for the unknown X  the following 
observation equation can be established, and mean square error 
(MSE) is adopted to assess the accuracy of the estimation value 

X̂ . The smaller the MSE is, the more accurate the estimation 
value is. 
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where  A  = coefficient matrix (n row × t column) 
L  = constant matrix (n row × 1 column) 
V = residual matrix (n row × 1 column) 
n = the number of observed values 
t  = the number of unknowns  

 2
0σ = variance of unit weight  

iλ  = the ith eigenvalue in the eigenvalue matrix  
The least squares estimation, the ridge estimation and the stein 
estimation for the parameter X are respectively: 
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where  LSX̂  = least squares (LS) estimation value 

)(ˆ KX R  =  ridge estimation value 

)(ˆ cX Stein  = stein estimation value 

 I = unit matrix 

K  = the ridge parameter vector ( )0>iK  

c  = the stein parameter( 0>c ) 
If each element in vector K is equal, the ridge estimator is 
regarded as the ordinary ridge estimator; else the ridge estimator 
is  deemed as the generalized ridge estimator. The second item 
in equation (2) is constantly zero for the least square estimator 
since it is an unbiased estimator. But for the ridge estimator and 
the stein estimator the second item is no longer zero since they 
are biased estimators.     
The combined ridge-stein estimator can be represented below: 
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where  Q  = eigenvector matrix 

Λ  =  eigenvalue matrix 

d  =  the CRS parameter , 10 << d  
The CRS estimator possesses three favorable characteristics in 
comparison with the ridge estimator and the stein estimator.  
(1)  The CRS estimator is more accurate than the ridge 
estimator and the stein estimator. 
From the viewpoint of statistics a good estimation value should 
have a minor MSE. The MSE value of  the CRS estimator is 
smaller than the ridge estimator and the stein estimator when 
d is optimum, therefore, the CRS estimator is more accurate. 
(2) The CRS estimator is superior to the ridge estimator and the 
stein estimator in reliability and stability. 
To get correct and accurate estimation results, the ill-
conditioned state of the normal equation must be changed. The 
CRS estimator alters the ill-conditioned state much more 
significantly than the ridge estimator and the stein estimator, 
therefore, its reliability and stability are more excellent. 
(3) The solution for the CRS estimator is unique and simple. 
Since the CRS estimator is a linear function to its estimation 
parameter, the optimal value for d  is ascertained when 

( ) 0ˆ =
′
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where )(ˆ
)( dY iCRS  is the canonical value for )(ˆ

)( dX iCRS ,which 

is imported to facilitate and simplify computation. 
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3. THE CRS ESTIMATOR’S APPLICATION IN 
LINEAR PUSHBROOM IMAGERY EXTERIOR 

ORIENTATION 

 
3.1 Theoretical Basis 

This paragraph is mainly concerned with how to apply the CRS 
estimator in linear pushbroom imagery exterior orientation. The 
linear pushbroom imagery has multiple perspective centers and 
each scan line has an unique set of perspective center and 
rotation angles. The collinearity equation between a image pixel 
on the ith scan line (xi , 0) and its corresponding object point in 
the object spcae (X, Y, Z) is as follows: 
 
 
 

(10) 
 

 
 
 
The y coordinate along the flight direction is implied in the 
position and attitude of the satellite at a given time,  which can 
be linearly related to the location and attitude of the central 
linear array as follows:  
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where  f = focal length 

000000 ,,,,, sss ZYXκωϕ � exterior orientation 
elements of the central scan line   

sisisiiii ZYX ,,,,, κωϕ  � exterior orientation elements 
of the ith scan line  
ai, bi, ci = elements of rotation matrix  

               ϕ� � ω� � κ� � sX� � sY� � sZ�  = variation rates of exterior 
orientation elements. 

Each scene has 12 exterior elemets ( 000000 ,,,,, sss ZYXκωϕ �� 

ϕ� � ω� � κ� � sX� � sY� � sZ� ).  Among them siX and iϕ , siY  and iω  

are highly correlated. A small change in iϕ is indistinguishable 

from a small change in siX . Similarly, small changes in siY  and 

iω  can’t be differentiated either. The strong correlation induces 

the coefficient matrix of the normal equation PAAT  singular, 
the normal equation ill-conditioned and some eigenvalues iλ  in 

the eigenvalue matrix Λ  close to zero as well. Accordingly, the 
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MSE value of least square estimation value LSX̂  become very 
large and least square estimator is no more an optimum 
estimator. 
 
The ridge estimator and the stein estimator succeed in reducing 

the first item �
=

t

i
i

2

2
0 1 λσ together with the total MSE value In 

equation (2) at the expense of increasing the second item 
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ill-conditioned state of the normal equation by using 
KIPAAT + to take place PAAT . By adding a small positive 

value iK , the eigenvalue iλ  which is near to zero goes up to 

iλ + iK  and the least square estimation component )(
ˆ

iLSX is 

compressed toward the origin point on the scale of 
( )iii K+λλ . Consequenly, the first item in MSE together 

with the total MSE drop greatly and the accuracy of estimation 
value is enhanced. The stein estimator reduces the MSE value 
and improves the estimation accuracy through compressing 

)(
ˆ

iLSX value on the fixed scale c . However, because the ridge 

estimator is not a linear function to its estimation parameter K , 
it hasn’t a unique and optimum solution approach, which results 
in its unreliability and instability. The common approaches for 
speculating the ridge estimator include Horel-Kennad method, 
Horel-Baldwin method, Lawless-Wang method and Mcdonald-
Galarneau method. The stein estimator compresses each 
component of the least square estimation value on the same 
scale c  without considering the fact that each component has 
different sized error. Therefore, the components with big errors, 
i.e. the components corresponding to infinitesimal eigenvalues, 
don’t get adequate compression and the precision of the stein 
estimator is limited. 
   
In the CRS estimator 1))(( −++ dIPLAIPAA TT is substituted 

for PAAT . The eigenvalue iλ  rises to ( ) ( )diii ++ λλλ 1  

and the least square estimation component )(
ˆ

iLSX is compressed 

toward the origin point on the scale of ( ) ( )1++ ii d λλ . For 
the infinitesimal eigenvalue, the new eigenvalue is near to 

diλ , augmented tens, hundreds, or maybe thousands of times. 
At the same time the component corresponding to the 
infinitesimal eigenvalue, i.e. the component with large error, is 
compressed on the scale of near to d , while the component 
corresponding to the large eigenvalue, i.e. the component with 
minor error, remains nearly unchanged. Hence, it can be 
concluded that the CRS estimator changes the ill-conditioned 
state of the normal equation more significantly and more 
rationally. Moreover, it can be also testified that the CRS 
estimator is the most accurate in MSE meaning by comparing 
MSE values of the CRS estimator, the ridge estimator and the 
stein estimator. 
 
3.2 Calculation Process 

The exterior orientation process for linear pushbroom imagery 
by the CRS estimator can be divided into several steps:  
Step 1: Computation of the initial values of exterior orientation 

elements 0X̂ .  

Step 2: Computation of the least square estimation value LSX̂  

and its corresponding canonical value LSŶ .  

First, coefficient matrix A , residual matrix V should be 

constructed, and then normal equation is established, and finally 

LSX̂ is computed according to equation (1). 

Step 3: Computation of the CRS parameter d . 

The parameter d should be computed by equation (7).  Because 

the parameter d and the value ( )dYCRS
ˆ  are inter-determined, 

the solution for parameter d is an iterative process. For the first 

time, LSŶ is used to replace )(ˆ dYCRS  in equation (7) to calculate 

the first iterative value 0d , and then 0d is used to calculate 

)(ˆ
0dYCRS inversely; for the next time )(ˆ

0dYCRS  is used to 

calculate 1d and 1d is used to calculate )(ˆ
1dYCRS ; the process 

will continue on until ε<− +1jj dd ( ε  is the tolerance). 

Step 4: Computation of the CRS estimation value )(ˆ dX i

CRS   

according to equation (6). The superscript i denotes the ith 

circulation time in the whole process.   

Step 5: Updating the exterior orientation elements 

)(ˆˆˆ
1 dXXX i

CRSii += − .  

Step 6: Judgement is put on )(ˆ dX i

CRS to see if it is smaller than 

the threshold value. If )(ˆ dX i

CRS  is smaller than the threshold 

value, iX̂ is the ultimate exterior elements. If )(ˆ dX i

CRS  is 

bigger than threshold value, the next circulation process will 

repeat from step 2. Iterative circulation won’t end unless 

)(ˆ dX i

CRS is smaller than the threshold value.  
 
 

4. EXPERIMENTAL RESULTS AND EVALUATION 

4.1 Test Data Sets 

The test fields comprise two data sets. The first data set is a 
panchromatic SPOT 1 1A image taken in northern China in 
1986, named as Image 01. The image contains 6000�6000 
pixels and covers 60�60 ground square kilometers, the northern 
and northern-eastern parts of the image are mountains, the 
central part is urban city and the other parts are predominantly 
rural with land use. The ground elevation range varies from 
about -50 to about 550 meters. The sun angle azimuth is 140.6°, 
the sun angle elevation is 64.60°, the principal distance of the 
sensor is 1082 millimeters, the film pixel size is 13 microns, and 
the ground resolution is 10 meters. 57 well-defined control 
points were measured from 1:50,000-scale maps, among them 
18 control points are used as directional points and the left 
points are used as check points. Figure 1 illustrates the coverage 
area of the image with the ground points distribution. Triangles 
represent directional points and circles represent check points. 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second test field is a panchromatic SPOT 5 image taken in 
another place in northern China in 2002, named as Image 02. 
The image contains 24000�24000 pixels and covers 6000�
6000 ground square kilometers. The northwest and southeast 
parts of image are urban areas and the other parts are mainly 
mountains. The ground height varies between about 10 to about 
1550 meters. The sun angle azimuth is 166.7070°, the sun angle 
elevation is 28.2098°, the principal distance of the sensor is 
1082 millimeters, the film pixel size is 3.25 microns, and the 
ground resolution is 2.5 meters. 33 well-defined control points 
were measured from 1:25,000-scale maps, 13 as directional 
points and 20 as check points. Figure 2 illustrates the coverage 
area of the image with the ground points distribution. Triangles 
represent directional points and circles represent check points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Results and Evaluation 

The least square estimator, the stein estimator, the ordinary 
ridge estimator with Horel-Kennad and Lawless-Wang 
approaches, the generalized ridge estimate and the combined 
ridge-stein estimator are used to compute exterior elements for 
these two SPOT scenes. LS refers to the least square estimator, 

Stein refers to the stein estimator, HK refers to the ordinary 
ridge estimator with Horel-Kennad approach, LW refers to the 
ordinary ridge estimator with  Lawless-Wang approach, GR 
refers to the generalized ridge estimator and CRS refers to the 
combined ridge-stein estimator. 
 
Root mean square errors (RMSE) in the image photo 
coordinates and the ground space coordinates are taken to 
evaluate precision of different orientation methods. vox, voy, 
Vox, Voy and Voz represent  directional points’ RMSE in the 
image photo coordinates x�y and object space coordinates X, Y 
and Z  respectively. And vcx, vcy, Vcx, Vcy and Vcz have the 
same meaning for check points.   
 
For test data Image 01 Table 1 and Table 2 show RMSE at 
directional points and check points respectively.  

 
 

                                          Unit: pixel(p) and  meter(m) 
Metho
d 

vox/p voy/p Vox/m Voy/m Voz/m 

LS 61.80 20.10 715.67 217.8
2 

30.16 

Stein  1.07 1.20 8.27 10.88 7.35 
HK 1.05 1.21 8.18 10.82 7.34 
LW 51.88 10.92 660.22 112.7

3 
25.53 

GR 0.98 1.01 7.66 10.07 7.33 
CRS 0.82 0.91 5.67 8.51 7.32 

 
Table 1. Test results at directional points for Image 01 

 
 

Unit: pixel(p) and  meter(m) 
Metho
d 

vcx/p vcy/p Vcx/m Vcy/m Vcz/m 

LS 72.37 26.68 722.34 125.6
2 

22.30 

Stein  1.54 1.67 13.92 15.14 7.85 
HK 1.49 1.66 13.70 14.89 7.85 
LW 61.75 12.13 675.49 111.8

8 
20.71 

GR 1.30 1.41 13.48 14.43 7.84 
CRS 1.23 1.38 13.16 13.73 7.58 
 

Table 2. Test results at check points for Image 01 
 
For test data Image 02 Table 3 and Table 4 show RMSE at 
directional points and check points respectively. 
 

 
                                          Unit: pixel(p) and  meter(m) 

Metho
d 

vox/p voy/p Vox/m Voy/m Voz/m 

LS 1.23 1.26 4.11 4.66 5.40 
Stein  0.46 0.27 2.90 2.26 1.99 
HK 0.44 0.26 2.78 2.25 1.99 
LW 105.81 134.40 770.7 745.3 123.3

2 
GR 0.41 0.23 2.69 2.22 1.98 
CRS 0.22 0.20 2.02 1.80 1.54 

 
Table 3. Test result at directional points for Image 02 

 

Figure 2. SPOT Image 02 



 

 
Unit: pixel(p) and  meter(m) 

Metho
d 

vcx/p vcy/p Vcx/m Vcy/m Vcz/m 

LS 2.24 2.23 7.38 7.29 10.13 
Stein  1.65 1.52 5.48 5.07 4.57 
HK 1.62 1.49 5.49 4.97 4.52 
LW 921.67 140.75 2432.5

8 837.9 50.45 

GR 1.61 1.43 5.39 4.88 4.50 
CRS 1.41 1.33 4.47 4.34 4.39 
 

Table 4. Test results at check points for Image 02 
 
Table 1,Table 2,Table 3 and Table 4 show that the CRS 
estimator is the most accurate, for both 10 meter resolution 
SPOT 1 image and 2.5 resolution SPOT 5 image the orientation 
precision at directional points is within one pixel and that at 
control points is with one and a half pixels. The next best 
estimators are the stein estimator, the ordinary ridge estimator 
with Horel-Kennad approach and the generalized ridge 
estimator, about one pixel accurate at directional points and two 
pixels accurate at check points. Among these three next best 
estimators the generalized ridge is slightly better than the 
ordinary ridge estimator with Horel-Kennad approach, and the 
latter is slightly better than the stein estimator. The least square 
estimator and the ordinary ridge estimator with Lawless-Wang 
approach are the worst, unstable and inaccurate.  

 
Therefore, it can be concluded that the ridge-stein estimator is 
the most accurate, reliable and stable approach for linear 
pushbroom imagery orientation. 
 
 

5. CONCLUSIONS 

The strong correlation among exterior orientation elements of 
linear pushbroom imagery causes the normal equation ill-
conditioned and least squares estimation values no longer 
optimal. The new biased estimator, the combined ridge-stein 
estimator can effectively overcome the ill-conditioned problem 
and improve orientation precision. Experimental results confirm 
that the CRS estimator is superior to the least square estimator, 
the ridge estimator and the stein estimator in accuracy, 
reliability and stability. The combined ridge-stein estimator is a 
perfect approach for linear pushbroom imagery orientation. 
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