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ABSTRACT:

This paper demonstrates the use of a matching algorithm to register an ALS data set to a reference surface composed
of ground points obtained using kinematic stop-and-go GPS. The matching algorithm minimises the normal distances
between the points of the ALS data set and the facetted reference surface. A particular feature of this experiment is to
sample the reference surface in several high density patches, rather than spreading the sampling evenly over the surface.
The resulting triangulated reference surface is composed of several patches of small triangles in an environment of ex-
tremely large triangles. The weighting technique adopted was based on interpolation errors, which are estimated using
autocorrelation theory. A spatial covariogram is generated and the interpolation errors are determined using an exponen-
tial function fitted on the experimental covariogram. In practice, the accurate registration of ALS data is important, as it
provides the foundation of DEMs used in sensitive areas such as flood studies. The method presented has proven to be a
very successful tool and is an improvement on existing methods.

1. INTRODUCTION

The registration of data sets in the same coordinate sys-
tem is essential for the fusion of data obtained from simi-
lar or different sources. The determination of the registra-
tion accuracy by commercial firms is often undertaken by
comparing points of one surface to heights interpolated be-
tween points on the other surface. The last few years have
seen research undertaken in the development of surface
matching algorithms to automate the registration. High re-
dundancy is achieved with these algorithms, as each point
of one surface can potentially participate in the formation
of a normal equation for a least squares adjustment. These
algorithms should become an important tool for data fu-
sion, especially with data acquisition techniques such as
airborne laser scanning (ALS), which lack thematic infor-
mation.

This paper presents a weighted least squares surface match-
ing algorithm developed at the University of Newcastle,
Australia. The weighting technique used in the algorithm
permits a surface to be registered accurately to a reference
surface with that reference surface covering 20% of the
other surface only.

The accuracy of the registration is related to the density of
the reference data (referred to asS1 in this paper) and, to a
lesser degree, to the roughness of the surface. A distinction
is made between the precision of the matching, defined by
the residuals of the least squares, and the accuracy of the
registration, which compares the matched points of the sec-
ond surface to their true position. The second surface is the
data set which is transformed by the least squares match-
ing algorithm in the coordinate system ofS1: it is referred
to asS2 in this paper.

The aim of this paper is to present the weighted least squares
software and to demonstrate its performance through an

application. The application involves registering a setS2

of 27,000 points in the coordinate system ofS1, a set of
900 points.S1 is a patchy set obtained with stop-and-go
global positioning system method (GPS), whileS2 is a set
of points filtered from a larger set sampled with an airborne
laser scanner.

2. THE TOOLS OF THE EXPERIMENT

2.1 Least squares Matching Algorithm

2.1.1 Background: Surface matching, also referred to
as registration without control points, describes an auto-
mated method used to find the parameters of a transfor-
mation which minimises the separation between two 2.5D
surfaces. Early matching algorithms were presented by
Rosenholm and Torlegård (1988) and Ebner and Strunz
(1988). In both instances, better results were reported us-
ing a gridded DEM to orient photogrammetric data than
with conventional methods. Similar methods are used in
deformation studies and monitoring (Pilgrim, 1996). Reg-
istration methods using a control surface are justified par-
ticularly in areas where permanent control markers are not
possible (abdominal deformation in pregnancy (Karras and
Petsa, 1993)), unethical (dental erosion (Mitchell, 1995;
Mitchell and Chadwick, 1998, 1999)) or impractical (coastal
erosion (Buckley, 2003; Mills et al., 2003)). Maas (2002)
developed a least squares matching (LSM) technique for
laser scanner data strips adjustment: systematic deforma-
tions due to GPS/INS systems are corrected by solving for
the three shift parametersTX , TY andTZ .

The algorithms mentioned minimise the difference in heights
between the points of one surface to the facets of the other
surface. The algorithm presented in this research min-
imises the normal distances between the points ofS2 to



triangular plane patches ofS1. A similar algorithm was
trialled on small artificial data sets (Schenk et al., 2000) in
a comparison study of matching algorithms. Habib et al.
(2001) report on such an algorithm where the parameters
of the transformation are found with a system featuring a
Hough transform.

2.1.2 The Matching Algorithm: Let the three rotation
anglesω, φ andκ, the three translationsTX , TY andTZ

and the scaling factors be the seven parameters of a con-
formal transformation which moves the set of pointsS2

to a positionS′2, which minimises the set of the normal
distances from the points ofS2 to the facets ofS1. The
normal distance from a pointI ′ ∈ S′2 to a plane defined by
the three vertices(P,Q, R) ⊂ S1 of the triangle enclosing
the pointI ′ is given by:

D =
|a.x′i + b.y′i + c.z′i − d|√

a2 + b2 + c2
(1)

wherea, b, c andd are functions ofP , Q andR; I ′(x′i, y
′
i, z

′
i)

is a function ofω, φ, κ, TX , TY , TZ , s andI(xi, yi, zi)
with I ∈ S2.
An approximationD∗ of the normal distanceD is obtained
by linearising Equation 1 using a Taylor expansion and
keeping only the first order derivatives :
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where:
D0 is the distanceD evaluated at the initial value of the
parameters of the transformation;
∆ω, ∆φ, ∆κ, ∆TX , ∆TY , ∆TZ and∆s are corrections
to initial values of the parameters.

Let V be the difference between the approximated normal
distanceD∗ and the exact distanceD:

D = D∗ − V

Equation 1 can thus be written as:
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With the model requirement thatD = 0 and rearranging
Equation 3:
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This calculation repeated over then points of S2 is ar-
ranged in matrix notation to give:

V = L + AX (5)

where:
V is ann× 1 vector of residuals
L is a n × 1 vector of “observables”D0 (also called the
“absolute term”)
A is ann × 7 matrix of the first order derivatives (often
called the “design” matrix)
X is a7× 1 vector of correction to the initial values of the
parameters (to be estimated)

The conventional least squares solution for a system of
weighted observations is given by:

X̂ = −(AT G−1A)−1AT G−1L (6)

where:
X̂ is the vector of least squares estimators
G is the variance/covariance matrix of the observations.

2.2 Weighting Techniques

The denser the data, the more faithful the triangulated sur-
face is to the true surface. The use of weights in a least
squares fit becomes essential when the reference data is ir-
regularly distributed. Large triangles are formed in sparse
data areas, and small weights have to be given to the cor-
responding normal equations to counterbalance the result-
ing large interpolation errors. The weighting technique
adopted for this project is based on the interpolation er-
rorsσ2, which are estimated from an exponential model fit-
ted on the experimental covariogram. A comparison study
of weighting techniques for least squares surface matching
found that the best results in a sparse reference data envi-
ronment were obtained with this method (Pâquet, 2003a).

This method involves the production of a covariogram or
covariance function, from which the mean of the product of
the heights can be evaluated for any given distance between
the points. The covariances for a distanced are obtained
using:

C(d) =
Σn

i=1(zi.zi+d)
n

(7)

The data point spacing is irregular and the distance and
product of the heights are calculated for each pair of points
in the data set. These results are then classed in bins, ac-
cording to the range of the distance separating them. Fi-
nally the mean distance, mean product and standard de-
viation of the products are calculated in each bin. The
covariogram is the plot of the value of the mean product
versus the mean distances. The experimental covariogram
fitted with an exponential model is shown in Figure 1. The
weight of the normal equation is then computed as the in-
verse of the standard error of predictionσ2(O):

W = 1/σ2(O) (8)
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Figure 1: Covariogram Fitted with Exponential Model

The standard error of prediction is given by (Heiskanen
and Moritz, 1967, p. 267):

σ2(O) = C0− 2Σn
i=1λoiCoi +Σn

i=1Σ
n
k=1λoiλokCik (9)

where the subscripts refer to horizontal distances between
points (i.e.:ik is the distance betweenI andK), O is the
point interpolated andI = K, with i = k = {1, 2, ..., n},
are points of known properties used to find the standard
error of the interpolated property ofO.

The method is adapted for the matching programme. The
property of the variables is the height. The number of
points used to estimate the error is limited to the three
vertices of the enclosing triangle, and can be found ana-
lytically with, for a point O interpolated in an enclosing
triangle of verticesP , Q andR:

σ2(O) = C0 − 2(λ1Co−p + λ2Co−q + λ3Co−r) (10)

+ 2(λ1λ2Cp−q + λ1λ3Cp−r + λ2λ3Cr−q)
+ C0(λ2

1 + λ2
2 + λ2

3)

where the weightsλi of the covariance factors are deter-
mined using:

λ1 =
xo(yr − yq) + xq(yo − yr) + xr(yq − yo)
xp(yr − yq) + xq(yp − yr) + xr(yq − yp)

(11a)

λ2 =
xo(yp − yr) + xp(yr − yo) + xr(yo − yp)
xp(yr − yq) + xq(yp − yr) + xr(yq − yp)

(11b)

λ3 =
xo(yq − yp) + xp(yo − yq) + xq(yp − yo)
xp(yr − yq) + xq(yp − yr) + xr(yq − yp)

(11c)

The covariance factors are estimated from the covariance
function shown in Figure 1 for the distances shown in the
subscripts.C0 is the covariance for the nil distance, that
is, the mean of the square of the products of the height of
the points (the points are multiplied with themselves when
the distance is nil). The exponential model (or Gaussian
model) is given by (Mikhail, 1976, p. 405):

C(d) = C(0).e−k2d2
(12)

The value ofk = 0.0032728 in the exponential model is
determined by a least squares method. Note that the model
does not fit the experimental data accurately for the longest
distances (see Figure 1): however, out of the 1719 triangles
generated by the Delaunay triangulation ofS1, only 6 had
sides larger than 240m.

3. EXPERIMENT AND RESULTS

3.1 Aim

The aim of this experiment is to demonstrate the ability of
the matching algorithm to registerS2 in the coordinate sys-
tem ofS1. Given the characteristics of the data (§ 3.2),S2

was first matched toS1. The two sets were assumed then
to be registered in the same coordinate system (§ 3.3). The
experiment (i.e.: the testing of the algorithm) was under-
taken: S2 was transformed with known parameters, then
matched with the algorithm. The ability of the algorithm
to returnS2 back to its registered spatial position was mea-
sured by:

1. comparing the parameters of the initial transformation
and the parameters of the matching transformation,

2. computing the mean of the absolute displacement of
the coordinates ofS2.

3.2 Data Characteristics

The surfaceS2 is a data set of 27,748 points. The set was
extracted from a laser project covering the Greater New-
castle area. The accuracy reported for the Greater Newcas-
tle project included a mean elevation difference of 0.1m
based on direct observations of 12 test points. A com-
parison to 12 derived test points (interpolated from sur-
face model) produced a standard deviation of 0.25m. Only
height accuracy was estimated. The position of the set was
fixed by GPS/INS with two survey control points, and one
reference point situated at the aerodrome of departure of
the plane used for the survey.

The reference setS1 of 884 points was sampled with a GPS
system using a stop-and-go kinematic method. Its accu-
racy varies from point to point but averages approximately
30mm both horizontally and vertically. The matched sets
are shown in Figure 2.

3.3 Data Preparation

The experiment tests the ability of the matching programme
to register a large dense ALS set using a sparse GPS set.
The GPS set is made up of six clusters of dense data. The
Delaunay triangulation ofS1 generates small triangles in
the clusters, and large triangles which do not represent ac-
curately the shape of the terrain between the clusters. After
normalising the values of the data to minimise numerical
errors (Pilgrim, 1991),S2 is matched toS1, resulting in a
small adjustment. An adjustment can be expected to occur
as the ALS set registration method is prone to planimetric



Figure 2: ALS and GPS Data Sets

errors (Huising and Gomes Pereira, 1998), and the set used
was part of a much larger set adjusted globally. Moreover,
the programme matchesS2 on the triangulated modelS1,
not on the true surface. The accuracy of the matching to
the true surface depends on the faithfulness of the model
to the true surface and is a function of the density of the
reference surfaceS1 (Pâquet, 2003b). The parameters of
the adjustment are:

Rotation Angles (degrees): ω = 0.0159
φ = 0.0072
κ = −0.0650

Translation (m): TX = 0.0773
TY = −0.0031
TZ = −0.0496

Scaling: s = 0.9999

It is assumed that the position ofS2 after the prepara-
tion adjustment accurately describes the true surface. No
checks are available to determine this accuracy. The sole
measure of precision is that provided by the least squares
method. The separation between the two surfaces after it-
eration termination can only be assessed with the residuals
of the least squares adjustment.

The residuals of the least squares are not directly indica-
tive of the accuracy of the registration: some of the resid-
uals occur in the large patches formed by the triangula-
tion between the six clusters of GPS data. The total num-
ber of triangles inS1 is 1,719. The number of triangles
with an area under 6m2 is 1,569. Their combined sur-
face area is 28,637m2, which represents 38.37% of the
total triangulated area of 74,638m2. The total number of
residuals obtained in the matching is 14,649 (out of 27,748
points: see explanation below). Assuming that the small-
est residuals occur within the smallest triangles, the matrix
of residuals is sorted by size. The 5,620 smallest residuals
(or 38.37% of the matrix of residuals) have values rang-
ing from 0.000038m to 0.4918m. The mean and standard
deviation are respectively 0.2123m and 0.1420m. By con-
trast, the largest residual in the matrix of residuals has a
value of 4.4123m, and the mean and standard deviation
are 1.1466m and 1.0356m respectively. This assumption

is validated in Figure 3(c), which shows residuals of value
smaller than 0.1m produced within the six clusters.

(a) Reference SurfaceS1

(b) All Residuals

(c) Smaller Residuals

Figure 3: Configuration and Magnitude of Residuals

S2 has a total area of approximately 149,740m2. The six
clusters ofS1 represent an area of approximately 28,637m2

or 19.1% of the ALS surface. Of the 27,748 points ofS2,
only 14,649 were included in the last iteration of the pro-



gramme to form the normal equations of the least squares.
The others either did not find correspondence or were elim-
inated as outliers. Experience shows that better matching
results are obtained with the points ofS1 sampled in the
periphery ofS2, but this characteristic was not shown in
this experiment.S2 is now assumed to be registered inS1

coordinate system. The two sets are now ready for the ex-
periment.

3.4 Measure of the Accuracy of the Matching

After the adjustment, the programme is tested by trans-
formingS2 with known parameters. This transformation is
referred to as the initial transformation.S2 is then matched
to S1. The process is undertaken with different values for
the parameters of the initial transformation. A measure
of the accuracy of the matching (i.e.: the ability of the
programme to returnS2 to its original spatial position) is
demonstrated by comparing the parameters of the match-
ing transformation which undo the initial transformation
(i.e: the inverse operation).

The matching accuracy is not easily assessed by interpret-
ing the simultaneous effect of the differences between the
three rotations, the three translations and the scaling of
both initial and matching transformations. An additional
measure of the accuracy is therefore given by the mean
and standard deviation of the mismatches of the points of
S2. To obtain this mismatch, the coordinates ofS2 in its
original position are compared to the coordinates ofS2 af-
ter the initial and matching transformation. The absolute
mismatch between each point is obtained with the distance
formula. The meanm of the mismatches of the 27,749
points ofS2 is computed with the standard deviationσm.

3.5 Results

Four trials were undertaken for the experiment. The re-
sults of the trials are shown in Tables 1, 2, 3 and 4. The
Tables show the parameters of the initial transformations
and the parameters of the matching transformation. The
absolute values of the differences between the parameters
are shown in the last column. The last three rows of the
Tables indicate the number of iterations undertaken by the
matching programme, the mean of the mismatchesm and
the standard deviationσm.

From the four trials, it can be observed that the largest ro-
tational error wasκ = 0.0255o in trial 2, while the largest
translation error wasTX = 0.0798m which occurred in
trial 4. The largest mismatch occurs in trial 4 whereS2

was shifted by an initial transformation including a trans-
lation of 2m.

4. CONCLUSIONS

This article reports on a weighted least squares matching
algorithm developed at the University of Newcastle, Aus-
tralia. The algorithm measures the separation between the
surfaces along the normal distances between the points of

Table 1: Matching Results
initial results | ∆ |

ω 0 -0.0019 0.0019
φ 0 -0.0013 0.0013
κ 0 -0.0005 0.0005

TX -1 0.9629 0.0371
TY -1 0.9897 0.0103
TZ -10 9.9875 0.0125
s 1 1.0002 0.0002

Iterations 10
m 0.0479
σm 0.0178

(ω, φ andκ in decimal degrees)
(TX TY , TZ , m andσm in metres)

Table 2: Matching Results (cont.)
initial results | ∆ |

ω 0 -0.0029 0.0029
φ 0 -0.0019 0.0019
κ 0 0.0255 0.0255

TX 1 -1.0122 0.0122
TY 1 -1.0618 0.0618
TZ 10 -10.0452 0.0452
s 1 1.0004 0.0004

Iterations 5
m 0.0980
σm 0.0426

(ω, φ andκ in decimal degrees)
(TX TY , TZ , m andσm in metres)

one surface to the plane patches of the other. The weight-
ing technique of the least squares involves the production
of a spatial covariogram. The weights are computed as the
inverse of the interpolation errors estimated from an expo-
nential function fitted on the experimental covariogram.

The experiment presented in this article demonstrates the
ability of the programme to register an ALS data set of
27,749 points in the coordinate system of a data set of
884 points obtained with a stop-and-go GPS method. The
reference set is sparsely sampled, and contains 6 clusters
densely sampled. The weighting technique of the algo-
rithm efficiently allocates large weights to points interpo-
lated close to the vertices of the patches generated by the
Delaunay triangulation, where the interpolation error is min-
imal. Likewise, small weights are allocated to the nor-
mal equations of the least squares which involve points far
away from vertices where large interpolation errors occur.
Four trials involving different sets of parameters showed
that the programme is able to register the ALS surface with
mean errors approximating 100mm in the worst of the four
cases. The weighted least squares matching program can
be used to orient data sets which may include buildings and
protruding features. The reference surface is sampled be-
tween the protrusions (i.e.: in the streets and parks) using
a precise and dense GPS method. The sampling is ideally
patchy - the size of the patches is as important as the den-
sity of the patches to the final accuracy of the matching.
The programme is thus a useful tool for data reconstruc-
tion.



Table 3: Matching Results (cont.)
initial results | ∆ |

ω 0 -0.0036 0.0036
φ 0 -0.0023 0.0023
κ -1 0.9825 0.0175

TX 0 0.0696 0.0696
TY 0 -0.0343 0.0343
TZ 0 -0.0105 0.0105
s 1 1.0000 0.0000

Iterations 5
m 0.0720
σm 0.0321

(ω, φ andκ in decimal degrees)
(TX TY , TZ , m andσm in metres)

Table 4: Matching Results (cont.)
initial results | ∆ |

ω 0 -0.0003 0.0003
φ 0 -0.0026 0.0026
κ 0 0.0167 0.0167

TX -2 2.0798 0.0798
TY 0 0.0114 0.0114
TZ 0 -0.0024 0.0024
s 1 0.9999 0.0001

Iterations 9
m 0.1096
σm 0.0290

(ω, φ andκ in decimal degrees)
(TX TY , TZ , m andσm in metres)
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