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ABSTRACT

Terrestrial laser scanners provide a three-dimensional sampled representation of the surfaces of objects resulting in a very
large number of points. The spatial resolution of the data is much higher than that of conventional surveying methods.
Since laser scanners have a limited field of view, in order to obtain a complete representation of an object it is necessary
to collect data from several different locations that must be transformed into a common coordinate system. EXxisting
registration methods, such as the Iterative Closest Point (ICP) or Chen and Medioni’s method, work well if good a priori
alignment is provided. However, in the case of the registration of partially overlapping and unorganised point clouds
without good initial alignment, these methods are not appropriate since it become very difficult to find correspondence.
A method based on geometric primitives and neighbourhood search is proposed. The change of geometric curvature and
approximate normal vector of the surface formed by a point and its neighbourhood are used to determine the possible
correspondence of point clouds. Our method is tested with a simulated point cloud with various levels of noise and two
real point clouds.
1 INTRODUCTION Suppose that there are two point cloud$, andC?, and
they are measured from different locations. A point cloud
The registration of point clouds is one of the importantC! has a setolN¢: points,{p},--- ,pk , }. Bold and nor-
steps in processing data from laser scanners. Excellefia| letters represent a vector and a scalar, respectively. Let
reviews about the existing methods can be found in Hartpl — p?|| be the distance between pojsitof point cloud
alick et al. (1989) and Rusinkiewicz and Levoy (2001). ~1 andp? of C2. Let CP(p!,C?) be the corresponding
To the best of the authors’ knowledge, a method for the. . . "4, o ! . .
registration of partially overlapping point clouds from ter- gomt In C* of a pointp;.. The ICP algorithm can be briefly
. . O escribed as follows.
restrial laser scanners without good a priori alignment has
not developed yet. The most significant reason is that it is
very difficult to recover the correspondence between point 1. Assume that the point i closest to a point iC"!
clouds without good a priori alignment. In this paper a is the corresponding point.
method for the registration of two partially overlapping
point clouds measured from different locations using geo- 2.
metric primitives and neighbourhood search without good
a priori alignment is proposed. Sharp et al. (2002) pro-
posed a method based on Euclidean invariant features: cur-
vature, second order moments, and spherical harmonics.
Our method is based on the change of curvature rather
than curvature and is a thresholding method such as Zhang
(1994). 3.

Find the correspondence of two point clouds,
N,

C= Ui:Cil {Titerzk (p})a OP(Ti,terzk(pzl)a 02)},

whereC is the set of all pairs of corresponding

points,T;;.-—k IS the transformation of thith

iteration andl’;.,—¢ is an initial transformationC

may or may not be one-to-one matching.

Compute the new transformati@.,—1 that
minimizes the sum of square distances between

The Iterative Closest Point (ICP) algorithm is a reliable and
popular method for point cloud registration (Horn, 1987,
Besl and McKay, 1992). Horn developed an adjustment
method for recovery of unknown transformation parame-
ters with knowledge of the correspondence of point clouds.
Besl and McKay developed the ICP using Horn’s algo-
rithm in conjunction with a neighbourhood search algo-
rithm. If approximate a priori information about the point-

to-point correspondence of two point clouds is provided,

corresponding point pairs, i.e.

Niter=k

Z szl _CP(Titer:k(pzl)aCQ)HQ

i=1

wheren;;.,— is the number of sample ikth
iteration.

then the ICP can iteratively recover the rigidbody transforSince the ICP is based only on a local search algorithm
mation that aligns two point clouds. It converges mono-to recover correspondence between two point clouds and
tonically to a local minimum, which may or may not be it minimises the sum of square distances between possible
the global minimum, and all points in a point cloud are corresponding points, it converges slowly sometimes and
assumed to have correspondence in the other cloud. tends to fall into local minima.



Another algorithm is Chen and Medioni’s that is a point- neighbourhood. The covariance of a point andkiteeigh-
to-surface algorithm whereas the ICP is a point-to-point albour pointsCOV (p}), is expressed as

gorithm (Chen and Medioni, 1992). It minimises the sum

of the square distances of a point to its corresponding sur- CoV(p}) =
face. This algorithm is generally faster than the ICP. How-

ever, the point clouds need to be more closely aligned to (Pi = Prionbourjmrkpty)  (3)
each other initially than with the ICP. '

1 cent T
(pi - pneighbour{j:lmk,p,} 3 )

> =

wherepffgéhbom{j:lv__]C ol is the cetroid ofp} and itsk
The ICP, its variants, and Chen and Medioni’s algorithm | ' .

- , o neighbourhood points.COV (p}) is a3 x 3, real, pos-
assume that the closest point in point cladd is @ good e and semi-definite matrix, the eigenvalues of which

estimate of the correct corresponding pointih. Iftwo 510 Aiways greater than or equal to zero. The eigenvec-
point clouds are not approximately aligned using & priy,r of the' minimum eigenvalue is the approximate normal
ori georeferencing information, this assumption is not COlyector of the surface formed by and itsk neighbour-
rect. AIthough initial qllgnment can be provided from hood points (Hoppe et al., 1992’)_ The other eigenvectors
pther means like surveying of the laser scanner |OC_6\U0nS,(§re the tangential vectors of the surface. If the minimum
is not always possible. Finding corresponding points andjgenyalue is close to zero, then the surface consisting of
good registration of the point clouds are more difficult if 5 n5int and its neighbourhood is flat. This method is the
they only partially overlap. In addition, these adjustment o orqer approximation of the normal vectors of the sur-

algorithms provides a closed-form solution, i.e. no itefax,qe £ the level of noise is large or the number of points
tion, which is one of reasons for they popu[ar!ty, a}lthoughin the neighbourhood, is too small, it could provide an
closed-form methods can not provide statistical informas,.orrect normal vector.

tion of individual parameter of rigidbody transformation
as conventional least square methods do. 2.2 Change of geometric curvature estimation

The change of geometric curvature at a point can be esti-
mated from the eigenvalues of the covariance matrix. Each

Geometric primitives. such as surface normal vector Cur(_aigenvalue represents the spatial variations along the direc-
vature andrzhe change of curvature and so on, may provi lon of the eigenvector. Lel; andv; be the eigenvalues
' 9 :mayp d eigenvectors of the covariance matfixQV (p}), with

additional and useful information to recover the correspong, . - qition of\; < s < Ag. The change of curva-

dence of two point clouds. A method to find the correspony o is 4 parameter of how much the surface formed by a

deincel of twohpollnt gtlﬁud_s using gegmGetrlc prtlmltlves atn oint and its neighbourhood deviates from the tangential
alocal search aigorithm IS proposed. >eometnic curvatur, ,q formeq bws andv;. The ratio of the minimum

a_nd the_ qhange_ of curvature is invariant to three dlmen'eigenvalue and the sum of the eigenvalues approximates
sional rigid motion and surface normal vector can be ro-

. X the change of geometric curvature,
tated according to the computed transformation by Horn’s 9 g

2 PROPOSED METHOD

or Chen and Medioni's algorithm. The angle between nor- 1 A1

mal vectors and the difference between the changes of cur- Mee(p;) = Z:} N (4)
vature of a point and its corresponding points are our crite- =1

ria for selection of corresponding point pair. Additionally, the geometric curvature}/..,,.,(p}), of a

point can be estimated by the normal vectors of the point

The angle between approximate normal vectors;oénd and its neighbourhood

pjz can be expressed as

T =

k
0(1771 ) T Cosil(np% : l'lp?), 1) M ey (ptl) = Z ||np} - nneighbour{j,p}}” (5)
j=1

wheren,,: andn,: are the respective approximate normal
' wheren,,; andn

vectors of the points. The difference in changes of curva® '} neighbour{j.p!} € the normal vectors of
ture between two points can be written p; and itsjth neighbourhood, (Linsen, 2001). The change

7

of curvature M..(p} ), can be expressed

n

B(p},p3) = |Mee(p}) — Mec(p3)], 2

whereM..(p}) andMCC(pi) are the approximate changes &
1 2 inti

of c_urvature ofp; ar_ldpj. The nqrmal vecto.r of a ppmt Is M.(p}) = Z | Meewiro (pF) — Mo (p}l cighbour {j’p%})\_

estimated by covariance analysis of the point and its neigh- =1

bourhood points and the change of curvature is estimated (6)

as the ratio of eigenvalues of the covariance matrix.

| =

Both methods can provide a good approximation to the
2.1 Normal vector estimation change of curvature. However, the quality of estimation

depends on how well the neighbourhood points are dis-
The normal vector of a point is estimated by one of thetributed. Since our algorithm is for the registration of unor-
eigenvectors of the covariance matrix of a point and itgganised point clouds, there is no guarantee that every point



of a cloud has a set of evenly-distributed neighbourhood  smaller tharil,,,, for example, the average distance
points. This problem can be overcome by using the angle  of a point from its neighbourhood, then Chen and
criterion between the neighbour points as Linsen (2001)  Medioni’s method is used since it converges quickly
did for the triangulation of point clouds. Furthermore, we than Horn’s algorithm does if the point clouds are
could use a method in which each point has different num-  close (Rusinkiewicz and Levoy, 2001). Otherwise
ber of neighbourhood pairs. The angle criterion has been  Horn’s method is used.

used in this paper but using different number of neighbour-

hood for each point was not implanted. Therefore, a large,

ff the initial alignment is close to the correct one, only a
number of neighbourhood points has been used. g ; onYy

small number of points need to be searched. Otherwise
a large number of points must be searched in order to
find correct correspondence of sample points. The opti-
The amount of data to process in order to find correspo mal number _of_points bein_g searched_ co_uld_be evaluated
M om the statistical properties of the distribution of regis-

dence IS very large, wh|qh limits the robust.ness of r€9IStration error metric (Zhang, 1994). However, the distance
tration algorithms. The higher curvature points may hav

2.3 Algorithm description

vature points also are |r_lclud_ed to Improve the rPfg'Str""t'onpoints need to be searched in order to determine the corre-
Our method for the registration of three-dimensional, par;

tially overlapping and unorganised point clouds WithoutSpondence of two point clouds.
good a priori alignment can be briefly described as followsy 4 scale of selected corresponding points

. . , .. The scale of selected corresponding points is usually as-

1 F'?d thel;: neighbourhood points of every point in g meq to be unity and this assumption is reasonable in
C" andC”. Estimate the geometric primitives of the ,qt cases (Hom, 1987). It can be also used as the error
points. metric to represent the quality of registration (Crosilla and

2. Take initial sample points,ph Y whose Beinat, 200_2). _The scale can be.interpreted as a parameter

. it =il for the quality in the determination of the corresponding

change. of curvature is greater_.thﬁi@amp_le where points. For example, if we have incorrect correspondence
Niter—; IS the number of sample ifth iteration. information, then the scale is not unity. The scale factor in

3. Find corresponding points of, . p?isthe kth iteration,s;;.,—, can be expressed as

corresponding point g} if sy — Soriter=tpi - Tiger—k(CP(p;, C?)) @
iter=k — iter=
9(p1 p2) < T’iter:il Z?:tl ¥ HTiter:k(CP(pzlaCQ))‘P
() J —_— norma.
ﬁ(p1 pz) < miter=i whereT;;.,—i is the calculated transformation of tt¢h
1 y) = Tce

iteration, C P(p}, C?) is the position vector of the corre-
whereTter=i andT/c"=¢ are the thresholds for the sponding point .Of’zl’ andnzer—y IS the number of samples
angle between the normal vectors and the differencl! _the kfth iteration. Although the scale of corresponding
in the changes of geometric curvature between th@0ints is unity, it does not guarantee that we have one-to-
corresponding points, respectively. one matched corre§p0ndence. If the scale |s'much greater

or smaller than unity, the calculated translation could be

4. Calculate the approximate transformatidfy.,.—;, incorrect.
and transformC!. Rotate the normal vectors of all
points of ! as well. 2.5 Threshold values

5. Update the threshold values in order to apply a morelhe list of threshold values used in the proposed method
strict criterion for determination of possible corre- is shown in Table 17;/“"=° and AT are the most impor-

sponding points as follow. tant and critical thresholds. The other threshold values are

o o not critical to the success rate of the proposed method, al-

Titer=itl — piter=t — ATpormal though they affect the robustness of the registration. It is
iter=i+l _ piter=i _ AT, difficult to state explicitly which values are the optimal val-

ues since they depend on dataset. Currently we are work-
ing on finding the optimal and generalized expressions for
these thresholds. Our suggestion§ g =° andAT from
6. Calculate the registration erra!*"=?, which is de- the experiences with the proposed method are
fined as the rms distance of points and their cor- 1 5
responding surfaces in our method. dfe =i is piter=0 _ < Mee >+ < M, > ®)
greater than threshold, then go to step 2. Other- « 2
wise stop the registration. In addition, dft“"=" is AT..= ¥Y< ML >2, + < M2 >2 9)

™ ms rms

iter=i1+1 __ riter=1t
:rsample — L sample — AT‘smnple




threshold description 1996, Maas, 2000, Rusinkiewicz and Levoy, 2001). These
include the change of rotation angles or translation, the
& number of neighbourhood distances between corresponding points, the distances be-
Pry— — - tween points and their corresponding surfaces, and so on.
Ty initial sampling threshold . . . .
sampre for the ch ; . Whether the registration errot, is reasonable, too opti-
p— _ _'or € change o Cur\_'a ure mistic or pessimistic, depends mainly on the number of
Tee™™ initiakthreshold forine aifierence outliers that are used to register the point clouds. In addi-
in changes of curvature tion, the redundancy of correspondence, the spatial density
Titer=0 initial threshold for the angle of data and the percentage of the overlapping regions are
between normal vectors important factors. Two parameters that represent the er-
AT a1 increment forTter=F ror of registration were measured: the distances between
sampie sample . . . . .
AT.. increment foriter=F correspond!ng points and th_e distances of points from their
- — corresponding surfaces. Figure 2 shows these measures
ATy ormal increment forT) ter—" . . .
. T r— for the simulated dataset. As expected, more iterations
Tecpy || thresholdfor starting Chen and Medionis methed  gre needed in order to minimise registration error, as more
Te threshold for stopping the registration noise is added to the point clouds. The magnitude of the

S(gistances between corresponding points is about four times
greater than the distances between points and their corre-
sponding surfaces. It means that the success rate to find the

where< M}, > and< M}, >, are the mean and rms correct point-to-point correspondence is much smaller than

of the change of curvature 6f’. that to find the correct point-to-surface correspondence.

This is not surprise if we consider that the test point clouds

are parts of a cube, i.e. most of overlapping regions of the

point clouds possess low curvature area. Therefore, we use

. the distance between point and its corresponding surface as

Three examples were tested with the proposed methoghe error metric of our method. Although we use this as er-

a simulated point cloud and two real point clouds capyor metric, the distance between corresponding points will

tured with two different laser scanners. All datasets havey provide good information to increase the efficiency of
partially overlapped. The proposed method was impleg, ¢ aigorithm since we may remove outliers based on that
mented in C++ and tested on a PC with Intel Pentium 1llin¢ormation.

450MHz and 516MB RAM. Our program is not yet opti-

mized so there is room for improvement in terms of pro-the scales of selected corresponding points in each itera-
cessing speed. For neighbourhood search, we used a kg, of the registration of simulated point clouds with var-
tree search library developed by Arya et al. (1998) anGys standard deviations of zero-mean Gaussian noise are
LAPACK (1999) was used for covariance analysis. shown in Figure 3. In early stage of registration, scales are
much greater than unity since we do not have good a priori
alignment. After about five iterations, all scales of the dif-
ferent levels of noise become approximately unity, which
is a good indication of success in finding correspondences.
However, there are some differences between the scales in
the presence of noise as shown in Figure 3(b).

Table 1: The threshold values are used in the propo
method.

3 EXPERIMENTAL RESULTS

3.1 Simulated data

3.2 Real point clouds

The second example is the registration of two real
Figure 1: Before the registration of the point clouds of theP0iNt clouds from a Buddha statue (Ayuthaya, Thailand),
parts of a cube scanned with Riegl LMS-Z210 that has angular sampling
interval is 0.018 (Riegl, 2004). Figure 4 shows the point
The simulated point clouds are parts of a cube, having diclouds as before and after registration using our method.
mensions of 1 1mx1m, and partially overlapped. The The third example is a scene containing a building and
number of points in the point clouds are 2640 and 4048trees measured by Mensi GS200 whose angular sampling
One point cloud was translated with (x,y,z)=(0.2m, 0.1m,nterval is 0.0025 (Mensi, 2004). In this example, three
0.5m) and rotated 30around z-axis from registered state point clouds are registered as shown in Figure 5.
as shown in Figure 1. Zero-mean Gaussian noise with var-
ious standard deviations was added independently to eadte results of registration are listed in Table 2. In case of
point of the point clouds. In the case of zero standard dethe simulated data without noise, the registration error af-
viation, i.e. no noise, all points in the overlapping regionter seven iterations is 0.04mm. In the cases of simulated
have exact corresponding points. point clouds with zero-mean Gaussian noise, registration
errors are similar with the standard deviations of Gaussian
Many different error metrics have been defined to meanoise. The execution time of = 0.06 is faster than the
sure how well two point clouds are registered (Simonother cases. All registration errors of both simulated and
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each iteration of the registration of simulated point cloud
with zero-mean Gaussian error. (b) is the magnified figur
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Figure 4. A Buddha statue scanned by Riegl LMS-Z210.
(a) and (b) are before the registration. (c) and (d) are after
the registration.

real point clouds are much smaller than the point spacings
of point clouds defined as the average distance from a point
from its neighbourhood. The registration errors of the two
real point clouds are the order of centimetre. In the cases
of the building and trees captured by the Mensi GS200,
registration is successful as indicated by the registration
error, e, despite the difference of the point spacings of two
point clouds being about the order of 10cm and the pres-
ence of many trees, which hinders the registration of the
point clouds.

ni k i t € d1
no (sec) (m) da
Cube 2640 40 7 3.0 0.000040 0.11P
c=0.0 4048 0.118
Cube 2640 40 39 210 0.00915 0.119
c=0.01 4048 0.118
Cube 2640 40 39 210 0.0267 0.11p
0 =0.03 4048 0.118
Cube 2640 40 39 16.0 0.0504 0.119
o =0.06 4048 0.118
Ayuthaya | 39268 30 49 62.0 0.0235 0.043
4393 0.061
building | 139665 10 49 323.0 0.0388 0.194
(2+1) 217377 0.361
building | 139665 10 49 602.0 0.0238 0.194
(2+3) 325870 0.371

Table 2: Results of experiments with simulated and real
point clouds. n; is the total number of points of point
cloud C*. k andi are the numbers of the neighbourhood
of a point and total iterations, respectivelyande are the
execution time and the registration errat; is the point
spacing which is defined as the average distance of a point
from its neighbourhood.

4 CONCLUSION

'\ method for the registration of two partially overlapping
goint clouds from different locations without good a pri-
ori alignment was proposed and tested with a simulated
point cloud with different levels of Gaussian noise and two
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