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ABSTRACT

Terrestrial laser scanners provide a three-dimensional sampled representation of the surfaces of objects resulting in a very
large number of points. The spatial resolution of the data is much higher than that of conventional surveying methods.
Since laser scanners have a limited field of view, in order to obtain a complete representation of an object it is necessary
to collect data from several different locations that must be transformed into a common coordinate system. Existing
registration methods, such as the Iterative Closest Point (ICP) or Chen and Medioni’s method, work well if good a priori
alignment is provided. However, in the case of the registration of partially overlapping and unorganised point clouds
without good initial alignment, these methods are not appropriate since it become very difficult to find correspondence.
A method based on geometric primitives and neighbourhood search is proposed. The change of geometric curvature and
approximate normal vector of the surface formed by a point and its neighbourhood are used to determine the possible
correspondence of point clouds. Our method is tested with a simulated point cloud with various levels of noise and two
real point clouds.

1 INTRODUCTION

The registration of point clouds is one of the important
steps in processing data from laser scanners. Excellent
reviews about the existing methods can be found in Har-
alick et al. (1989) and Rusinkiewicz and Levoy (2001).
To the best of the authors’ knowledge, a method for the
registration of partially overlapping point clouds from ter-
restrial laser scanners without good a priori alignment has
not developed yet. The most significant reason is that it is
very difficult to recover the correspondence between point
clouds without good a priori alignment. In this paper a
method for the registration of two partially overlapping
point clouds measured from different locations using geo-
metric primitives and neighbourhood search without good
a priori alignment is proposed. Sharp et al. (2002) pro-
posed a method based on Euclidean invariant features: cur-
vature, second order moments, and spherical harmonics.
Our method is based on the change of curvature rather
than curvature and is a thresholding method such as Zhang
(1994).

The Iterative Closest Point (ICP) algorithm is a reliable and
popular method for point cloud registration (Horn, 1987,
Besl and McKay, 1992). Horn developed an adjustment
method for recovery of unknown transformation parame-
ters with knowledge of the correspondence of point clouds.
Besl and McKay developed the ICP using Horn’s algo-
rithm in conjunction with a neighbourhood search algo-
rithm. If approximate a priori information about the point-
to-point correspondence of two point clouds is provided,
then the ICP can iteratively recover the rigidbody transfor-
mation that aligns two point clouds. It converges mono-
tonically to a local minimum, which may or may not be
the global minimum, and all points in a point cloud are
assumed to have correspondence in the other cloud.

Suppose that there are two point clouds,C1 andC2, and
they are measured from different locations. A point cloud
C1 has a set ofNC1 points,{p1

1, · · · , p1
NC1

}. Bold and nor-
mal letters represent a vector and a scalar, respectively. Let
||p1

i −p2
j || be the distance between pointp1

i of point cloud
C1 andp2

j of C2. Let CP (p1
i , C

2) be the corresponding
point inC2 of a pointp1

i . The ICP algorithm can be briefly
described as follows.

1. Assume that the point inC2 closest to a point inC1

is the corresponding point.

2. Find the correspondence of two point clouds,
C = ∪NC1

i=1 {Titer=k(p1
i ), CP (Titer=k(p1

i ), C
2)},

whereC is the set of all pairs of corresponding
points,Titer=k is the transformation of thekth
iteration andTiter=0 is an initial transformation.C
may or may not be one-to-one matching.

3. Compute the new transformationTiter=k+1 that
minimizes the sum of square distances between
corresponding point pairs, i.e.

niter=k∑

i=1

||p1
i −CP (Titer=k(p1

i ), C
2)||2

whereniter=k is the number of sample inkth
iteration.

Since the ICP is based only on a local search algorithm
to recover correspondence between two point clouds and
it minimises the sum of square distances between possible
corresponding points, it converges slowly sometimes and
tends to fall into local minima.



Another algorithm is Chen and Medioni’s that is a point-
to-surface algorithm whereas the ICP is a point-to-point al-
gorithm (Chen and Medioni, 1992). It minimises the sum
of the square distances of a point to its corresponding sur-
face. This algorithm is generally faster than the ICP. How-
ever, the point clouds need to be more closely aligned to
each other initially than with the ICP.

The ICP, its variants, and Chen and Medioni’s algorithm
assume that the closest point in point cloudC2 is a good
estimate of the correct corresponding point inC1. If two
point clouds are not approximately aligned using a pri-
ori georeferencing information, this assumption is not cor-
rect. Although initial alignment can be provided from
other means like surveying of the laser scanner locations, it
is not always possible. Finding corresponding points and
good registration of the point clouds are more difficult if
they only partially overlap. In addition, these adjustment
algorithms provides a closed-form solution, i.e. no itera-
tion, which is one of reasons for their popularity, although
closed-form methods can not provide statistical informa-
tion of individual parameter of rigidbody transformation
as conventional least square methods do.

2 PROPOSED METHOD

Geometric primitives, such as surface normal vector, cur-
vature, and the change of curvature and so on, may provide
additional and useful information to recover the correspon-
dence of two point clouds. A method to find the correspon-
dence of two point clouds using geometric primitives and
a local search algorithm is proposed. Geometric curvature
and the change of curvature is invariant to three dimen-
sional rigid motion and surface normal vector can be ro-
tated according to the computed transformation by Horn’s
or Chen and Medioni’s algorithm. The angle between nor-
mal vectors and the difference between the changes of cur-
vature of a point and its corresponding points are our crite-
ria for selection of corresponding point pair.

The angle between approximate normal vectors ofp1
i and

p2
j can be expressed as

θ(p1
i ;p2

j ) = cos−1(np1
i
· np2

j
), (1)

wherenp1
i

andnp2
j

are the respective approximate normal
vectors of the points. The difference in changes of curva-
ture between two points can be written

β(p1
i , p

2
j ) = |Mcc(p1

i )−Mcc(p2
j )|, (2)

whereMcc(p1
i ) andMcc(p2

j ) are the approximate changes
of curvature ofp1

i andp2
j . The normal vector of a point is

estimated by covariance analysis of the point and its neigh-
bourhood points and the change of curvature is estimated
as the ratio of eigenvalues of the covariance matrix.

2.1 Normal vector estimation

The normal vector of a point is estimated by one of the
eigenvectors of the covariance matrix of a point and its

neighbourhood. The covariance of a point and itsk neigh-
bour points,COV (p1

i ), is expressed as

COV (p1
i ) =

1
k

(p1
i − pcent

neighbour{j=1···k,p1
i })

T

(p1
i − pcent

neighbour{j=1···k,p1
i }) (3)

wherepcent
neighbour{j=1···k,p1

i} is the cetroid ofp1
i and itsk

neighbourhood points.COV (p1
i ) is a 3 × 3, real, pos-

itive, and semi-definite matrix, the eigenvalues of which
are always greater than or equal to zero. The eigenvec-
tor of the minimum eigenvalue is the approximate normal
vector of the surface formed byp1

i and itsk neighbour-
hood points (Hoppe et al., 1992). The other eigenvectors
are the tangential vectors of the surface. If the minimum
eigenvalue is close to zero, then the surface consisting of
a point and its neighbourhood is flat. This method is the
first order approximation of the normal vectors of the sur-
face. If the level of noise is large or the number of points
in the neighbourhood,k, is too small, it could provide an
incorrect normal vector.

2.2 Change of geometric curvature estimation

The change of geometric curvature at a point can be esti-
mated from the eigenvalues of the covariance matrix. Each
eigenvalue represents the spatial variations along the direc-
tion of the eigenvector. Letλi andνi be the eigenvalues
and eigenvectors of the covariance matrix,COV (p1

i ), with
the condition ofλ1 ≤ λ2 ≤ λ3. The change of curva-
ture is a parameter of how much the surface formed by a
point and its neighbourhood deviates from the tangential
plane formed byν2 andν3. The ratio of the minimum
eigenvalue and the sum of the eigenvalues approximates
the change of geometric curvature,

Mcc(p1
i ) =

λ1∑3
i=1 λi

. (4)

Additionally, the geometric curvature,Mcurv(p1
i ), of a

point can be estimated by the normal vectors of the point
and its neighbourhood

Mcurv(p1
i ) =

1
k

k∑

j=1

||np1
i
− nneighbour{j,p1

i}|| (5)

wherenp1
i

andnneighbour{j,p1
i } are the normal vectors of

p1
i and itsjth neighbourhood, (Linsen, 2001). The change

of curvature,Mcc(p1
i ), can be expressed

Mcc(p1
i ) =

1
k

k∑

j=1

|Mcurv(p1
i )−Mcurv(p1

neighbour{j,p1
i })|.

(6)

Both methods can provide a good approximation to the
change of curvature. However, the quality of estimation
depends on how well the neighbourhood points are dis-
tributed. Since our algorithm is for the registration of unor-
ganised point clouds, there is no guarantee that every point



of a cloud has a set of evenly-distributed neighbourhood
points. This problem can be overcome by using the angle
criterion between the neighbour points as Linsen (2001)
did for the triangulation of point clouds. Furthermore, we
could use a method in which each point has different num-
ber of neighbourhood pairs. The angle criterion has been
used in this paper but using different number of neighbour-
hood for each point was not implanted. Therefore, a larger
number of neighbourhood points has been used.

2.3 Algorithm description

The amount of data to process in order to find correspon-
dence is very large, which limits the robustness of regis-
tration algorithms. The higher curvature points may have
more valuable information than the lower curvature points
since they could be edges or corners. Therefore, in the
early stages of iteration, we only take into account higher
curvature points and then, as iteration proceeds, lower cur-
vature points also are included to improve the registration.
Our method for the registration of three-dimensional, par-
tially overlapping and unorganised point clouds without
good a priori alignment can be briefly described as follows:

1. Find thek neighbourhood points of every point in
C1 andC2. Estimate the geometric primitives of the
points.

2. Take initial sample points,p1
{1,··· ,niter=i}, whose

change of curvature is greater thanT iter=i
sample where

niter=i is the number of sample inith iteration.

3. Find corresponding points ofp1
{1,··· ,niter=i}. p2

j is the

corresponding point ofp1
i if

θ(p1
i , p

2
j ) ≤ T iter=i

normal

β(p1
i , p

2
j ) ≤ T iter=i

cc

whereT iter=i
normal andT iter=i

cc are the thresholds for the
angle between the normal vectors and the difference
in the changes of geometric curvature between the
corresponding points, respectively.

4. Calculate the approximate transformation,Titer=i,
and transformC1. Rotate the normal vectors of all
points ofC1 as well.

5. Update the threshold values in order to apply a more
strict criterion for determination of possible corre-
sponding points as follow.

T iter=i+1
normal = T iter=i

normal −∆Tnormal

T iter=i+1
cc = T iter=i

cc −∆Tcc

T iter=i+1
sample = T iter=i

sample −∆Tsample

6. Calculate the registration error,εiter=i, which is de-
fined as the rms distance of points and their cor-
responding surfaces in our method. Ifεiter=i is
greater than threshold, then go to step 2. Other-
wise stop the registration. In addition, ifεiter=i is

smaller thanTεCM , for example, the average distance
of a point from its neighbourhood, then Chen and
Medioni’s method is used since it converges quickly
than Horn’s algorithm does if the point clouds are
close (Rusinkiewicz and Levoy, 2001). Otherwise
Horn’s method is used.

If the initial alignment is close to the correct one, only a
small number of points need to be searched. Otherwise
a large number of points must be searched in order to
find correct correspondence of sample points. The opti-
mal number of points being searched could be evaluated
from the statistical properties of the distribution of regis-
tration error metric (Zhang, 1994). However, the distance
distribution of the corresponding points is usually not a
unimodal Gaussian but bimodal or multimodal distribu-
tions. Furthermore, good initial alignment is not assumed
in the proposed method, it is difficult to remove outliers in
the early stages of iteration. Therefore, a large number of
points need to be searched in order to determine the corre-
spondence of two point clouds.

2.4 Scale of selected corresponding points

The scale of selected corresponding points is usually as-
sumed to be unity and this assumption is reasonable in
most cases (Horn, 1987). It can be also used as the error
metric to represent the quality of registration (Crosilla and
Beinat, 2002). The scale can be interpreted as a parameter
for the quality in the determination of the corresponding
points. For example, if we have incorrect correspondence
information, then the scale is not unity. The scale factor in
kth iteration,siter=k, can be expressed as

siter=k =
∑niter=k

i=1 p1
i · Titer=k(CP (p1

i , C
2))∑niter=k

i=1 ||Titer=k(CP (p1
i , C

2))||2 (7)

whereTiter=k is the calculated transformation of thekth
iteration,CP (p1

i , C
2) is the position vector of the corre-

sponding point ofp1
i , andniter=k is the number of samples

in the kth iteration. Although the scale of corresponding
points is unity, it does not guarantee that we have one-to-
one matched correspondence. If the scale is much greater
or smaller than unity, the calculated translation could be
incorrect.

2.5 Threshold values

The list of threshold values used in the proposed method
is shown in Table 1.T iter=0

cc and∆T are the most impor-
tant and critical thresholds. The other threshold values are
not critical to the success rate of the proposed method, al-
though they affect the robustness of the registration. It is
difficult to state explicitly which values are the optimal val-
ues since they depend on dataset. Currently we are work-
ing on finding the optimal and generalized expressions for
these thresholds. Our suggestions ofT iter=0

cc and∆T from
the experiences with the proposed method are

T iter=0
cc =

< M1
cc > + < M2

cc >

2
(8)

∆Tcc = 2
√

< M1
cc >2

rms + < M2
cc >2

rms (9)



threshold description

k number of neighbourhood

T iter=0
sample initial sampling threshold

for the change of curvature

T iter=0
cc initial threshold for the difference

in changes of curvature

T iter=0
normal initial threshold for the angle

between normal vectors

∆Tsample increment forT iter=k
sample

∆Tcc increment forT iter=k
cc

∆Tnormal increment forT iter=k
normal

TεCM threshold for starting Chen and Medioni’s method

Tε threshold for stopping the registration

Table 1: The threshold values are used in the propose
method.

where< M i
cc > and< M i

cc >rms are the mean and rms
of the change of curvature ofCi.

3 EXPERIMENTAL RESULTS

Three examples were tested with the proposed method:
a simulated point cloud and two real point clouds cap-
tured with two different laser scanners. All datasets have
partially overlapped. The proposed method was imple-
mented in C++ and tested on a PC with Intel Pentium III
450MHz and 516MB RAM. Our program is not yet opti-
mized so there is room for improvement in terms of pro-
cessing speed. For neighbourhood search, we used a kd-
tree search library developed by Arya et al. (1998) and
LAPACK (1999) was used for covariance analysis.

3.1 Simulated data

Figure 1: Before the registration of the point clouds of the
parts of a cube

The simulated point clouds are parts of a cube, having di-
mensions of 1m×1m×1m, and partially overlapped. The
number of points in the point clouds are 2640 and 4048.
One point cloud was translated with (x,y,z)=(0.2m, 0.1m,
0.5m) and rotated 30◦ around z-axis from registered state
as shown in Figure 1. Zero-mean Gaussian noise with var-
ious standard deviations was added independently to each
point of the point clouds. In the case of zero standard de-
viation, i.e. no noise, all points in the overlapping region
have exact corresponding points.

Many different error metrics have been defined to mea-
sure how well two point clouds are registered (Simon,

1996, Maas, 2000, Rusinkiewicz and Levoy, 2001). These
include the change of rotation angles or translation, the
distances between corresponding points, the distances be-
tween points and their corresponding surfaces, and so on.
Whether the registration error,ε, is reasonable, too opti-
mistic or pessimistic, depends mainly on the number of
outliers that are used to register the point clouds. In addi-
tion, the redundancy of correspondence, the spatial density
of data and the percentage of the overlapping regions are
important factors. Two parameters that represent the er-
ror of registration were measured: the distances between
corresponding points and the distances of points from their
corresponding surfaces. Figure 2 shows these measures
for the simulated dataset. As expected, more iterations
are needed in order to minimise registration error, as more
noise is added to the point clouds. The magnitude of the
distances between corresponding points is about four times
greater than the distances between points and their corre-
sponding surfaces. It means that the success rate to find the
correct point-to-point correspondence is much smaller than
that to find the correct point-to-surface correspondence.
This is not surprise if we consider that the test point clouds
are parts of a cube, i.e. most of overlapping regions of the
point clouds possess low curvature area. Therefore, we use
the distance between point and its corresponding surface as
the error metric of our method. Although we use this as er-
ror metric, the distance between corresponding points will
still provide good information to increase the efficiency of
our algorithm since we may remove outliers based on that
information.

The scales of selected corresponding points in each itera-
tion of the registration of simulated point clouds with var-
ious standard deviations of zero-mean Gaussian noise are
shown in Figure 3. In early stage of registration, scales are
much greater than unity since we do not have good a priori
alignment. After about five iterations, all scales of the dif-
ferent levels of noise become approximately unity, which
is a good indication of success in finding correspondences.
However, there are some differences between the scales in
the presence of noise as shown in Figure 3(b).

3.2 Real point clouds

The second example is the registration of two real
point clouds from a Buddha statue (Ayuthaya, Thailand),
scanned with Riegl LMS-Z210 that has angular sampling
interval is 0.018◦ (Riegl, 2004). Figure 4 shows the point
clouds as before and after registration using our method.
The third example is a scene containing a building and
trees measured by Mensi GS200 whose angular sampling
interval is 0.0025◦ (Mensi, 2004). In this example, three
point clouds are registered as shown in Figure 5.

The results of registration are listed in Table 2. In case of
the simulated data without noise, the registration error af-
ter seven iterations is 0.04mm. In the cases of simulated
point clouds with zero-mean Gaussian noise, registration
errors are similar with the standard deviations of Gaussian
noise. The execution time ofσ = 0.06 is faster than the
other cases. All registration errors of both simulated and
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Figure 2: Two kinds of registration errors of simulated
point clouds with different levels of noise.σ is the stan-
dard deviation of zero-mean Gaussian noise.
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Figure 3: The scale of selected corresponding points in
each iteration of the registration of simulated point clouds
with zero-mean Gaussian error. (b) is the magnified figure
of (a).
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Figure 4: A Buddha statue scanned by Riegl LMS-Z210.
(a) and (b) are before the registration. (c) and (d) are after
the registration.

real point clouds are much smaller than the point spacings
of point clouds defined as the average distance from a point
from its neighbourhood. The registration errors of the two
real point clouds are the order of centimetre. In the cases
of the building and trees captured by the Mensi GS200,
registration is successful as indicated by the registration
error,ε, despite the difference of the point spacings of two
point clouds being about the order of 10cm and the pres-
ence of many trees, which hinders the registration of the
point clouds.

n1 k i t ε d1

n2 (sec) (m) d2

Cube 2640 40 7 3.0 0.000040 0.119
σ = 0.0 4048 0.118

Cube 2640 40 39 21.0 0.00915 0.119
σ = 0.01 4048 0.118

Cube 2640 40 39 21.0 0.0267 0.119
σ = 0.03 4048 0.118

Cube 2640 40 39 16.0 0.0504 0.119
σ = 0.06 4048 0.118

Ayuthaya 39268 30 49 62.0 0.0235 0.043
4393 0.061

building 139665 10 49 323.0 0.0388 0.194
(2+1) 217377 0.361

building 139665 10 49 602.0 0.0238 0.194
(2+3) 325870 0.371

Table 2: Results of experiments with simulated and real
point clouds. ni is the total number of points of point
cloudCi. k andi are the numbers of the neighbourhood
of a point and total iterations, respectively.t andε are the
execution time and the registration error.di is the point
spacing which is defined as the average distance of a point
from its neighbourhood.

4 CONCLUSION

A method for the registration of two partially overlapping
point clouds from different locations without good a pri-
ori alignment was proposed and tested with a simulated
point cloud with different levels of Gaussian noise and two



(a)

(b)

Figure 5: A building and trees scanned by Mensi GS200.
(a) and (b) are before and after the registration, respec-
tively.

real point clouds from two different scanners. The distance
from a point and the corresponding surface was used as the
error metric of registration. The registration errors for real
point cloud registration were the order of centimetre and
that of a simulated dataset were similar with the standard
deviations of zero-mean Gaussian noise.

Several ways are possible to improve our method. In terms
of execution times, we can modify our method to use dif-
ferent neighbour points for each point depending on the
distribution or the area of the region covered by the point
and the neighbourhood. Regarding threshold values, the
properties of the threshold values used in the proposed
method can be investigated in order to provide criteria for
the selection of the optimal threshold values. Furthermore,
corner points of point clouds can be detected using geomet-
ric primitives that have used in the proposed method and
they can be used as initial samples for the registration. In
addition, the scale of corresponding points may be a good
indication of the quality of sampling for registration.
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