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ABSTRACT : 
 
In surveying missions the volume and the weight of the surveying equipment are often a problem. In a previous work, the A. 
proposed what he called blind traverse for control network assessment in close-range photogrammetry. It is a procedure that forms 
the so-called topographic models, linking together a couple of Theodolite Stations by their observations to the common points, 
similarly to what happens in photogrammetry with the photogrammetric models. The theodolite relative orientation has three +one 
unknown parameters, estimated by means of co-planarity conditions, observing a minimum of three common points. When all the 
possible couples of TS are formed, they are oriented in an absolute reference system with a procedure similar to independent model 
adjustment in aerial triangulation (S-transformations). The advantage consists in the possibility to avoid to link together the TS with 
the reciprocal observations, allowing to reduce the amount of needed equipment by more than 50% in volume and weights (from 
three tripods to one, etc). The term “blind” refers to the null visibility among TS. In the present paper, the analogy between 
photogrammetry and surveying is extended to block bundle adjustment. The angular observations of a theodolite stations are similar 
to an image bundle. Compared to the photogrammetric bundle, the unknown parameters for any single TS, are reduced to four only, 
say the three co-ordinates of the TS and the bearing of zero reading of the horizontal circle. The fundamental equations are the 
horizontal direction and vertical one. Since the approximated values of the co-ordinates for the unknown points are needed, they are 
supplied by the previous stage by the blind traverse. The benefits are again the independence of the theodolite stations and in 
comparison with the blind traverse a more adequate stochastical model and a better accuracy. A computer adjustment programme has 
been written and tested. The A. called it 3Dom, meaning 3d adjustment and freedom in the lay out of the control traverse. As an 
example the control network of the Guggenheim Museum in Bilbao is shown. The adjustment takes place in two steps: computation 
of the approximate co-ordinates by co-planarity (the blind traverse), and final adjustment by 3Dom.  
 
 

 
1. THE TOPOGRAPHIC MODEL BY CO-PLANARITY 

 
In previous papers, the A. introduced the so-called 
“topographic models”, (Fangi G, 1999). They consist in the 
following: taking advantage of the analogy with the 
photogrammetric model, the surveying observations of two 
(or more) theodolite stations, are coupled together by means 
of the co-planarity condition to the common aimed points.  
 
 

 
Figure 1 – The topographic model by intersection- The three 

coplanar vectors b,  r1  and  r2.. 
 

When the topographic models are formed, they are oriented 
in the reference system, with a technique similar to the one of 
the aerial triangulation, say with the S-transformation. 
Obviously at least one distance is needed to correctly 
dimension the network. No approximate value is needed 
except the one for the zero bearing of the horizontal circle. 

Therefore it is very advisable to roughly orientate the 
theodolite horizontal circle with the help of a magnetic 
compass. The benefit is the possibility to get rid of the 
reciprocal observations between adjacent stations, thus 
enabling a remarkable reduction of the needed equipment in 
terms of weight and volume. 
 

 
 

Figure 2 – Analogy theodolite-photogrammetric bundle: x 
and y image coordinates are equivalent to the angular 
measurements l and φ 
 
Now the analogy between photogrammetry and surveying 
can be further extended to the block adjustment. A theodolite 
station can be compared to a photogrammetric bundle. In the 
three-dimensional adjustment, the orientation parameters per 
station are four compared to the six of the photogrammetric 
bundles. They are the three station co-ordinates X0, Y0, Z0 
and the zero bearing  θ0  of the horizontal readings (figures 2, 



3). The advantages are again the freedom in the selection of 
the theodolite stations, made independent from each other, as 
long as they observe a certain number of common points, like 
in photogrammetry no image is normally visible in any other 
image. The adjustment of a control network is similar then to 
a photogrammetric block bundle adjustment. 
 
 

2 THE OBSERVATION EQUATIONS 
 
Like in photogrammetry where the observations are the two 
image coordinates x and y per point, (that are indeed 
directions from the projection centre), the theodolite angular 
observations are the horizontal direction and the zenital 
angle. In analogy with the co-linearity equations, we can set 
up two equations for the two direction, the horizontal one l 
and the vertical one φ.  One can add, if it is the case, the 
equations of the measured distances. The surveyor is then 
free to place the theodolite where he likes. He needs only one 
tripod and the instrument only, and no more the complete 
traversing equipment. The survey can be greatly speed up.  
The disadvantage is that this procedure is more sensitive to 
gross errors that are more difficult to find and eliminate. In 
addition it can be difficult to estimate the approximated value 
of the co-ordinates for the unknown points. For this reason it 
is recommended to use the co-planarity to estimate the 
approximate coordinates of the unknown points. For any 
station it is very useful to measure the magnetic bearing by 
means of a compass, in order to get an approximate value of 
the bearing.  
 
 

2.1 The Equation of the horizontal direction 
 
The relationship that links the co-ordinates of the points A 
and B and the bearing θAB, is:  
θAB=arctg((XB-XA)/(YB-YA)).     (1) 
 

 
 

Figure 3 – Zero bearing θA0  and horizontal reading lOB 
 
The discrepancy is the difference between the observed 
distance  θAB  and its approximated value θ°AB. Normally the 
bearing is not measured, since the direction of the Y axis is 
unknown; instead of it we measure the direction lOB that is 
linked to the bearing by :  lOB+ θA0 =θAB  (2) 
Setting: XA=X°A+dXA,YA=Y°A+dYA, ZA=Z°A+dZA, 
XA=X°A+dXA, YB=Y°B+dYB,  ZB=Z°B+dZB,  (3)  
the last equation of the bearing becomes (after its 
linearisation about the approximate value X°,Y°,Z°) then the 
so-called equation of direction: 
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To the traditional unknown co-ordinates another one is 
added, the so-called bearing of the origin θAB.  
 
 
 

2.2 The zenital angle 
 
The height ZP of a point aimed from the station S of elevation 
ZS is given by: 
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  (5) 
deriving the zenital angle  φSP , we get: 
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      (6) 
with  k   refraction coefficient, Zm=(ZP+ZS)/2  mean height, R 
radius of the local sphere, hS instrumental height in S , ∆mP   
height of the target in P 
Its linearisation, neglecting the term  Zm/R, brings to: 
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with the position 
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(Mussio, 1982). The unknowns are the variations of the 
coordinates dX, dY, dZ for the station S and for the aimed 
point P (6 in total). With this equation we take into account 
the existing correlation between the three coordinates. The 
correlations are strong, and then it is useful to consider them, 
in the case of local networks and of technical networks, 
where  the visual directions are often very inclinated. The 
estimate of the variance matrix of the unknowns is then more 
correct.  
Provided that all the angular observations have the same 
accuracy, the weight of the observations will inversely be 
proportional to the square distance to the observed point.    
 
 

2.3 The equation of the distance 
 
Between two points S and P on the X, Y, Z plane, we can 
measure the slope distance dSP . The equation of the distance, 
is    then dSP=((XP-XS)2+( YP-YS)2+( ZP-ZS)2)0.5  (9) 
Its linearisation brings to: 
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The normal system so formed will be singular since it is 
necessary to define a system.    
To be able to determine the rank deficiency, it is necessary to 
keep in mind that in an altimetric problem it is equal to one, 
(one vertical translation), in a planimetric problem it is equal 
to three (two horizontal translations and one rotation in the x 
y plane). In a spatial problem the rank deficiency is in general 
equal to six, however in this case for the nature of the 
observations it reduces again to four (three translations and a 
rotation in the plain xy). Therefore a vertex and the direction 
to a second vertex have to be kept fixed.   
 
 
 



3 THE APPROXIMATE CO-ORDINATES OF 
THE POINTS 

 
The adjustment procedure requires the approximate value of 
the co-ordinates of the unknown points. They can be obtained 
in any possible way. One of the possible ways is then the 
procedure analogue to the aerial triangulation adjustment by 
independent models (Fangi, Thessalonic, 1999). Even with 
this computation the reciprocal visibility between the 
adjacent theodolite stations is not required. The computation 
takes place in two steps: 
1. Formation of the models: By means of the co-planarity 
algorithm the three orientation parameters of one theodolite 
station with respect to a next one, are estimated. Then, by 
intersection of lines in space the relative co-ordinates of the 
intersected points are computed. Similarly to 
photogrammetry, the locus of the intersected points can be 
defined model, that, differently from the photogrammetric 
one, is already vertical, for the intrinsic nature of the geodetic 
measurements. There are two types of models: those formed 
by three vertices (three-section) and those formed by two 
models (bi-section). The computer programme tries first to 
form the trisected models, then the bisected models, 
comparing the observations of one station with all the other 
possible ones. 
2.The final co-ordinates of the model points are worked out 
by means of an absolute orientation (four + one  parameters). 
The ground co-ordinates of two points at least are then 
needed. When the models to be oriented are more than one, 
they can be linked with to procedure similar to the aerial 
triangulation with independent models. One model is 
equivalent to a traverse side. Compared to the triangulation in 
photogrammetry, the unknown parameters are less, all the 
equations are linear, and no iteration is needed. 
No approximate value for any unknown parameter and 
coordinate is needed except the bearing of the zero reading 
for any theodolite station. It is the useful to to get it with a 
magnetic compass.  
 

 
 
4 THE COMPUTER PROGRAMME FOR 

ADJUSTMENT: 3Dom 
 
A computer programme has been written called 3Dom (the 
name means three-dimensional adjustment, while the sound 
of the pronunciation is equal to freedom: the freedom to place 
the theodolite wherever it is useful and not where it is 
required to be visible from the other theodolite positions, 
freedom on the surveyor to travel with the least equipment). 
The programme is written in Fortran Power Station. It uses 
the Cholewky algorithm for triangularisation, solution of the 
normal system and inversion of the normal matrix. The 
design matrix is reduced, and coupled with a matrix of 
addresses (Mussio, 1984). In addition to the numerical report 
3Dom has a graphical output, preparing a file with the 
extension .dxf. The ellipsoids of errors (Mussio, 1984) are 
drawn point-wise, along 20 meridians. The accuracies of the 
measuring instruments, theodolite for angles and 
distantiometer for distances, can be input.  
 
 

5 THE CONTROL NETWORK OF THE 
GUGGENHEIM MUSEUM IN BILBAO 

 
In the month of April 2004 a control network for the 
photogrammetric survey of the museum Guggenheim (figure 
4)  in Bilbao (Spain) has been set up. It is composed by  

- 17 theodolite stations  
- 751 points  

We didn’t make use of any target, choosing only natural 
points, taking advantage of the particular nature of the 
exterior panelling, composed by metallic plates of titanium, 
with very sharp edges (figure 5). The building is then an ideal 
environment to set up a very dense and accurate topographic 
network in short time.  
 
 

 
 

Fig. 4 –The Guggenheim Museum in Bilbao.  
-  

From any traverse vertex the surroundings vertices have been 
observed with the help of a rod with a reflecting prism. A 
portable GPS Pathfinder Casio, with the accuracy of 10 m has 
been useful to get approximate positioning. In order to be 
able to observe the points of the top of the roof of the 
building, photographic images have been shot from the hill 
placed in the northern side of the museum. For the good 
orientation of the images taken with long focal length lenses, 
it is necessary to know the projection centre co-ordinates 
(Fangi, 1990, 1991). Therefore three theodolite stations have 
been placed rather far away from the museum, at a distance 
ranging from 500 m to 1.2 km. These stations have been 
linked to the net by resection in space. In this situation, with 
narrow angle resection, (figure 7), the geometrical 
configuration is poor and weak. Normally the determination 
leads to high values of variances of the co-ordinates. 
 
 

 
 
Figure 5 – The exterior panelling in tiles of titanium helped in 
the selection of the observed point coincident with the 
vertices and with the edges of the buildings 
 
Among the 751 observed points, some of them have been 
surveyed by irradiation (60) and mostly by intersection (691). 
We used a reflector-less theodolite. In spite of that, the 
remarkable distances did not allow the direct measure of the 
distance for mostly of the points, and we had to use the 
intersection to get the point coordinates.  
 
 



4.1 The Model Formation 
 
The final adjustment with 3Dom has been preceded by the 
computation of the approximate co-ordinates with the model 
formation. The possible models were the combination of 17 
coupled three by three (17/3)=680 and the combination of 17 
coupled two by two (17/2)=136 , in total 816 possible 
topographic models could be formed; in reality only 27 of 
have been created by tri-section (three vertices), the 
remaining 29 by bi-section (two vertices). All of them have 
been oriented in the same reference system keeping fixed two 
vertices of the traverse. In this way the approximate co-
ordinates of the points have been computed. In the following 
table the comparison between the co-ordinates by blind 
traverse and those got from the final 3Dom adjustment. 
 
Table 1 –Model Co-ordinates /Vs 3Dom co-ordinates (m) 
1)  sx =  .062    sy = .110    sz   = .0.034 
2)  sx2=  .098    sy2= .140    sz2= .0.058 
3)  sxa=  .074    sya= .129    sza= .0.0.92 
1) sx = sample mean 
2) sx2=RMS value 
3) sxa=mean absolute values 
 
In figure 6 the differences are shown, amplified 200 times. It 
is evident a systematic effect.  
 

 
Figure 6. – The differences (amplified 200 times) between 
the model co-ordinates and 3Dom co-ordinates-  
 
 

4.2 The final Adjustments: 2+1 vs 3Dom 
 
Two different types of adjustment have been performed, one 
with the traditional procedure where the planimetric 
computation takes place before the altimetric one iteratively. 
The used software was RETE (Fangi, 1996). The second 
adjustment by 3Dom software after removing all the 
reciprocal observations between the traverse vertices. 3D 
adjustment has the disadvantage to require more computer 
memory compared with 2+1 adjustment.  
Due to the limited capacity of the computer Ram (512 
Mbytes), all the points have been divided in three groups and 
the computation performed separately, taking some common 
points like the station points and those points with the 
maximum frequency. The features of the three adjustment 
blocks are shown in table 2 
 
Table 2 – The three groups of adjustment 

 N points Equations Unknown Redundancy
Group 1 128 812 404 408 
Group 2 215 875 648 227 
Group 3 278 1234 838 396 

 

In table 3 the comparison of the sd. of the point co-ordinates 
by 2+1 adjustment with 3Dom adjustment. The low accuracy 
of the co-ordinates adjusted with traditional computation, can 
be explained with the fact that the theodolite stations are 
poorly linked together by reciprocal observations, not using 
the suitable equipment.  
 
 

 
Figure 7 - The complete network 

 
 

 
Table 3 – Comparison RMS value for sd of all points 
RMS value (mm) σX σy σz 

2+1 adjustment 34 24 14 
3Dom 2 2 1 
 

 
Figure 8.  The central part of the control network of the 

Guggenheim museum in Bilbao with the ellipsoids of errors 
 
The accuracy improves especially for narrow angle resection 
in space. In table 3 the sd. of the adjusted co-ordinates of far 
station point are shown.  
Sd of the co-ordinates of the Far Stations  – Comparison 
traditional 2+1 adjustment /vs. 3Dom adjustment (m) 
 
 
 



 
 
Figure 9 – A detail of the control network with the ellipsoids 

of errors 
 

 
Figure 10 – The 756 points and 26 edges are visible, on the 

left the broken tower 
 

Figure 11 – The network superimposed to an existing map   
 
Table 4-  
Traditional adjustment σX    σY σZ 

14       ± 0.312    ± 0.241   ± 0.030   
15       ± 0.342    ± 0.120   ± 0.021   
16       ± 0.070    ± 0.051   ± 0.009   

3Dom Adjustment      σX      σY            σZ 
14   ±   0.014   ±  0.009    ± 0.016 
15   ±   0.018   ±  0.012    ± 0.035 
16   ±   0.004   ±  0.003    ± 0.001 
 

For resection in space the traditional adjustment gives the 
accuracy in the order on 0.1-0.3 m while the 3Dom 
adjustment brings the accuracy in the order of cm.  
The computation has been performed in a local reference 
system. After then the network has been adapted to the local 
datum.  
 

5 CONCLUSIONS 
 
The sd of the coordinates of the points are always inferior to 
1 cm and in the 90% of the inferior cases to 0.5 cm. The s0 of 
the angular observations results 44 cc; in general the measure 
of the instrumental heights have strong influence on the 
genesis of the s0. In the case of the 3dom adjustment with the 
independence of the theodolite stations, possible instrumental 
errors of measure of the height only have influence on the 
elevation of the occupied point and do not propagate.  
The results are better in term of accuracy for the final 
adjusted coordinates compared to the traditional adjustment 
planimetry + altimetry. But the advantages are mainly in 
terms of operational conditions since there is the possibility 
do not to be obliged to inter-visibility between adjacent 
theodolite stations. The disadvantages are on the contrary the 
difficulty to estimate the approximate coordinates of the 
observed points. To find such coordinates the algorithm of 
co-planarity is suitable, avoiding again the constraint of the 
inter-visibility of the stations. 
Finally the proposed procedure has an educational value 
showing the students the differences and the analogies 
between photogrammetry and surveying methods, algorithms 
and procedures.  
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