
ADVANCED INFORMATION EXTRACTION FROM NON-METRIC IMAGES USING 
ADAPTABLE ALGORITHMS EMBEDDED IN A HYBRID ADJUSTMENT 

 
G. Vozikis, H. Kager, P. Waldhaeusl 

 
IPF, Vienna University of Technology, Gusshausstrasse 27-29, 1040 Vienna, Austria 

[gvozikis, hk, pw]@ipf.tuwien.ac.at 
 
 

KEY WORDS: Photogrammetry, Adjustment, Calibration, Parameters, Accuracy, Close Range, Feature, Reliability 
 
 
ABSTRACT: 
 
During the past decades many computer programs have been developed for solving standardized problems in the field of close-range 
photogrammetry. Most of these software packages are designed for common tasks and hence algorithmically not very flexible. When 
facing the problem of dealing with very special, individual cases in photogrammetry, programs with very versatile mathematical 
background and the ability to adopt to very specific situations are needed, e.g. for evaluating a complex traffic accident scene as 
described in this paper. At a street intersection a car was hit sidewards by a motorcycle. The task was to calculate the  deformation 
angle between the upper and the lower section of the fork of the front wheel as precise as possible where a sharp bend occurred 
through the crash. This information would be valuable for the technical expert in order to compute the motorcycle's collision speed. 
Considering that only four of the available non-metric images were useful and that no calibration, control, or interior orientation 
parameters were available, this task became rather complex and scientific. Unfortunately, the image-configuration was very weak 
(bad intersection quality of the rays of tie points) and finding of useable homologous points was restricted to few limited small areas 
in the images. That is also why geometric tying features had to be introduced. Furthermore, to solve and stabilize the block one had 
to employ advanced tools of photogrammetry: shapes (features) in form of planes as well as second order surfaces were introduced. 
In addition, some of the unknowns had to be fictitiously observed. 
 
ZUSAMMENFASSUNG: 
 
Während der letzten Jahre wurden viele Computerprogramme entwickelt, um standardisierte Probleme im Gebiet der terrestrischen 
Photogrammetrie zu lösen. Die meisten dieser Software-Pakete wurden für Alltagsapplikationen erzeugt und sind deswegen 
algorithmisch nicht besonders flexibel. Wenn man sich mit sehr speziellen, individuellen Problemen auseinandersetzen muss, braucht 
man Programme mit einem sehr wendigen und vielseitigen mathematischen Hintergrund, die die Möglichkeit besitzen sich an 
bestimmte Situationen anzupassen, z.B. um ungewöhnliche Fragestellungen bei einem Verkehrsunfall zu beantworten (wie in dieser 
Arbeit beschrieben). Bei einer Kreuzung wurde ein Auto seitlich von einem Motorrad gerammt. Die Aufgabe bestand darin, den 
Deformationswinkel eines Knicks der vorderen Motorradgabel zu berechnen, der während dem Unfall aufgetreten war. Aus dieser 
Information konnte ein Gutachter anschließend die Kollisionsgeschwindigkeit berechnen. 
Es waren vier Amateuraufnahmen vorhanden, aber keine Kalibrierungs- oder Einpassinformation oder Informationen bezüglich der 
inneren Orientierung, daher wurde diese Aufgabe relativ komplex und wissenschaftlich. Leider war auch die Bildkonfiguration 
ziemlich schwach (schlechte Schnittqualität der Strahlen) und das Auffinden homologer Verknüpfungspunkte reduzierte sich auf 
wenige, kleine Regionen in den Bildern. Deshalb mussten geometrische Verknüpfungs- und Passgestalten eingeführt werden. Um 
den Block zu lösen und zu stabilisieren, wurden außerdem erweiterte photogrammetrische Methoden angewandt: Gestalten in Form 
von Ebenen und Flächen zweiten Grades. Zusätzlich wurden manche der Unbekannten fiktiv beobachtet.  
 
 

1. INTRODUCTION 

When facing the problem of evaluating a traffic accident, close-
range photogrammetry was and is the most commonly used 
solution, since it is a well established, proven and accurate 
method. Most of the times the demands are limited and consist 
of the determination (location, extents and orientation) of skid 
marks, the exact location of wreckage, or in computing the final 
positions of the involved vehicles. In general, a number of 
control points (that are visible in the imagery) are accurately 
measured by means of various surveying techniques and are 
needed for the orientation process of the images. Some times 
these images are taken with a metric camera, hence the interior 
orientation parameters (and distortion coefficients) are known, 
which simplifies further processing steps. 
 
The normal procedure begins with the scanning of the 
developed film of the images (if not acquired with a digital 
camera), measuring the coordinates of the fiducial marks 

(metric camera) or the corners of the images (non-metric 
camera) in order to calculate a common interior orientation 
describing the relationship between camera-space and image-
space. 
 
Next task would be to measure tie points. These homologous 
points must be visible in at least two images and are important 
for 'tying' the block. Control points can also be used as tie 
points. Before performing the first adjustment it is important to 
define approximate values for the exterior orientation 
parameters, this can either be done by a manual process, or by 
using control point information. E.g. if four (or more) control 
points are visible in one image the method of Mueller-Killian 
(Kraus 1996) could be applied to get the approximate position 
and orientation of the new image under investigation. When the 
results of the adjustment are accepted, we consider the image-
block as oriented (relation between object and image space 
established), which means that we easily can digitise a point in 
two (or more) images in order to get its coordinates in the 



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX 

global object coordinate system (object reconstruction). This 
system is usually the same as the one in which the control 
points are defined.  
 
In the project  described in this paper we were dealing with 
non-metric images. We did not even know the camera type. No 
control points were measured and very limited information was 
given for scaling the image block. Also the texture information 
in the overlapping areas was not sufficient to measure an 
adequate amount of tie points. And finally, there was no 
information available about the position from which the 
pictures had been taken. 
 
Thus the usual workflow of traffic accident evaluation could not 
be directly applied and was therefore modified (Figure  1). 
 

 
 

Figure  1: Project Flow 
 
 

2. PROJECT DEFINITION 

Four non-metric images depicting a motorcycle with a deformed 
front wheel fork were given (Figure  2a and Figure  2b). No 
control information (control points or orientation 
approximations of the camera positions) were available and 
there was no data available regarding the camera with which the 
images had been taken.  
 

 
Figure  2a: Non-metric image (a) 

 

 
Figure  2b: Non-metric image (b) 

 
The depicted motorcycle was involved in an accident. It had 
crashed frontally into a car’s side. The assessor needed to know 
with what speed the motorcycle had been driving in the moment 
of the collision. The only clues to derive such information were:  
 

• angle α (see Figure  3) of a sharp bend that arose in 
the upper right front fork during the accident.  

• exact range between the front and rear wheel axes of 
the deformed motorcycle! 

 
If this angle and/or range could be precisely computed, a 
technical specialist would be in position to derive the force 
needed to emerge such a break and thus calculate the unknown 
driving speed. 
 

 
 

Figure  3: Bent off wheel fork 
 
Due to the complexity of the project and the limited information 
that was provided, a program with a very versatile mathematical 
background was needed, hence common off-the-shelf software 
products for close range photogrammetry did not seem suitable. 
The employed package should be able to handle hybrid 
adjustment techniques (including fictitious observation 
implementation). So, the project was carried out by using the 
program system ORPHEUS (Kager et al. 2002), which is based 
on the photogrammetric adjustment system ORIENT (Kager 
1995). 
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2.1 Data Preparation 

The small-size negatives (24mmx36mm) were digitised in color 
at 5µm with the VEXCEL ULTRASCAN 5000 scanner. The 
digital images were imported into ORPHEUS and image 
pyramids were computed for faster visualization purposes. 
 
When dealing with non-metric images there are no fiducial 
marks available that can be measured in order to create the 
relation between camera space and image space. Therefore the 
four corners of each image had to be digitised carefully and 
would serve as fiducials. Unfortunately, in most of the images 
the texture and contrast was very poor at the corner regions, 
thus the corner fiducials were measured indirectly. A thorough 
description of this procedure is given in Waldhauesl and Kager 
(1984).  
A three-parameter-model was employed for the transformation 
between camera space and image space since fictitious fiducials 
were used.  
 
At this point the images had been assigned the same interior 
orientation (assuming no refocusing of the camera), which still 
was unknown. So, the next step comprised the initialisation of 
the focal length. It was set to 43mm (= diagonal of the images) 
for the time being, and would be corrected later on through self-
calibration adjustment techniques. The distortion parameters 
were disregarded for the time being and initialised to zero. They 
would also be precisely computed once the whole image block 
had been preliminarily triangulated and an adjustment with self-
calibration could be carried out!  
 
2.2 Datum Definition 

Due to the fact that no control point information was given, two 
major problems appeared in the orientation procedure. Firstly, 
the definition of a global coordinate system (Cartesian XYZ-
system) in which the image block should be defined and the 
object be reconstructed in. 
  
For defining this system (seven degrees of freedom) one tie-
point lying close to the motorcycle on the ground was chosen as 
origin (X=Y=Z=0). This way the three translation components 
of the system were defined. A second point was fixed on the X-
axis of the local system (Y=Z=0). Thus, two rotations were 
defined.  Finally, a third point was chosen to be fixed, lying in 
the horizontal XY-plane (Z=0) in order to define the third 
rotation, respectively. It was paid attention that the three points 
defining the datum were chosen in such a way, that the Y-axis 
was approximately parallel to the motorcycle’s symmetric 
plane, 
The scale - being the seventh degree of freedom - could 
unfortunately at this step not really be defined. The only 
valuable information regarding the scale, were the distance 
between the front and the rear wheel and the brake disks 
diameters that were taken from the motorcycle's specifications 
sheet. Unfortunately, no homologous points could be found on 
the brake disks or at the wheel axes or centres. Hence it was 
decided to define a fixed arbitrary distance between two points 
provisorily to achieve first adjustment results. A precise scaling 
procedure would be carried out later on using fictitious 
observations! 
 
Since the image configuration was very weak, it was necessary 
to measure a great number of tie points in the overlapping 
image areas, but the finding of useable homologous points was 
restricted to few limited small areas in the images. Hence 

additional ‘tie-features’ had to be employed to stabilise the 
block and were integrated into a hybrid adjustment (Figure  1). 
 
 

3. HYBRID ADJUSTMENT AND FICTITIOUS 
OBSERVATIONS 

When talking of hybrid adjustment, it is meant that the 
incorporated input data (observations) can come from widely 
different origins (Kraus, 1996). For example, polar points 
measured with a tachymeter, spatial directions between pairs of 
points measured with an electronic distance-measuring 
instrument, GPS measurements, or the well-known image 
points. Observations can also be provided by so-called shape or 
feature information. Features are (usually) not observed with an 
instrument, but are defined by the human senses and 
accumulated knowledge. Typical feature information can be: 
 
• Horizontal or vertical planes: one or more points needed 
• Straight lines: two or more points needed 
• Arbitrary planes: three or more points needed 
• Parallel straight lines: three or more points needed 
• Parallel planes: four or more points needed 
 
Also, spatial curves can be used instead of straight lines and 
spatial surfaces can be used instead of planes. Such spatial 
curves and surfaces can allow general relations between (object) 
points to be taken into account. Observations (done in the 
mind) leading to feature information are called fictitious 
observations (Kraus, 1996). 
 
Every such feature is described in an individual local coordinate 
system. In these local systems the observations are 
mathematically defined. For example, for image point 
observations, that local coordinate system is defined through 
the exterior orientation parameters of the image. The observed 
values would be the image point coordinates. But also polar 
point measurements are defined in local coordinate systems. 
Here the unknowns would be the translation and orientation of 
the local system, and the observations the azimuth and 
horizontal angle, as well as the observed range to a specific 
point. Hence all observations types are described in individual 
local coordinate systems and are equally treated in the hybrid 
adjustment process. 
 
3.1 Lines and Circles as Tie-Features 

For nearly all projects in photogrammetry points are used for 
tying and controlling the image block. But in some cases no 
uniquely identifiable points can be found on the three-
dimensional object, mainly due to lack of texture information. 
Nevertheless, often certain identifiable features appear in 
multiple images and can be used as tie or control information 
(see Figure  1). These features can be lines, curves or circles for 
example, or any other analytically describable feature, e.g. 
polynomial curves (Kager, 1980) or even splines (Forkert, 
1994). If such features cannot be described in a mathematical 
way, the problem becomes insolvable.  
 
Figure  4 and Figure  5 should give an impression on the idea of 
using non-homologous points to reconstruct features in object 
space.  
The task is to find the three dimensional objects (L, a line, and 
C, a circle)! Considering that the elements of the exterior and 
interior orientation are known and no homologous points can be 
found on the tie or control element, we measure image 
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coordinates of some feature points (L', L'', C', C'') in each 
image.  
 
In  Figure  4 two planes can be seen: each containing the 
projection rays of all points of L producing the images L’ and 
L’’. Some of these rays are used for the reconstruction of L by 
measuring the corresponding image point. Fictitious 
observations state the fact that the object point – which is non-
uniquely defined by the image ray – lies on the straight line L. 

 
Figure  4: Line reconstruction with non-homologous points 

  
In Figure  5 the shape to be reconstructed is a circle (C) in 
object space. On the images of this circle (C’ and C’’) non-
homologous points are observed through a cone of rays.  
 

 
Figure  5: Circle reconstruction with non-homologous points 

 
3.1.1 The Similarity Transformation 
The mathematical implementation of such ideas in ORIENT is 
based on the spatial similarity transformation (Figure  6).  
 
This transformation describes the relation of points in two 
different Cartesian coordinate systems, labelled ‘local’ and 
‘global’ coordinate systems (Eq. 1 and 2).  
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where  R is the spatial Rotation Matrix,  

p0 holds the coordinates (x0, y0, z0) of the inner 
reference point (i.e. in the local system), 
P0 holds the coordinates (X0, Y0, Z0) of the 
exterior reference point (i.e. in the global 
system), 
λ is the scale factor that converts the 

length )( 0PP −  to )( 0pp − . 

 
Figure  6: Similarity transformation 

 
When assuming that the local coordinate system is the image 
space coordinate system, equation (1) (Kraus, 1996) can be 
rewritten as follows: 
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where  rij are the elements of the rotation matrix, which is 

parameterised by three angles (Kraus, 1996). 
 
This (Eq. 3) is the well-known collinearity equation describing 
the image to object space relation in central perspective 
geometry. 
 
After elimination of λ, the observable image coordinates can be 
expressed through: 
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3.1.2 Observed Planes 
A local coordinate system is considered in which the plane is 
mathematically easily describable (e.g. xy-plane). The local 
coordinate system is linked to the global coordinate system 
through an arbitrarily chosen reference point P0  and its rotation 
parameters (see Figure  7).  
 
The observations are the zero-z-coordinates of the points lying 
in the xy-plane.  
X0, Y0 and Z0 can have any value in the global coordinate 
system. In this particular case only z0 of the interior reference 
point P0 is of interest, while x0 and y0 are equal to zero. The 
scale between the two coordinate systems is usually taken as 
one. The values of the rotation matrix R describe the attitude of 
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the local coordinate system with respect to the global coordinate 
system.  
 

 
Figure  7: Observed points in a plane 

 
The equation for the fictitious observation of the z-coordinates 
follows directly from (1) and is given below: 
 

)()()(0 0330230130 ZZrYYrXXrzz −+−+−+==   (6) 

 
The unknowns are: the object point coordinates X,Y,Z and the 
orientation of the local coordinate system: the latter comprises 2 
rotations (the rotation around the z-axis can be chosen 
arbitrarily). Further unknowns are: z0 and the global coordinates 
of object points lying in the plane. 
Observations are: z-coordinates (=0) of the points lying in the 
plane and the observations needed to determine these 
unknowns.  
 
In case the fictitious observations are straight lines, the strategy 
would be to define two planes in that local coordinate system, 
which intersect in the desired straight line!  
The observed points lying on this line need not to be 
homologous. A thorough description is given in Kraus (1996) 
and will not be discussed here. 
  
3.1.3 Observed circles 
A circle in object space can either be described through an 
intersection of a sphere or a cylinder with a plane. This means 
that feature points have to lie both in the plane and on the 
surface of the sphere or cylinder. Here the advantage of using 
local and global coordinate systems for these observations 
becomes clear. The cylinder or sphere as well as the plane are 
analytically described in a common local coordinate system 
(Figure  8 and Figure  9). 

 
Figure  8: Fictitiously observed circle using a cylinder 

 

 
Figure  9: Fictitiously observed circle using a sphere 

 
Implicit function of a sphere: 22220 rzyxS −++==   (7) 

Implicit function of a cylinder: 2220 ryxC −+==   (8) 

Explicit function of a plane: 0=z   (9) 
 
x,y and z are the coordinates of the adjusted point P after a 
spatial congruancy transformation from the global coordinate 
system into the local coordinate system:  

)( 0XXRx T −=   (10) 

x, y and z in the observation equations (7)-(9) must be 

substituted by the quantities X , 0X  and R in relationship (10). 
 
The unknowns are the three translation parameters and the two 
rotation parameters of the local coordinate system, as well as 
the radius of the cylinder. The rotation around the z-axis can – 
and has to be chosen arbitrarily. 
Observations are the z-coordinates (z=0) of the points of the 
plane and the zero-distance of the points from the sphere or 
cylinder which is subject to adjustment as the algebraical or 
normalized residuals (Kager, 2000), as well as the image 
coordinates of the observed points.   
 
 

4. BLOCK SCALING 

As mentioned before, the only scaling information available 
were the brake disk diameters. In order to use this information, 
the brake disks had to be modelled (see chapter 3.1.3). Again, 
no homologous points could be found on the brake disk 
circumferences, hence fictitious observations had to be 
introduced. Two geometric features were described for each 
disk: a sphere and a plane (see Figure  9). 
The plane was defined through all the observed points on the 
brake disk. The sphere was defined through points lying on the 
brake disk circumferences. The intersection of these two 
features lead to the circles in space that corresponded to the 
outer brake disk brink.  
The radius r (Eq. 7) was not considered as unknown, but it was 
given a fixed value: the brake disk’s radius from the 
motorcycle’s specification sheet. It was important to set the 
previously defined range (chapter 2.2) between the two 
arbitrarily chosen points free; so there would be no scale-over-
parameterisation of the block. After the final adjustment the 
block got its final, correct scale. 
  
 

5. FORK MODELLING 

Now, that the image block was properly oriented and scaled, the 
actual work for computing the angle of the break of the front 
fork could begin. 
 



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX 

The general idea was to model the axes of the fork tubes and 
then to calculate the wanted angle. Again, no homologous 
points were visible on the fork cylinders, hence fictitious 
observations in form of planes had to be introduced. In each 
image, unique points were digitised on the visible silhouettes of 
the cylinders. 
 

 
Figure  10: Modelling the fork cylinder axes 

 
In Figure  10 the SP represent some silhouette points that were 
digitised in the images. P1 and P2 are the perspective centres  of 
two images. The planes that were defined through silhouette 
points and the perspective centres were called tangential planes 
(tp). For each tangential plane a perpendicular axis plane (ap) 
was defined, going through the corresponding silhouette points 
(SP). All these axis planes (ap) intersect in one line: the 
cylinder axis, on which two points were defined and fictitiously 
observed on all axis planes (ap) (see Figure  10). 
An additional restriction was set, stating that the axis of one 
part of the upper-fork (Figure  3: UF2) is equal to the axis of the 
lower fork (Figure  3: LF). 
This procedure of deriving the cylinder axis from observed 
silhouette points in the images was carried out for all three 
cylinder parts of the front fork. 
Finally, angle α (∠1,2,3) could be calculated, since the axis 
exact orientation of the two parts of the upper fork (UF1, UF2) 
were known. 
 
 

6. DISCUSSION 

This paper gives an insight on the advantage of employing 
fictitious observations in a hybrid adjustment. These 
observations seem to be the only solution when not enough tie-
point- or control-information is available or when no 
homologous points can be found on certain features. Of course, 
the redundancy of the system increases much less with every 
observed non-homologous point than with a homologue one, 
but as shown in this example, many times there is no other 
solution available e.g. for the fork modelling! 
 
The effort of camera calibration was not negligible, since the 
distortion effects arising from the non-metric camera had to be 
modelled precisely to achieve the wanted accuracies in the final 

results (σ0=0,0315 with and σ0=0,0384 without distortion 
modelling, with a σa-priori=0,03mm for an observed image 
coordinate). The standard deviations of image measurements 
when applying a distortion model ranged from ±24µm to 
±38µm, compared to a range from ±24µm to ±44µm when not 
modelling the distortion effects. 
 
After the final adjustment, which was carried out with self-
calibration, the accuracies of the interior orientation parameters 
were: ±0.073mm and ±0.173mm for the principal point 
coordinates. The principal point distance shrunk to 27.511mm 
(initial value 43mm) with a standard deviation of ±0.112mm. 
This indicated that the pictures had been most probably taken 
by using a 28mm lens. 
The wanted angle α resulted: 213.6g  ±1.3g. 
 
During the adjustment process data-snooping techniques were 
used to trace gross errors and to get a feedback regarding the 
measurement process. This was very important, since it is 
difficult to define exact a-priori accuracies for fictitious 
observations. Thus the a-priori accuracies of especially these 
observations were revised during the adjustment process using a 
Variance Component Analysis (VCA)! 
 
The whole adjustment system comprised 2212 observations 
(986 fictitious), 1677 unknowns and hence had a redundancy of 
535. Altogether 99 geometric features were introduced in form 
of planes, straight lines, cylinders and spheres. 
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