
OPENVIEW
 A FREE SYSTEM FOR STEREOSCOPIC REPRESENTATION OF 3D MODELS OR SCENES

L. A. Sechidis*, D. Gemenetzis*, S. Sylaiou*, P. Patias*, V. Tsioukas**

* The Aristotle University of Thessaloniki, Department of Cadastre Photogrammetry and Cartography

Univ. Box 473, GR-54006, Thessaloniki, Greece
[lazikas, dgemen, sylaiou @photo.topo.auth.gr], patias@topo.auth.gr

** 2Demokritos University of Thrace, Dept. of Architecture,
New Building of Central Library, GR- 67100, Xanthi, Greece

vtsiouka@arch.duth.gr

SS 4: CIPA

KEYWORDS: 3D representation; visualization; stereoscopic vision; virtual reality; programming; databases

ABSTRACT:

Augmented reality is one of the new applications to archaeology that gives to user the sense of “being there” and allows to observe virtually
reconstructed archaeological landscapes with historical buildings.
This paper presents a system that aims on representation of a virtual environment in stereo, using 3 virtual cameras. It allows user to put in
scene one or more models that are ready to use and to navigate in them. In addition to this, it gives the opportunity to interact with the virtual
environment in real time, to rotate the archaeological findings presented in scene and observe their detail. It establishes links between the
objects of the scene and any database and allows user to take additional information about the place or objects.
Since the system is free – anyone can have it with the source code, it can be used from researchers as a tool that will help them on develop
and test new techniques on 3d representation (e.g. multiple LOD meshes etc) of any 3d data.
The case study examined in this paper discusses the potentials provided by this system and its advantages and disadvantages.

1. INTRODUCTION

Virtual Reality (VR) and Digital Stereoscopic Systems (DSS) are
not a new concept. VR hybrid systems and functional DSS (eg.
Photogrammetric Stations) existed even from early 90’s;
unfortunately, both had low capabilities and very high cost, due to
specialized hardware they needed. At that time, several
companies involved to the new VR software industry, with most
of their software to considered as a VR world developing tool,
while cost varied from some hundreds dollars to as much as lots
of thousands of dollars. Additionally, the majority of this software
composed of libraries of specific programming routines that were
combined to form the substance and dynamic content of the
virtual world.

Nowadays, although the same hardware is needed, due to rapid
technology progress and the dramatic fall of prices, even
individuals can have a fast, powerful and most of all, cheap
stereoscopic hardware system. But, the same does not stand for
the software. The cost of the software is still the same, if not more
expensive, since its capabilities have dramatically increased. For
example, the cost a game engine can vary from some thousand
dollars to hundreds of thousands of dollars depended on the
capabilities and the purpose of its usage.

OpenView comes to fill the gap. Although not a VR developing
tool, nor a game engine, is a free of cost VR presentation tool. Its
purpose is to present any kind of 3d data, from simple points and
lines to huge VR scenes with thousands triangles and textures.

Additionally, OpenView can be used from researchers as tool that
will help on develop and test new techniques on 3d representation
(e.g. multiple LOD meshes etc) of any 3d data, since the source
code is available, upon request.

2. OPENVIEW IN BRIEF

OpenView can import and handle a virtual world or any kind of
3d data, interact with viewer, render stereo pairs and produce
images for both left and right eyes in order to have stereoscopic
vision. Also, it can display information or metadata about the
objects that participate in the world using any database that is
published in ODBC.

OpenView consists of three major windows. Two of them are
OPENGL windows that are projected to viewer, called “left
display” and “right display”. The third one, called the “Control
Room”, is the heart of the system. Even OpenView can work on a
dual-display system, it is recommended to be used with a tri-
display capabilities system for better performance and
interactivity.

2.1.1 Required hardware

OpenView needs a typical stereoscopic presentation setup: two
polarized projectors that will project the stereo pair on a silver-
dyed screen. Viewers must wear polarized eye-glasses in order to
view the projected stereo pair. For the moment it does not support
single-display setups (like DPS do).

mailto:vtsiouka@arch.duth.gr

Additionally, one or more graphics cards with OPENGL support
is needed in order to render the stereo pairs and to output the
images to the projectors.

For this implementation and tests, two Compaq projectors having
polarized glasses and two systems with different CPU, graphics
cards and RAM (both with cost less than 1500 €) were used.

Figure 1: Openview in action

3. EXPLORING OPENVIEW

3.1

3.1.1

Importing models and scenes

OpenView is not a graphics editor, nor a VR developing tool.
This means that, even it is possible to use OpenView in order to
create simple objects and worlds from scratch (using scripts), it is
suggested to use external, specialized tools to do this task; then all
it is needed is just importing them into OpenView.

Supported formats

Since OpenView uses the GLScene Library, it supports all the
formats that GLScene does. Some of them are then 3D Studio
(3ds), TIN, STL, MD2 (Quake2, animated), OBJ (WaveFront,
and many others), SMD (Half-Life, skeletal animation, obtained
from a decompiled MDL, f.i. with MilkShape).

Additionally, an extra implementation has been done in order to
import grid data from simple ASCII files or Surfer’s DSAA
format, both combined with orthoimages.

When a new object is inserted into the scene, it gets a unique and
distinguished name. This name is very important, since it is used
from the internal scripter to identify the object. It is the parameter
that is used to query the database for additional information about
the object and it is displayed in objects properties Inspector.

3.2

3.3

3.4

3.5

3.6 Viewing and changing objects properties

It is possible, in real time, to view and change almost all the
properties of an object (or model). This is done using the Objects
Inspector panel in the Control Room, where all objects and their
properties are displayed. For example, the position, rotation
vectors, scale, colour or visibility of any object can be change.
The number of the properties depends of the object’s type. The
only thing that cannot be changed interactively is the geometry of
the object, although this can be done using scripts.

Moving and rotating

Moving and rotating inside scene is achieved using the PC’s
keyboard and mouse or joystick. Moving forward and backward,
turning and strafing left and right, going up and down (using
mouse wheel) has already implemented, while different motion
behaviours (e.g. head up/down) are under construction. Motion
and rotation speeds are not fixed and can be changed in real-time.
Also, motion can be done using two different methods, walk or
flight.

The whole scene or a specific object that participates in scene can
interactively be rotated in order to be viewed from several
perspectives. A later restoration of the scene to its original
position is possible. Rotation is achieved using the mouse.

Further interaction

Except for the rotation and properties changing, further
interaction between viewer and scene can be achieved, with or
without scripting. For example, it is possible to select an object,
to query a database about the object and display an image, play a
video file or a sound that is linked with the object. Also, a script
can be run automatically in order to automatically change any
properties of the object or even to replace this object with
another. The action that will be selected is left to whom will make
the presentation.

Database connectivity

In order to connect OpenView with a database, the database must
be “published” to ODBC. OpenView “talks” to database using
SQL queries. This way, it is irrelevant if the database is in Oracle,
Access or in any other format.

OpenView uses a smart interface that allows the viewer to select
the proper table and a connection field, from all available
databases, tables and fields that are published to ODBC. Also, it
allows the viewer to select only the wanted fields from the
selected table. This connectivity can be done at any time;
additionally, it can switch to another database or table during
presentation. For convenience, all database settings can be stored
into files and can be loaded when needed.

Every time database info is needed about an object, OpenView
creates an SQL query and passes the name of the selected object

as a parameter to the connection field in order to find the specific
record from the selected table. This task is done in the
background, so it is invisible to viewer. Then the results are
displayed to both left and right windows in order to have
stereoscopic view of the info.

Scripting support

Scripting support is OpenView’s most powerful component and is
based on “Script Studio”, from Tmssoftware. The script language
that currently supported is “object pascal “ while Visual Basic is
in the way.

Using scripts, the viewer is able to access every scene component,
to change any of its properties, to move or rotate it etc. Actually,
it is left on the fantasy to whom prepares the presentation what
the script will do.

 For example, using the script below, a new object is entered to
the scene

Axis:=TmyGLAxis.Create(ControlForm); //create the object
Axis.Name:='Axis1'; //Name for scripter and Inspector
ObjectsCube.AddChild(Axis); //put axis to ObjectsCube
Axis.valid:=true; // Enable axis
Axis.RememberMe; // Set axis visible to scripter
Axis.Position.SetPoint(3,3,3);

while the following one (can be as part of the above script or
standalone) rotates and moves the already loaded object

For i:=0 to 5 do begin
 Axis1.Position.SetPoint(i,i,i);
 AxisCube1.pitchAngle:=i*3;
 sleep(100);
 processMessages;
end;

Actually, there are very few things that cannot be done using
scripting.

3.7 Producing Stereo Pairs

Stereo pair production is done in a background process, forced to
produce pairs as fast as the combination of the CPU and the
graphics card allows. OpenView uses three cameras when
running. The first (central camera) displays its contents on the
Control Room. The other two (called “left eye” and “right eye”)
are responsible to create the stereo pairs of images. All three
cameras together are called the “Head”. Rotation of the “head”
rotates all three cameras at once. The position of the two cameras
is not fixed but floated. Even the two cameras lie on the same line
that passes from the center of the central camera, their distance
can be change. This is done because, most of the times, different
scenes need different “eye distances”.

There are a couple ways of setting the virtual cameras and
rendering the stereo pairs: toe-in and off-axis projections (Burke,
1999). The toe-in projection (Fig. 2b) is easier to be implemented
(just set the two virtual cameras focus at the same point) but has

one major disadvantage: creates stressful stereo pairs due to
vertical parallax. The off-axis projection is more difficult to be
implemented since it requires a non symmetric frustum which is
not supported by all rendering packages but produces less
stressful stereo pairs (fig. 2a). By default, OpenView uses the off-
axis projection. But it is also possible to use the toe-in projection,
too.

Figure 2: Off-Axis (correct) and Toe-in (incorrect) projections

3.8 Creating 3D videos

OpenView can be used in order to create 3d videos of the object
or the scene. All OpenView’s “head” cameras can save, on
demand, single images or avi files of the rendered scene. Using
this ability, creation of 3d videos is an easy task: OpenView is
used to produce left and right images of the scene and saves them
as image or avi files. Then an external application (3D Video
Creator) imports them and produces the video.

Additionally, the position and the rotation of every camera can be
saved into a file and then stored as metadata to the video stream,
in order to create geo-referenced 3d videos (Sechidis et al, 2001).

4. PERFORMANCE TESTS

In order to test OpenView’s performance, several tests have been
made, using two different CPU and graphics card combination
setups and different virtual worlds. Next table shows the results
of these tests, while additional details about tests follow:

 Speed (fps) for each display
 Setup 1 Setup 2
Loading test 1 20 (sec) 7 (sec)
Test 1 3 6
Test 2 150 200
Test 3 130 170
Test 4 20-30 55-60

Table1: Performance results for several tests

Setup 1: Pentium 4 1.8 GHz, 512M RAM, Matrox P750, 64Mb
RAM
Setup 2: Pentium 4 2.8 GHz, 1G RAM, Nvidia 5600 XT, 256 Mb
RAM

Test1: One surface (453 x 526 points grid) with a 3392 x 3935
pixels, RGB ortho image of Thessaloniki (as shown in Fig. 1).

Test 2: An archaeological site comprised of about one thousand
polygons, using texture materials.

Test 3: The site of the test2, loaded 10 times in different positions

Test 4: A 3ds file with 67392 vertices (58928 faces) having 1214
objects and 15 different textures.

Both left and right displays were 1024 x 768 pixels wide, while
Control room was about 400 x 300 pixels wide in all tests.

As shown above, OpenView’s performance was good enough for
most of the tests, except the first one. In that test, the one big
surface is responsible for low performance since it had to always
be rendered, no matter of the viewer’s position and view angle.
The solution to this (which is under construction) is to split the
one big surface to a lot of smaller ones.

5. CONCLUSIONS – FURTHER WORK

OpenView is a generic tool for stereoscopic representations of 3D
objects or VR scenes. It is common sense that a specialized tool
for presentations of archaeological sites has different
requirements from an equivalent of medical applications or from
a tool that will present VR worlds for entertainment. However,
OpenView can be used with success in all above applications
even if it has the minimal requirements that these applications
require.

Performance tests have shown that it can be used for real time
presentations, even with the usage of low cost CPU systems.

The further growth of OpenView will continue be focused in the
implementation of capabilities that will have generic character.
Thus, in future versions they will be added animation, 3D (or 5.1)
sound, internet abilities (client - server), ability of creating scenes
using two computers, possibility of measurements and motion
that will be based on physics (ODE). For more specialized
requirements, the team of OpenView hopes in the help of its
users. Since the source code will be available, is given the
occasion in each one to face and to resolve each own problem. All
the new solutions will be incorporated in the OpenView so as to it
becomes more powerful, useful and functional.

Additionally OpenView, coded in Delphi and using public
domain or shareware components, depends on GLScene library,
an active open-source project; therefore any improvement on
GLScene or other component performance will improve
OpenView, too.

References

Ogleby, C., 1996, A reconstruction of the ancient city of
Ayutthaya using modern Photogrammetric techniques, IAPRS,
Vol. XXXI, Part B5, Com. V, Vienna, 1996, pp. 416-425.

 Ogleby, C., 2001a, “The ancient city of Ayutthaya-Explorations
in virtual reality and multi-media”, Proc. of International

Workshop on Recreating the Past -Visualization and Animation
of Cultural Heritage, Ayutthaya, Thailand, 2001.

 Ogleby, C., 2001b, “Olympia: Home of the ancient and modern
Olympic Games. A VR 3D experience”, Proc. of International
Workshop on Recreating the Past -Visualization and Animation
of Cultural Heritage, Ayutthaya, Thailand, 2001.

Sabry F. El-Hakim, L. Gonzo, M. Picard, S. Girardi, A. Simoni,
E. Paquet, H. Victor, C. Brenner, 2003, “Visualization of Highly
Textured Surfaces”, 4th International Symposium on Virtual
Reality Archaeology and Intelligent Cultural Heritage

Sechidis, L, V. Tsioukas, P. Patias, 2001, “Geo-referenced 3D
Video as visualization and measurement tool for Cultural
Heritage”, International Archives of CIPA, vol. XVIII-2001,
ISSN 0256-1840, pp. 293-299

References from the Web

Burke,P, 1999, Calculating Stereo Pairs,
http://astronomy.swin.edu.au/~pbourke/stereographics/stereorend
er/ (accessed April 23, 2004)

Lischke, M, Eric Grange, GLScene: OpenGL Library for Delphi,
http://www.glscene.org (accessed April 23, 2004)

scriptStudio,
http://www.tmssoftware.com/ (accessed April 23, 2004)

Authors would like to thank Prof. Cliff Ogleby for his masterful
comments and suggestions about this project.

* L. Sechidis has granted a Post Doctorate scholarship from the
State Scholarships Foundation of Greece.

http://photo.topo.auth.gr/lazikas/papers/3d Video new.pdf
http://photo.topo.auth.gr/lazikas/papers/3d Video new.pdf
http://photo.topo.auth.gr/lazikas/papers/3d Video new.pdf
http://astronomy.swin.edu.au/~pbourke/stereographics/stereorender/
http://astronomy.swin.edu.au/~pbourke/stereographics/stereorender/
http://www.glscene.org/
http://www.tmssoftware.com/

	INTRODUCTION
	OPENVIEW IN BRIEF
	Required hardware

	EXPLORING OPENVIEW
	Importing models and scenes
	Supported formats

	Viewing and changing objects properties
	Moving and rotating
	Further interaction
	Database connectivity
	Scripting support
	Producing Stereo Pairs
	Creating 3D videos

	PERFORMANCE TESTS
	CONCLUSIONS – FURTHER WORK

