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ABSTRACT:   
 
The collapsed buildings due to earthquake were detected from post-event aerial images using watershed segmentation algorithm. The 
objective was to detect the collapsed buildings based on the analysis of the cast shadows. The building boundaries were available and 
stored in a GIS as vector polygons. The building polygons were utilized to perform assessments in a building specific manner. The 
approach was implemented in a selected urban area of Golcuk. The shadows cast by the buildings were detected using the watershed 
segmentation algorithm. The shadow casting edges of the buildings were identified and a buffer zone was generated for each building 
polygon along these edges. Then, the initial points falling within the buffer zone were selected from both inside and outside the 
building polygons to start the watershed segmentation. The shadow regions were detected using a watershed segmentation algorithm. 
This was followed by measuring the agreement between the shadow producing edges of the buildings and the corresponding shadows 
based on the percentage of the shadow pixels. Of the 284 buildings analyzed, 229 were correctly labeled as collapsed or un-collapsed 
providing an overall accuracy of 80%. The results prove that the collapsed buildings caused by the earthquake can be successfully 
detected from post-event aerial images. 
 
 

1. INTRODUCTION 
 
An earthquake, an unpredictable and unpreventable event, is 
regarded as one of the most destructive natural disasters on 
earth. On 17 August 1999, the urban areas of Golcuk, Yalova, 
Izmit and Istanbul were significantly damaged by an 
earthquake. It is estimated that 50,000 buildings were heavily 
damaged, over 15,000 people died and about 32,000 people 
were injured in this dreadful event. The epicenter of the 
earthquake was 40.70o N, 29.91o E (USGS), near the city of 
Izmit. The magnitude and the depth were 7.4 and 20 km 
respectively. The region struck by the earthquake, 
accommodates nearly 20% of the total population and is the 
most industrialized zone of Turkey. 
 
The extent of the damage caused by this catastrophic event 
needs to be assessed rapidly in order to reduce its effects by 
setting the corresponding agencies in motion. This can be 
efficiently performed using remote sensing technology that 
provides up-to-date information about the earth surface features. 
Change detection approaches can be used to detect the 
earthquake-induced changes using the pre- and post-quake aerial 
photographs or satellite images by comparing and analyzing 
them. There are also several other methods for collecting 
information on damage due to earthquakes such as field surveys, 
aerial television imagery, and satellite imagery (Hasegawa et al., 
1999). 
 
The objective of this study is to determine the collapsed 
buildings in a selected urban area of Golcuk using a watershed 
segmentation algorithm. A shadow-based damage detection 
method was proposed. The implementation of the approach was 

carried out using MATLAB® 6.5 which is a high-performance 
language for technical computing. 
 
 

2. PREVIOUS STUDIES 
 
In many applications of damage assessment and building 
detection, the aerial photography is widely used due to its 
advantages such as improved vantage point, permanent 
recording, broadened spectral sensitivity, the increased spatial 
resolution, and geometric fidelity. One of the frequently used 
applications of aerial photography is the detection of the 
buildings from their shadows. Irvin et al., (1989) states that the 
shadows are usually among the darkest areas in images and their 
extraction can be feasible using image processing techniques. 
They developed several methods to estimate the grouping of 
related structures together with the shape, verification and 
height of individual structures. In each method, the main 
approach used was the relation between structures and their cast 
shadows. Another study concerning building shadows was 
realized by Huertas et al., (1988). They used building shadows 
to estimate the building heights. In addition, the shadows cast by 
the buildings were utilized in verification of the buildings. Their 
method was comprised of four steps including line and corner 
detection, labeling of the corners based on shadows, tracing of 
object boundaries, and finally the verification of hypotheses.  
 
Ishii et al., (2002) proposed a method, containing two cases, to 
detect the damaged areas from aerial photographs. In the first 
case, color and edge information were used to detect the 
damaged areas from a post-quake aerial photograph. Combining 
the color information with the edge information, the 
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discrimination of the damaged areas from the non-damaged 
could be done successfully. In the second step, aerial 
photographs of the same area taken before and after the 
earthquake were available. They matched the two images by 
using the affine transform and also by hand. Then, the colors of 
the corresponding pixels in each image were checked. Thus, the 
areas having color differences were examined. As a 
consequence, the two-case method were said to be fairly good 
in determining the damaged areas. A similar study was 
conducted by Mitomi et al.,(2000) who detected the damaged 
buildings by processing the aerial television images taken after 
the 1999 Kocaeli, Turkey and Chi-Chi, Taiwan earthquakes. 
The method was composed of defining the characteristics of 
damage to wooden buildings based on hue, saturation, 
brightness and the edge elements. Firstly, the damaged and non-
damaged pixels were classified. Then, texture analysis was 
carried out and the damaged buildings were identified.  
 
A near-real time earthquake damage assessment using the 
integration of GIS and remote sensing was performed by 
Gamba et al., (1998). Their approach was comprised of two 
phases. In the first phase, GIS side of the study was performed 
via collecting and analyzing data about buildings and 
infrastructures. In the second phase, the system receives near-
real time imagery of the suffered area to perform change 
detection through shape analysis and perceptual grouping using 
the pre and post-event aerial images. 
 
Turker and San (2003) used pre- and post-event SPOT HRV 
images to detect the Izmit earthquake induced changes. The 
change areas were detected by subtracting the near-infrared 
channel of the merged pre-event image from that of the post-
event image. The overall accuracy for the change areas were 
found to be 83%. 
 
In a recent study, Turker and Cetinkaya (in press), detected the 
collapsed buildings caused by the 1999 Izmit, Turkey 
earthquake using digital elevation models (DEMs) created from 
the aerial photographs taken before (1994) and after (1999) the 
earthquake. The DEMs created from two epochs were 
differenced and the difference DEM was analyzed on a 
building-by-building basis for detecting the collapsed buildings. 
The producer’s accuracy for collapsed buildings was computed 
as 84%. Further, Turker and San (in press) utilized the cast 
shadows to detect the collapsed buildings due to Izmit, Turkey 
earthquake. The available vector building boundaries were used 
to match the shadow casting edges of the buildings with their 
corresponding shadows and to perform analysis in a building 
specific manner. Of the 80 collapsed buildings, 74 were 
detected correctly, providing 92.50% producer’s accuracy. 
 
In the present case the earthquake-damaged buildings are 
detected from post-event aerial images using watershed 
segmentation. This segmentation is based on the concepts of 
watersheds and catchment basins, which are well known in 
topography. In this approach, a gradient image can be regarded 
as a topographic surface where the gray-levels of the gradient 
image represent altitudes. (Figure 1). Therefore, the edges in the 
image having high brightness values are considered as 
watershed lines while the interior regions of the image having 
low brightness values can be considered as catchment basins 
(Sonka et al.,1998). The first step of the segmentation is finding 
the minima (catchment basin) and piercing of it.  Then, whole 
relief is immersed into the water that causes the water flooding 
into the areas close to the piercing points. As the relief goes 
deeper in the water, some flooded areas tend to merge. In order 
to prevent this, infinitely tall dams are placed along the 

watershed lines. At the end, the resulting group of dams defines 
the watersheds of the image (Shafarenko et al., 1997). Vincent 
et al.,(1991) developed a fast and flexible algorithm for 
computing watersheds in digital grayscale images. The 
algorithm is based on an analogy of an immersion process. In 
this algorithm, the flooding of the water in the image is 
efficiently simulated using a queue of pixels. They applied the 
algorithm in several fields with regard to picture segmentation 
including MR imagery and digital elevation models. 
 

 
Figure 1.  Watershed segmentation in one dimen
level profile of the image data; (b) watershed s
local minima of gray level (altitude) yield catc
local minima define the watershed lines.  
 
 

3. STUDY AREA AND DATA 
 
3.1   Study Area 
 
A selected urban area of the city of Golcuk was us
area (Figure 2). A post-quake panchromatic aer
(1m resolution) of the region was obtained 
Command of Mapping of Turkey. The study area 
rectangular shaped buildings. Of the 284 build
collapsed and the remaining 205 buildings were
The vector building boundaries were available fr
study conducted by San (2002) in our departm
contains for each building the Cartesian coordina
points. 
 

 
Figure 2.  Study Area 
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3.2   Methodology 
 
The main steps followed in the proposed damage assessment 
method are illustrated in Figure 3. First, the post-event aerial 
photograph of the area was pre-processed using histogram 
equalization technique to provide better discrimination between 
the buildings and their shadows. Next, the buildings were 
selected one-by-one using the vector building boundary 
information. Then, for each building, the shadow-producing 
edges were determined. To do that, a simple algorithm was 
developed. The illumination angle was available from a previous 
study conducted by San (2002) as 135o from the x-axis. A buffer 
zone was generated along the shadow edges of the buildings. 
This was followed by the execution of the watershed 
segmentation algorithm. For each building, a binary-colored 
output representing the shadow and non-shadow areas was 
generated. Finally, the accuracy assessment was carried out by 
comparing the analyzed buildings with the reference data.  
 
  
 
 
 
 
 
 
 
 
 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 3.  Damage detection using watershed segmentation 
 

3.2.1   Building Selection and Shadow Edge Detection: 
 
To select the vector building polygons, each polygon was 
assigned a unique identification code. In addition, the edges of 
each polygon were also given numerical codes. The edges and 
the corresponding (x, y) coordinates of a building (#175) are 
illustrated in figure 4. The labeling of the edges was necessary to 
identify the shadow casting edges of a building being assessed 
and to relate these edges with the corresponding shadows. 
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gure 4.  (a) The edges of building #175 and (b) The format of 
ctor data 

fter selecting a building, a minimum-bounding rectangle was 
nerated using the vector information by finding the minimum 
d maximum x-y coordinates (totally four points). Then, these 
ints were connected to each other and the minimum-bounding 
ctangle was constructed. A buffer bound was then generated 
a expanding the minimum-bounding rectangle from its edges 
out six pixels. The bound was created in order to take into 
count the shadow regions produced by the buildings. Next, the 
adow producing edges of the selected building were detected 
ing a simple algorithm. The algorithm works as follows. The 
rner points are found from the vector information. This is 

ply finding the points that share the same end point on 
jacent edges. For example, since both edge 4 and edge 1 share 
e same end point, (x=230,y=419), this end point is selected as 
corner point (Figure 4b). Then, the Euclidean distances (d1, d2, 
, d4), shown in figure 5a, are computed between the corner 
ints of the building and the corner of the minimum-bounding 
ctangle in the illumination direction. The computed distances 
e then sorted. If there is only one maximum distance, the edges 
at contain the same corner point are selected as the shadow 
ges. If on the other hand, there are two maximum distances 
en, the edge that contains those corner points is the shadow 
ge. These two cases can be illustrated with an example. If d1 > 
 > d2 > d3, then the shadow edges are determined as edge 1 and 
ge 2 (figure 5b). This is because the corner point connecting 
ese edges possesses the farthest distance (d1). If the ranking is 
 = d4 > d2 > d3, then edge 1 is selected as the shadow edge 
ce it is the only edge containing the farthest distances d1 and 

.  
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gure 5.  (a) The Euclidean distances and the angle of 
umination. (b) The shadow producing edges of building # 175 



3.2.2   Buffer Zone Generation: 
 
A three pixel wide buffer zone was generated around the 
shadow producing edges of each building (figure 6). It was 
divided into two sub-zones (i) inside building, and (ii) outside 
building. The inside building part of the buffer zone (zone B) 
was used for building analysis while the outside building part of 
the buffer zone (zone S) was used for shadow analysis. The 
purpose of the buffer zone generation was to deal with the 
shadow and building areas around the shadow producing edges 
of the buildings. These areas can also be called ‘the most 
significant parts’ of a building for the damage assessment.  
 

 
 
Figure 6.  Buffer zone generation along the shadow producing 
edges 
 
3.2.3   Watershed Segmentation: 
 
The watershed segmentation was performed based on the idea 
of flooding from selected sources (Beucher et al., 1992). These 
sources represent the markers. Two sets of markers were 
needed, one for shadow areas and the other for the building 
regions. These markers were utilized to avoid the over-
segmentation. After the gradient image was found, the shadow 
and the building markers were selected within the outside 
building buffer zone (S) and the inside building buffer zone (B) 
respectively. The locations of the markers were seeded 
randomly. Figure 7a shows an example for the marker 
orientation on a gradient image. 
 
The watershed segmentation algorithm was run to generate a 
binary image. After running the watershed algorithm, the two-
region output image was obtained. Of these regions, one refers 
to shadow areas while the other corresponds to the building 
areas. In figure 7b, the shadow and the building areas are shown 
in blue and yellow colors respectively. 
 

 

 

 

 

 
Figure 7. (a) The starting pixels (markers) for watershed 
transform, and (b) the segmented output after the watershed 
transform. 
 
 
 

3.2.4   Assessing the Conditions of the Buildings: 
 
After detecting the shadow and building areas, for each 
building, the agreement was measured within the buffer zone of 
the shadow producing edges between the pixels labeled as 
building and the pixels labeled as shadow (figure 8). To do that 
the pixels inside the shadow buffer (S) and the building buffer 
(B) were counted and categorized as shadow pixel or building 
pixel. Then, a ratio was computed between those pixels labeled 
as building and the total number of pixels falling inside the 
building of the buffer zone. Similarly, a ratio was also computed 
between those pixels labeled shadow and the total number of 
pixels falling inside the shadow region of the buffer zone. This 
can be illustrated with an example. The pixel distribution of 
building # 175 is shown in table 1. For this building, the shadow 
detection algorithm detected two shadow edges, which are 1 and 
2. The total pixels inside the buffer zone along the shadow 
edges were calculated and labeled as “Total Assessed Pixels” 
(Table 1). Totally, 99 pixels were generated for shadow buffer 
and 99 pixels were generated for building buffer. After the 
watershed transform, 91 shadow pixels (blue pixels) fell into the 
shadow buffer and 66 building pixels (yellow pixels) fell into 
the building buffer. Then, the building and the shadow 
percentages were calculated as 66/99 = 66.67% and 91/99 = 
91.92% respectively. A user-defined threshold was used to 
make a decision about the building. If the building ratio or the 
shadow ratio is below the threshold value, then the building is 
labeled as collapsed. If on the hand, both the building and the 
shadow ratios are over the threshold value then, the building is 
labeled as un-collapsed. The building and the shadow ratios 
were used together in deciding the building condition in order to 
reduce the misdetection of the buildings. 
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figure that the peak of the overall accuracy (80,63%) is reached 
when the threshold value is 50%. 
 

Overall 
Accuracy 

Overall 
Kappa 

x 

Average 
Accuracy 

Combined  
Accuracy 

Threshold 
(%) 

 
(%) 100 User'sProducer's User's Producer's

20% 72,89 4,71 73,93 51,66 73,41 62,28 
30% 76,06 22,24 77,40 58,52 76,73 67,29 
40% 77,46 35,32 73,09 65,33 75,28 71,40 
50% 80,63 51,19 75,93 75,30 78,28 77,97 
60% 74,65 45,01 71,41 75,83 73,03 75,24 
70% 64,08 32,98 68,15 72,01 66,12 68,05 
80% 42,61 11,28 62,98 59,08 52,80 50,85 

 
Table 2. The accuracy indices for the threshold values between 
20% and 80%. 
 
All the buildings contained within the study area were analyzed 
using the optimum threshold of 50%. An error matrix was 
generated by comparing the analyzed results with the reference 
data. The error matrix contains the overall accuracy, the user’s, 
and the producer’s accuracies for collapsed and un-collapsed    
buildings (Table 3). The overall accuracy (80,63%) was    
computed by dividing the sum of the diagonal of the error matrix 
(highlighted in gray) by the total number of the buildings (284). 
The producer’s for collapsed, the producer’s for un-collapsed, 
the user’s for collapsed, and the user’s for un-collapsed 
buildings were also computed as 63,29%, 87,31%, 65,79% and 
86,06% respectively. It is evident that, 55 buildings were 
incorrectly detected. Of these buildings, 29 were not detected as 
collapsed through the analysis. Instead, 26 un-collapsed 
buildings were detected as collapsed. The mis-detected buildings 
represent the omission and commission errors respectively. 
 

Reference  
Collapsed Un-collapsed Total 

Collapsed 50 26 76 
Un-collapsed 29 179 208 

Total 79 205 284 
    

Producer’s 63,29 87,31  
User’s 65,79 86,06  
Overall 80,63   

 
Table 3. Error matrix and accuracies 
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4. CONCLUSIONS 
 

In this study, we presented an approach for detecting the 
earthquake-damaged buildings through shadow analysis of the 
watershed segmented post-event aerial imagery. The approach 
was implemented in an urban area of the city of Golcuk. A total 
of 284 buildings were analyzed to measure their conditions. The 
results are quite encouraging. Of the 79 collapsed buildings, 50 
were detected correctly providing a producer’s accuracy of 
63.29% and a user’s accuracy of 65.79%. On the other hand, of 
the 205 un-collapsed buildings, 179 were labeled correctly 
providing a producer’s accuracy of 87.31% and a user’s 
accuracy of 86.06%. The overall accuracy was computed as 
80.63%. 
 
We found that determining the optimum threshold for 
separating the damaged buildings from non-damaged is 
important. In the present case the optimum threshold was 
computed as 50%. This threshold value is valid for this study 
only, and should not be considered global. The proposed 
method has several shortcomings to be improved in the future. 
The selection of the the initial markers is one problem. The 
buffer zones that are defined by the user can be expanded or 
shrinked to find a better aggreement between the shadow pixels 
(generated by the algorithm) and the actual shadow pixels. 
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