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ABSTRACT: 
 
Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. 
New algorithms have been developed for hyperspectral data classification lately, but also traditional classification algorithms have 
often been used. This study compares different classification algorithms for classification of vegetation using imaging spectrometer 
data. The test area located in southern Finland was imaged by an AISA airborne imaging spectrometer using 17 visual and near 
infrared bands. The area included lakes, rural areas, cultivated fields and forests. The area was classified into seven different 
vegetation and soil types. The effects of various classification algorithms and different training areas were investigated. Besides, the 
reflectance spectra of different plants were examined and compared under varying illumination. Spectral Angle Mapper (SAM), 
Spectral Correlation Mapper (SCM) and Spectral Unmixing algorithms developed for hyperspectral data were used in the 
classification. Besides, the data was classified using conventional algorithms as Minimum Distance and Maximum Likelihood 
classifiers that have often been used for multispectral data classification in the past. The dimension of the data was decreased by 
principal component analysis before using conventional classifiers. Reference spectra for SAM, SCM and Spectral Unmixing were 
collected from the training sites of the data. Two methods were used in gathering the reference spectra. The reference spectra were 
chosen from the reflectance of individual image pixels or they were calculated from pixels of the training sites. If individual pixel 
was chosen accurately, it led to better classification results. Maximum Likelihood classifier led to good results as well, but it requires 
more computation time. The overall accuracy of the Maximum Likelihood classification was 91 percent, but the results deteriorated 
under varying illumination. SAM and SCM were faster and they led to better classification results in poor illumination. The hardest 
part in Spectral Unmixing classification was finding suitable reference spectra from mixed pixels. When the essential spectra were 
found, the classification led to good results, although the results varied between different classes. 
 
 

1. INTRODUCTION 

Imaging spectrometers have been developed very rapidly over 
past decades. They have more channels with better spatial and 
spectral resolution. Individual bands are only a few ηm wide 
while the spatial resolution is good as well. Besides, computer 
number-crunching power, data-transfer rate and storage 
capacity have increased considerably in recent years. This has 
made it possible to handle and analyse larger data sets acquired 
by an imaging spectrometer. There are some new algorithms 
being developed to hyperspectral data classification at the 
moment. 
 
Most hands-on applications of imaging spectrometry relate to a 
sensor mounted on aeroplane. Satellite sensors do not have as 
good spectral and spatial resolution as aeroplane sensors, which 
may have hundreds of channels with one meter spatial 
resolution. Nowadays, satellite sensors tend to have tens of 
channels with spatial resolution of tens or hundreds meters. 
 
Traditional algorithms like Maximum Likelihood or Minimum 
Distance have also been used in hyperspectral data 
classification. Unfortunately, they tend not to work properly 
with hyperdimensional data. Hyperspectral image data consists 
of hundreds of channels and it leads to extended run time. 
When channel number doubles, run time squares. Highly 
correlated channels may even crash the classification 
programme. For these reasons effective feature extraction 

methods are needed to reduce hyperspectral feature space 
dimension. 
 
Feature extraction methods may remove small differences in the 
spectra between various materials. Sometimes these differences 
characterize different materials and play an important role in the 
classification. When using a hyperspectral classification 
algorithm like Spectral Angle Mapper the feature extraction is 
not always essential. This way the whole reflectance spectrum 
of the material is taken into account. For instance, the effect of 
different soil types on the reflectance spectrum of vegetation is 
slight and it comes up only with some specified wavelength 
bands. 
 
Different institutions use imaging spectrometer data for various 
research projects in Finland. For example, workers in the 
Finnish Forest Research Institute are researching imaging 
spectrometer data for inventory of forest resource (Mäkisara and 
Tomppo, 1996). Hyperspectral data is also used for monitoring 
the quality of water (Kallio et al., 2001) and atmosphere at the 
Finnish Environment Institute. 
 
The goals of this study were to investigate the suitability of 
AISA imaging spectrometer data for vegetation and soil 
classification. Different classification algorithms were compared 
using various reference data and illumination. Besides, 
reference spectra of different materials were analysed and 
material identification by its spectrum was investigated. 



 

 
There were some different methods in gathering the reference 
spectra and these methods were tested and their results were 
compared. First, the reference spectrum was chosen from the 
reflectance of individual and exactly specified image pixels. 
Next, the reference spectrum was calculated from pixels of the 
training sites. Average, median and mode methods were used to 
calculate the reference spectrum. 
 
 

2. METHODS 

2.1 Classification algorithms 

2.1.1 Spectral Angle Mapper (SAM):  Reflectance 
spectrum of individual pixel may be discussed as an n-
dimensional vector, where n is the number of image channels. 
Each vector has certain length and direction. The length of the 
vector represents brightness of the target while the direction 
represent spectral feature of the target. Variation in illumination 
mainly effects changes in the length of the vector. Therefore, 
classification is based on the direction of the vector. (Kruse et 
al., 1993) 
 

 

 
 

Figure 1. The spectral angle between material A and B in two 
channels case (Kruce et al., 1993). 

 
Classification is done by comparing the spectral angles (Figure 
1) between the reflectance spectrum of the classified pixel and 
the reference spectra obtained from training data or spectral 
libraries. Each pixel will be assigned to the class according to 
the lowest spectral angle value. 
 
2.1.2 Spectral Correlation Mapper (SCM):  SAM cannot 
distinguish between negative and positive correlations because 
only the absolute value is considered. SCM is generated as an 
improvement on the SAM. SCM algorithm is very similar to 
SAM. The difference between the algorithms is that SCM 
standardizes the vectors of the reflectance spectrum before it 
calculates the spectral angles. (Carvalho and Meneses, 2000) 
 
2.1.3 Spectral Unmixing:  An area assigned by a single 
pixel of remote sensing image usually contains a lot of different 
materials. These materials are mixed together and the pixel 
reflectance observed by sensors is a combination of reflectance 
of individual materials. To get more information from a single 
pixel the proportions of these materials can be approximated 
using a spectral mixing model (Boardman, 1994). Using 
Spectral Unmixing model the mixed pixel can be reconstructed 
from known spectra in the image or the mixed pixel can be 
divided into components. 
 

2.2 Test site and field measurements 

Aerial measurements with an AISA airborne imaging 
spectrometer were made at Lammi in southern Finland. The 
area contains mainly lakes, rural areas, cultivated fields and 
coniferous and deciduous forests. Size of the test area was about 
50 kilometres long and 2 kilometres wide. 
 
Geological Survey of Finland had done fieldworks in 1999 and 
2000. Training area inventory included approximately 250 
training areas. For example, the primary sources of reflection, 
the vegetation and the soil class were specified in field 
inventory. 
 
2.3 AISA hyperspectral data 

AISA data was acquired from an aeroplane on September 1999. 
Six strips were flown and raw data was gathered to the actual 
hyperspectrum image and geometric correction was performed. 
Finnish Forest Research Institute preprocessed the data. 
 
 

 
 

Figure 2. A part of the AISA image (Ruohomäki at al., 2002). 
 
The pixel size of the image was 1.1 meter. Image contained 17 
visible and near infrared channels. The weather took a turn for 
the worse during the flight and the illumination was low in last 
strips (Figure 2). 
 
2.4 Gathering the reference spectra 

Classification algorithms like SAM use reflectance spectra as 
reference data of classes. Reference spectra are measured from 
pure and single image pixels or larger training areas. The 
quality of reference spectra is an important factor that defines 
the classification results. Therefore, different methods were 
used in gathering the reference spectra. Besides reflectance 
spectra of different plants were examined and compared under 
varying illumination to describe how different classes may be 
distinguished. 
 
Well-known pure pixels of hyperspectral image were used 
directly as reference spectra. In that case, the reflectance of the 
pixel must be derived only from material that is defined by the 
pixel. If there is variation in reflectance features inside one 
class, more reflectance spectra will be needed. 
 
Several methods were used to calculate reference spectra from 
the training areas in this study. At first, average values of pixel 
values were calculated for every 17 channels. By choosing 
median of pixel values was the second method to determine 



 

reference spectra. The third method used mode values as a 
reference. It means most frequently occurring value. 
 
Smaller test area (Figure 3) with 100 pixels was chosen for a 
more detailed analysis. Reference spectra were derived from 
this area (Figure 4). The area represents a dense spruce forest 
and it includes spruce trees, shadows and bedrock of the forest. 
 
 

 
 
Figure 3: 10 x 10 pixel test area of hyperspectral image. Bright 

pixels are sunny spruce crowns. Dark pixels are 
shadows between spruces. 

 

8

18

28

38

48

58

68

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Channel

R
ef

le
ct

an
ce

 v
al

ue

mean

median

mode

pure

  
Figure 4: Reference spectra calculated by mean, median and 

mode method and pure spruce spectrum. 
 
Besides, bright and pure pixels were chosen to represent the 
reflectance spectra of spruce. Spectra were compared with each 
other and the most descriptive spectrum was selected. Values 
were not calculated from larger group of pixels because it tends 
to generalize or flatten the shape of the spectrum. Most 
descriptive spectrum was considered as pure spruce spectrum. 
Pure spectrum and spectra calculated by different methods were 
used as reference spectra and spectral angles (Figure 1) between 
the each pixel of the area (Figure 3) and reference spectra 
(Figure 4) were calculated. 
 
 

3. RESULTS AND DISCUSSION 

3.1 Reference spectra analysis 

Comparison of different methods in gathering the reference 
spectra were analysed using the spectral angles. Spectral angle 
images (Figure 5) were stored. Image colours were inverted to 
help the interpretation of the spectral angle images. Therefore 
bright image pixels represent small values of spectral angle and 
dark pixels represent wide spectral angles. Small spectral angles 
mean that the reference spectrum describes the study area well. 
 

The more there are bright pixels in the spectral angle images the 
better choice that reference spectrum is for describing the test 
area. These results are significant when choosing reference 
spectra for example Spectral Angle Mapper classification. 
 
 

 
 
Figure 5: The spectral angles between the small test area pixels 

and the reference spectra. 
 
Figure 5 shows that calculating reference spectrum by using 
mean values gives slightly better results than median. By 
comparing the test area image and the spectral angle images we 
can see that reference spectra of average and median method 
cannot define dark pixels of the test area. The smallest values of 
the spectral angles were found from the image pixels between 
sunny crows and shadows. 
 
The spectral angle values of the reference spectrum calculated 
with the mode method were high and especially mode method 
gave bad results in the case of sunny crown pixels. Pure pixel 
method defined reference spectrum that was outstandingly good 
in case of bright crown pixels. Anyway, the results were poor in 
the dark pixel cases as expected. 
 
3.2 Classification 

Smaller area was selected from the AISA data and classified 
using several algorithms. The area was classified into the 
following different vegetation and soil types: roads, buildings, 
cornfield, threshed cornfield, sugar beet, deciduous and 
coniferous forests. Results of different classification algorithms 
were compared. Besides, effects of different training areas and 
variation in illumination were investigated. 
 
 

 
 
Figure 6: The image of the test area that was used in the 

classifications and the colour codes for the 
classification results. 

 
Spatial resolution of the data was good and there was some 
variation in the values of the training site pixels. Therefore 
several reference spectra per each training site were used in the 
Spectral Angle Mapper and Spectral Correlation Mapper 
classifications. The reference spectra were gathered from the 
same training sites used in the Minimum Distance and 



 

Maximum Likelihood classifications. Principal component 
analysis was used to reduce the dimension of the data. Four 
principal components were used in the Minimum Distance and 
Maximum Likelihood classification. Other classification 
methods were carried out fast but Maximum Likelihood 
algorithm needed more computation time. 
 
 

 
 
Figure 7: Classification results of Spectral Angle Mapper (upper 

left), Spectral Correlation Mapper (upper right), 
Minimum Distance (lower left) and Maximum 
Likelihood (lower right). 

 
Average and overall accuracies were calculated using test areas 
(Figure 8). The average accuracy is the average of the 
accuracies for each class. Overall accuracy is a similar average 
with the accuracy weighted by the proportion of test samples. 
The Maximum Likelihood algorithm led to the best results. 
Spectral Angle Mapper and Spectral Correlatoin Mapper led to 
good results as well but the results of Minimum Distance were 
worse. 
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Figure 8: The average and overall accuracies of the Spectral 

Angle Mapper, Spectral Correlation Mapper, 
Minimum Distance and Maximum Likelihood 
classification. 

 
3.2.1 Variation in illumination:  Variation in illumination 
affected more strongly when the Maximum Likelihood and 
Minimum Distance were used. The results of the classification 
deteriorated fast while the Spectral Angle Mapper and the 
Spectral Correlation Mapper were better in that case. 
 
 

 
 
Figure 9: The image of the test area with variance in 

illumination (up) and the classification results of 
Spectral Angle Mapper (middle) and Maximum 
Likelihood (down). 

 
3.2.2 Spectral Unmixing:  The original pixel size of the 
hyperspectral image was enlarged ten times its original size 
because a square meter size pixel is usually represented by only 
one manmade or vegetation class. Finding suitable reference 
spectra was the hardest part in Spectral Unmixing classification. 
The proportions of different materials were approximated from 
each image pixel and algorithm generated images where pixel 
values represented the proportions of different materials (Figure 
10). Proportions were calculated from 0 to 100 per cent and 
bright pixels meant larger proportion. 
 
 

 
 
Figure 10: The proportion images of the Spectral Unmixing 

Classification. 
 
The proportion images were compared to the original image 
(Figure 6) and there was good association between the original 



 

image and the proportion images of threshed cornfield, 
deciduous forests, cornfield and buildings. For example, the 
brighter the pixel of the buildings proportion image is the larger 
the proportion of the class is in the pixel. It means that large 
buildings have brighter pixel. The results for coniferous forest 
and road proportion images were worse. 
 
 

4. CONCLUSIONS 

Generally speaking the classification results were good. For 
example, Maximum Likelihood classifier led to good results 
(overall accuracy was about 91 percent), but it requires more 
computation time. Spectral Angle Mapper and Spectral 
Correlation Mapper were faster and they led to better 
classification results in poor illumination. The results of 
Minimum Distance classification were poor. Spectral Unmixin 
algorithm worked in some cases. It produced good proportion 
images for threshed cornfield, deciduous forests, cornfield and 
buildings but coniferous forest and road did not work. The 
suitable reference spectra for the mixed pixel were hard to find. 
There was too much variation in the pixel values of the same 
class. This study shows clearly that it is worthwhile to pay 
attention to different methods when the reference spectra are 
calculated. 
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