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ABSTRACT: 
 
The objective of the present study was to develop a model to predict lichen species richness for six test sites in the Swiss Pre-Alps 
following a gradient of land use intensity combining airborne remote sensing data and regression models. This study ties in with the 
European Union Project BioAssess which aimed at quantifying patterns in biodiversity and developing “Biodiversity Assessment 
Tools” that can be used to rapidly assess biodiversity. For this study lichen surveys were performed on a circular area of 1ha on 96 
sampling plots in the six test sites. Lichen relevés were carried out on three different substrates: trees, rocks and soil.  
In a first step, ecological meaningful variables derived from CIR orthoimages were calculated using both spatial and spectral 
information and additional lichen expert knowledge. In a second step, all variables were calculated for each sampling plot and 
correlated with the different lichen relevés. Multiple linear regression models were built containing all extracted variables and a 
stepwise variable selection was applied to optimize the final models. The predictive power of the models (r ranging from 0.79 for 
lichens on trees to 0.48 for lichens) can be regarded as good to satisfactory, respectively. Species richness for each pixel within the 
six test sites was then calculated. The present ecological modelling approach also reveals two main restrictions 1) this method only 
indicates the potential presence or absence of species and 2) the models may only be useful for calculating species richness in 
neighboring regions with similar landscape structures. 
 
KURZFASSUNG: 
 
Die vorliegende Studie hatte zum Ziel, flugzeuggestütze Fernerkundungsdaten mit Feldaufnahmen von Flechten zu korrelieren, um 
die Anzahl Flechtenarten in sechs Untersuchungsgebieten in den schweizer Voralpen zu modellieren. Diese Studie knüpft an das 
EU-Projekt BioAsses an, welches zum Ziel hatte Biodiversitäts-Indikatoren zu entwickeln, mittels welcher rasch die Biodiversität 
eines Gebietes abgeschätzt werden kann. Basis für diese Studie bilden Feldaufnahmen von Flechten, welche in den sechs 
Untersuchungsgebieten an insgesamt 96 Aufnahmeorten durchgeführt wurden – jedes der Grösse von 1 Hektare, was einem Kreis 
mit 56 m Radius entspricht. Flechten wurden auf den drei Substraten Baum, Stein und Boden aufgenommen. In einem ersten Schritt 
wurden ökologisch-relevante Variablen aus CIR Orthobildern, hauptsächlich basierend auf räumlicher und spektraler Information 
abgeleitet und mittels zusätzlichem Expertenwissen berechnet. In einem zweiten Schritt wurden für alle 96 Aufnahmeorte die 
entsprechenden Variablen berechnet und anschliessend mit den Feldaufnahmen korreliert. Um optimale Modelle zu erhalten wurden 
multiple lineare Regressionsmodelle mit einer schrittweisen Variablen Selektion verwendet. Für das Baumflechten-Modell wurde ein 
r von 0.79, für Bodenflechten ein r von 0.48 erreicht, was als gut bis genügend eingestuft werden kann. Schliesslich wurde mit Hilfe 
dieser Modelle die potentielle Anzahl Arten für jedes Pixel in den sechs Untersuchungsgebieten berechnet. Die Studie zeigt ferner, 
dass der ökologische Modellierungsansatz auch seine Grenzen hat: 1) mittels dieser Methode kann nämlich nur die potentielle 
Anzahl Flechten berechnet werden und 2) das Anwendungspotential der Modelle beschränkt sich wahrscheinlich auf benachbarte 
Regionen mit einer ähnlichen Landschaftsstruktur. 
 
 

                                                                 
 

1. INTRODUCTION 

The need for conserving biodiversity has become increasingly 
imperative during the last decade as rates of habitat and species 
destruction continue to rise (Noss and Cooperrider, 1994, 
Nagendra 2001). At the same time inventorying biodiversity 
and monitoring efficacy of measures for its conservation have 
emerged as important scientific challenges of recent years 
(Jørgensen 1997, Nagendra and Gadgil 1999). For monitoring 
biodiversity on a general level, homogenous consistent land 
cover information is primarily required as it is obtained using 
remote sensing data (Townshend et al. 1991, Chuvievo 1999). 
According to Palmer (1995) and Wohlgemuth (1998) it is 

almost impossible to have a complete biodiversity survey at 
regional scale of 1-100 square kilometers. Therefore methods 
for extrapolations are needed that provide information that is 
remotely similar to field samples and which would allow to 
considerably reduce extensive field surveys. New techniques 
and data sets now enable remote sensing, in conjunction with 
ecological models, to shed more light on some of the 
fundamental questions regarding biodiversity (Cousins and Ihse 
1998). Furthermore, remote sensing also may help calculating 
biodiversity hotspots to facilitate biodiversity field surveys, e.g. 
to focus the sampling of biological data on these hotspots (Kerr 
and Ostrovsky 2003). 



 

According to Turner et al. (2003) the direct remote sensing of 
individual organisms, species assemblages, or ecological 
communities from airborne or space borne becomes more and 
more important. Remote sensing data provide increased 
opportunities to develop quantitative models on the relationship 
between species diversity and the diversity of land cover 
elements (Noss 1990, Nagendra and Gadgil 1999). Providing 
consistent and reproducible information on land cover at 
different scales proves to be the main advantage of remote 
sensing as a tool for both ecological analyses and biodiversity 
assessment studies. Particularly regression analyses have been 
broadly applied for the modelling of the spatial distribution of 
species and communities up to date (Guisan et al. 2002). Thus, 
in combination with regression analyses high resolution remote 
sensing data may considerably help to assess biodiversity of a 
region. Estimates of species richness of a region can then be 
used to focus on targets in inventories so that appropriate levels 
of sampling can be reached in these areas. Calculation of 
potential biodiversity hotspots might be helpful for conservation 
efforts in a region, e.g. for an assessment of the landscape itself 
and for future protection planning.  
The present study is focused on an assessment of lichen species 
richness for six test sites in the Swiss Pre-Alps following a 
gradient of land use intensity combining remote sensing 
techniques and regression analyses. This study ties in with the 
European Union Project BioAssess which aimed at quantifying 
patterns in biodiversity and developing “Biodiversity 
Assessment Tools” that can be used to rapidly assess 
biodiversity. For the BioAssess project seven biological 
indicators (soil macrofauna, collembola, ground beetles, plants, 
butterflies, birds and lichens) as well as remote sensing based 
indicators (non-biological) for a biodiversity assessment were 
collected in the test sites for eight participating countries. 
Lichens are mutualistic symbiotic organisms. Many species 
have evolved a requirement for substrates that are themselves 
by-products of advanced succession in more dominant 
ecosystems. Lichens are affected by various forms of 
anthropogenetic disturbance such as agricultural and forest 
management (Scheidegger and Goward 2002), atmospheric 
pollution and climate change (Nimis et al. 2002). These 
disturbances can be detected using remote sensing data and 
ecological modeling. Some studies show the combination of 
lichens with remote sensing methods: e.g. in Nordberg and 
Allard (2002) lichens have particularly been used as an 
indicator of ecosystem disturbance or serve as indicators of 
forest age (Nilsson 2004). 
The objective of the present study is to correlate ecological 
meaningful variables derived from airborne remote sensing data 
with field sampled lichen species richness and to develop 
regression models to predict lichen diversity on the investigated 
test sites. 
 

2. MATERIAL AND METHODS 

2.1 Study area 

The study area is located in the northern Pre-Alps of the central 
part of Switzerland in the region of Entlebuch which has been 
accredited as an UNESCO Biosphere Reserve since September 
2001. The region is characterized by a complex topography 
with impenetrable gorges, rocky slopes, karst areas and 
fluviatile deposits. The region covers an area of 395 square 
kilometres and ranges from the montane (700 m) to alpine zone 
(2300 m). It is mainly dominated by fragments of forest, rich 
and poor pastures and natural grassland, mires as well as rocks 
and small settlements. The study area consists of six landscape 

types also called land use units (LUU) with an extent of 1 km x 
1 km along the BioAssess gradient of land use intensity (see fig. 
1). LUU1 contains more then 50 % old-grown forest and 
represents extensive land use. LUU6 on the other end of the 
gradient contains more then 50 % grassland and represents 
intensive land use. The other LUUs are distributed according to 
management intensity, which is defined after the percentage of 
different land use classes inside the test areas.  
 

 
Figure 1.  Locations of LUU1-6 with 6x16 sampling plots 

 
2.2 Training and reference data sets 

2.2.1 Field data – lichen relevés: A training data set is 
required to calibrate the models whereas reference data are 
required to validate the quality of the calibrated models. In our 
case we used training data of the lichen surveys. A total of 96 
sampling plots (6 x 16) were collected that form a grid of 200 m 
mesh size (fig. 2). All 96 lichen sampling plots were set up by 
differential GPS measurements with an accuracy of +/- 0.5 m. 
Lichen surveys were carried out in the years 2001-02 on the 96 
sampling plots (16 per LUU) on a circular area of 1 ha (56.41 m 
radius). Within each sampling plot 12 collecting sites were 
selected randomly (fig. 3). 
 

 
Figure 2. BioAssess sampling design for LUU6 with the 16 

corresponding sampling plots (circles of 56 m radius) 
 



 

 
Figure 3. Lichen relevés were carried out at 1-12 randomly 

selected collecting sites  
 
At each of the 12 collecting sites, lichen relevés were carried 
out on three different substrates, i.e. trees, rocks and soil - 
representing all major lichen substrates which could be affected 
by changes of the agricultural and forestry management.  
For relevés on trees the nearest tree within the border of the 
sampling plot was selected and for relevés on rocks, the nearest 
saxicolous object within the border of the sampling plot was 
selected (for both starting from the center of a collecting site). 
For relevés on soil in the center of each collecting site a 
frequency grid of 50 x 40 cm mesh size 10 cm) was placed on 
the ground. For each lichen species the number of unit areas (10 
x 10 cm) where the species occurred was counted (a value 
ranging from 1 to 20. Since delimitation of individuals is often 
difficult or even not possible in lichens, we used the number of 
occupied unit areas as abundance measure.  
As the calibration data set every second sampling plot was 
chosen. The remaining 48 sampling plots served as reference 
data set. 
 
2.2.2  Calibration data: In order to calibrate our model of 
prediction of species richness we tried to find biological / 
ecological meaningful features as explanatory variables. For this 
purpose we used original and derived spectral and spatial 
information of airborne remote sensing data.  
Six digital CIR orthoimages of the years 1999 and 2001 served 
as the basis for this study. Each orthoimage covers an area of 
approx. 2 square kilometers. The scale of 1:10’000 provides a 
ground resolution of 0.3 m. Each image offers three color bands 
of numerical information with 256 intensity levels: visible green 
(500-600 nm), visible red (600-700 nm) and near infrared (750-
1000 nm). Additionally to the original spectral and spatial 
information several derivatives of the CIR orthoimages were 
calculated. For our approach we decided to extract derivatives 
both using standard methods and additional expert knowledge. 
Furthermore we used a digital terrain model with a spatial 
resolution of 25 m (DHM25 © 2003 Bundesamt für 
Landestopographie, DV 455.2) and digital surface models 
(DSM). A spatial resolution of 0.5 m was chosen for all data 
sets used in this study. 
To assess and categorize the contribution of ecological 
meaningful variables to the model we decided to distinguish 
between two levels of detail. 1st level variables provide 
information of spatial heterogeneity, spectral reflection, 
absorption and transmission, chlorophyll content and above-
ground phytomass of vegetation cover. This implies simple 
image processing methods (standard methods) of the CIR 
orthoimages, and was performed without additional expert 

knowledge, e.g. of biologists. In addition to the three original 
channels (red, green, NIR) several new variables were generated 
using both spatial and spectral information within a moving 
window of different sizes. The wider the window, the more 
these new variables tend to reflect features of the landscape. 
The window size of 6x6 pixels turned out to be the most 
adequate. Table 1 lists all variables applied in this study. 
 

ID Name Comments 
 1st level variables  
 Mean, majority, 

minority, sum of: 
 

1-3 Red, green, NIR original channels of CIR 
orthoimage 

4 Ratio1 Channel green / Channel (red + 
NIR) 

5 Ratio2 Channel red / Channel (green + 
NIR) 

6 Ratio3 Channel NIR / Channel (red + 
green) 

7-9 Variance red, 
green, NIR 

returns variance in a moving 
window 

10-12 Skewness  returns skewness in a moving 
window 

13-15 Contrast red, 
green, NIR 

returns contrast in a moving 
window 

16 Vegetation Index NIR - red 
17 NDVI NIR - red / NIR + red 
 2nd level 

variables 
 

18-20 Fraction of land 
cover (3 classes) 

forest, non-forest, non-vegetation 

21-29 Fraction of land 
cover (9 classes) 

forest, grassland light, grassland 
dark, rock&gravel&soil, sealed 
surface, single trees & hedges, 
shadows, wetlands, water bodies 
 

Table 1. A total of 29 explanatory variables were derived 
 
On the 2nd level, new variables based on 1st level variables 
were built using expert knowledge and field experiences. To 
meet these requirements, new image processing techniques were 
applied to produce homogenous objects and well defined object 
edges. Two land cover classifications were performed: 1) a 
simple classification only distinguishing between forest, non-
forest and non-vegetation and 2) a more detailed classification 
distinguishing nine land cover classes, representing the three 
lichen substrates of the field survey: 1. forest, 2. grassland light 
(mown and intensively used), 3. grassland dark (unmown and 
not intensively used), 4. rock & gravel & bare soil, 5. sealed 
surface, 6. single trees & hedges, 7. shadows, 8. wetlands and 9. 
water bodies. For this classification an object-oriented approach 
was applied. The method is based on hierarchical segmentation 
not only of the CIR orthoimages but also of their derivatives 
(Baatz and Schäpe 1999).  
To summarize, we produced a total of 29 explanatory variables 
for the model. 17 of them were allocated to 1st level variables, 
mainly based on simple reflection values of the three channels 
of the CIR orthoimages as well as on spatial information. The 
remaining 12 were allocated to the 2nd level variables. 
Finally, in accordance with the lichen relevés that are 
representative for a 56 m circle, for each variable the sum of 
values was calculated within a 56 m radius circle for each of the 
96 sampling plots. This was performed using a moving window 
approach - in our case a moving circle (see fig. 4).  
 



 

 
Figure 4. Moving window approach within the 56 m radius 

circle as applied for all 1- 29 explanatory variables 
 
2.3 Model development 

The choice of the “right” model should be carefully made 
considering possible advantages and disadvantages. According 
to Austin and Gaywood (1994) a model used for biodiversity 
assessment should not only be precise but also ecologically 
sensible, meaningful and interpretable. An important statistical 
development of the last 30 years has been the advance in 
regression analysis provided by various linear models (Yee and 
Mackenzie 2002). Linear least-square regression can be 
generalized by transforming the dependent variable (McCullagh 
and Nelder 1989). Generalized linear models (GLM) comprise a 
number of model families e.g. binomial, Poisson, etc. (Guisan 
and Zimmermann 2000). However, assuming a specific 
theoretical distribution for the data used in this study seems to 
be difficult. Differing collecting procedures (i.e. different ways 
to the next tree and rock patch) rules out the model of the data 
as a Poisson process. Therefore we used the simplest “first aid” 
transformation (square root transformation) that allows coping 
with count data. For each of the four field data sets (total 
species richness, species richness for lichens on trees, on rocks 
and on soil) we performed a stepwise dropping of our 29 
explanatory variables – allowing both backward and forward 
selection to build the models. We assumed that the relatively 
high number of explanatory variables, often intercorrelated, 
would be handled adequately by this stepwise methodology. 
Among the variables remaining in the final models, 1st level 
variables are used as single and as quadratic terms, whereas 2nd 
level variables were square-root transformed. The complete 
final models and their explanatory variables are listed below: 

• Richness_total ~ variance_nir + variance_nir2 + ratio2 + ratio22 
+ sqrt(forest) + sqrt(grass_light) 

• Richness_trees ~ variance_nir + variance_nir2 

• Richness_rocks ~ variance_nir + variance_nir2 + skewness + 
skewness2 + sqrt(grass_light) 

• Richness_soil ~ ratio1 + ratio12 + skewness + skewness2 + 
sqrt(rock&gravel&soil)                                                               
[1] 

The 96 sampling plots are divided into a calibration data set of 
48 randomly sampled relevés and a reference data set consisting 
of the remaining 48. With this calibration data set the model 
was built and prediction values were calculated for the 48 
sampling plots of the reference data. This was carried out 100 
times. The means of the 100 runs are shown in table 2. 

2.4 Validation 

Several statistic measures were applied to evaluate the predicted 
species richness against the measured species richness of the 
sampling plots. Correlation of the fitted values with the 
calibration data values was chosen as a measure for the model 
quality (r model in table 2). The predictive power of the model 
is estimated by the correlation of predicted data values with the 
reference data values (r reference in table 2). 
In the present study, the 95% quantile of the absolute errors, the 
bias (difference between the mean values and the mean fitted 
values), mean of absolute errors MAE (predicted species 
richness compared to reference species richness) and the G- 
value are applied as accuracy measures. The G-value (G) is a 
measure of accuracy in the case of a quantitative response and 
gives an indication of how effective a prediction might be, 
relative to that which could have been derived from using the 
sample mean alone. G is given by the equation 2: 
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Where Z(Xi) is the measured value at a sampling plot i, Z(xi) is 
the estimated value, and  is the overall mean of the measured 
sampling plots. A value of 1 indicates a perfect prediction, 
while a value of 0 describes no significant agreement, and 
negative values indicate that the predictions are less reliable 
than if one had used the sample mean instead (Schloeder et al. 
2001). 
 
2.5 Application of models 

In order to extrapolate the predicted species richness of the 
sampling plots to the entire area of the six LUUs the model had 
to be applied accordingly. Lichen species richness for each 
pixel of the six test sites was calculated implementing the 
explanatory variables for the final models in a moving window 
approach (in our case a moving circle). The sum of values 
within a 56 m radius circle was calculated for each pixel of the 
selected explanatory variable (see fig. 4) using GIS operations. 
Then pixel-wise calculation of species richness for all lichens, 
lichens on trees, on rocks and on soil was performed using the 
four corresponding model equations (with their coefficients) as 
given in the section model development. The results are maps of 
predicted number of lichen species for each pixel in the entire 
six LUUs (see fig. 5). 
 

3. RESULTS 

The best results of the models and the combination of 
explanatory variables retained in each model are given in table 
2. The quality of the models (r model) ranges between 0.59 for 
lichens on soil and 0.79 for lichens on trees. Predictive power, 
with a correlation coefficient (r reference) ranging between 0.48 
and 0.79 and G ranging between 0.63 and 0.37, are obtained. In 
general, species richness is slightly underestimated for sampling 
plots with high species richness and overestimated for sampling 
plots with low species richness. A total of 29 variables 
correlated with the number of lichen species but only seven 
were used for the final models.  
 
 
 



 

Models Lichen 
total Trees Rocks Soil 

Goodness of fit  
(r model) 0.68 0.79 0.61 0.58 

Predictive power 
(r reference) 0.58 0.79 0.54 0.48 

MAE (model) 7.84 6.65 8.77 1.01 
95% Quantile of 
error (model) 21.35 15.82 20.11 3.57 

Bias (model) +1.09 +1.52 +3.26 +0.46 

G 0.52 0.63 0.37 0.40 

Table 2. Means of 100 runs for validation of the four models of 
the species richness for all lichens, on trees, rocks soil 

 
Fig. 5 shows the maps of the predicted number of species for all 
lichens in LUU1 (low intensively use) and LUU6 (high 
intensively use). Areas with low numbers of species are mapped 
gray whereas areas with high numbers of species are white.  
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Prediction for LUU1 

 
Orthoimage LUU6 

 

Prediction for LUU6 

 
 
Figure 5. Maps of predicted species richness for all lichens for 
LUU1 and LUU6 with their corresponding CIR orthoimages  

 
Our approach in distinguishing between 1st and 2nd level 
explanatory variables allowed us to assess their contribution to 
the corresponding model. This was an important step for the 
development of the final models and helped us to drop the 
variables that contribute less to the model. Particularly the use 
of simple spectral and textural information values of the CIR 
orthoimages which is linked to spectral reflection and spatial 
heterogeneity of the vegetation cover, respectively, produced 
best results. The implementation of additional 2nd level 
explanatory variables in fact improved model accuracy again – 
with the exception for lichens on trees. For this model best 
accuracy (r model of 0.79 and G 0.63) was produced with the 
single use of variance_nir and its quadratic term whereas the 
implementation of additional explanatory variables slightly 
deteriorated the model’s accuracy. In this case the number of 
species is directly related to a high heterogeneous vegetation 

cover such as forest borders and forest itself. The nine land 
cover types extracted for this study are based on what was 
supposed to be detectable in CIR orthoimages, and what was 
regarded to be of importance for the lichen diversity. The main 
advantage of the application of an object-oriented image 
classification method is that it allowed us to define land cover 
types according to the needs of lichen experts. Thus land cover 
classification applied in this study in combination with image 
segmentation methods was an important step in the 
development of the models. The main disadvantage was the 
relatively high complexity and required amount of time of 
object-oriented image classification methods. 
 
 

4. CONCLUSION 

This study reveals that the application of homogenous and 
reproducible land cover information derived from remotely 
sensed data as basis for the model is adequate. The accuracies (r 
reference) obtained for both model lichens on trees (0.79) and 
for all lichens (0.58) can be regarded as good for the application 
purposes by lichenologists.  
The crucial question is how we can improve our models for 
lichen species richness? In this study we were confronted with 
several problems concerning ecological modelling. According 
to Leathwick et al. (1996) a model used for biodiversity 
assessment should also be general, which means applicable in 
other regions or different times. Furthermore, according to 
Fielding and Bell (1997) the lack of validation and uncertainty 
assessment of models remains a serious issue in ecological 
modelling. Finally, according to Austin and Gaywood (1994) a 
model used for biodiversity assessment should not only be 
precise but also be ecologically sensible, meaningful and 
interpretable. Meeting all the suggested requirements turns out 
to be nearly impossible in our case. E.g. the particular model 
developed here has been applied only for six test sites. Thus, the 
resulting variables of the presented linear models may be used 
for calculating species richness in neighboring regions of the 
Entlebuch with similar vegetation cover and landscape 
structures. Applying the model to other regions is a well-known 
problem (Iverson and Prasad 1998). 
There are four points to remember: First, linear regression 
models can be used to predict lichen diversity, but strongly 
depend on the sampling design of the lichen relevés. Thus the 
distribution of the lichen data should be analyzed further. 
Second, possible hotspots were calculated and may help in 
reducing field surveys and could be useful for possible 
conservation efforts. The resulting explanatory variables of the 
presented linear models may be used for calculating species 
richness in neighboring regions with similar landscape 
structures. Third, we can confirm that the application of 
homogenous and reproducible land cover information derived 
from high resolution remote sensing data as basis for the model 
is very adequate. This means that not so well-known areas can 
still serve as a basis for building the methods. Fourth, 
explanatory variables can be rapidly derived from high 
resolution remote sensing data and distinguishing between 1st 
and 2nd level of detail proved to be a good method for the 
development of the models.  
This method cannot replace lichen surveys altogether, but it can 
be used to target focused lichen forays in the future. Finally, it 
should be noted that this method cannot produce any 
information on lichen species abundance, dynamics, or 
viabilities; it only indicates the potential presence or absence of 
species.  
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